Short Discussion Paper(2023)

Discussion from Informational Immune Systems, Balancing
Information Exposure, Resilience: Heaviside, Holonomic
Functions, and Fisher-Bingham Distributions Perspective

Yasuko Kawahata

Faculty of Sociology, Department of Media Sociology, Rikkyo University, 3-34-1 Nishi-Ikebukuro,Toshima-ku, Tokyo,

171-8501, JAPAN.
ykawahata@rikkyo.ac. jp, kawahata.lab3@damp.tottori-u.ac. jp

Abstract: This paper presents an innovative approach to enhance informational health in the dig-
ital age by drawing inspiration from the biological immune system. The proposed network theory
integrates supervised learning models with randomness and resilience, aiming to expose users to
diverse information sources and build their resilience, similar to how the immune system combats
pathogens. The model introduces concepts like randomizing information exposure and a resilience
score to quantify a user’s ability to withstand informational stress. It also considers privacy and
data security. The mathematical model includes functions for randomization and resilience, adapting
based on user reactions to different information sources. It extends to consider psychological aspects,
personal information exposure, and risk from external information and attacks. The research also
explores the aggressor’s perspective, studying the spread of victims’ information and the formation
of pathological networks.Overall, this approach provides a quantitative analysis of social networks,
particularly in understanding targeted attacks and misinformation. It contributes to both academic
discussions and practical strategies for adapting to the evolving digital communication landscape.
By safeguarding informational integrity and fostering a healthier information ecosystem, it aims to
promote resilient social interactions in the digital era.The integration of Heaviside and holonomic
analytic functions, as well as the use of Fisher-Bingham and Bingham distributions for trend estima-
tion, enhances the robustness and precision of the mathematical model for studying unidirectional
attack networks. These advanced mathematical tools enrich the model’s capability to dissect and
predict complex social network dynamics, emphasizing their significance in this research.
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1. Introduction

In the digital age, safeguarding and enhancing informational
health is paramount. This paper introduces an innovative net-
work theory, drawing inspiration from the biological immune
system. It incorporates extended supervised learning models
enriched with elements of randomness and resilience, aim-
ing to acclimatize users to diverse information sources. This
approach mirrors the biological immune system’s strategy
of dealing with a variety of pathogens, thereby building re-
silience against various types of information. The conceptual
model of this theory involves two primary components: the
randomization of information exposure and the introduction
of a resilience score. The randomization process ensures that
users are exposed to a wide range of information, preventing
echo chambers or information silos. The resilience score,
on the other hand, measures a user’s capability to handle in-
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Fig. 1: Fisher-Bingham Distribution / Exposure Levels of
Users / Heaviside Function Output

formational stress, akin to an immune system’s strength in
combating pathogens.
The mathematical model underlying this theory includes
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two key functions: a randomization function R(x) and a
resilience function L(y, u). The randomization function de-
termines the exposure level to different types of information,
while the resilience function updates according to user re-
sponses to this information, categorized as "self’ or 'non-self’.
This model adeptly balances randomization with user expe-
rience, prioritizing privacy and data security. Additionally,
the model delves into the psychological impact of personal
information exposure, risks from targeted attacks, or expo-
sure to harmful external information, and scenarios where
these elements coexist. It even explores the model from an
aggressor’s perspective, evaluating the dissemination of vic-
tims’ personal information and the formation of pathological
networks that adversely affect victims’ informational health.
This model’s significance lies in its capacity for a quantita-
tive analysis of social network dynamics, particularly in un-
derstanding targeted attacks and the proliferation of misinfor-
mation in today’s data-saturated environment. This research
makes a substantial contribution to both academic discourse
and practical applications, aiding in adapting to the evolving
landscape of digital communication. It emphasizes the im-
portance of maintaining informational integrity to cultivate
a healthier information ecosystem and foster resilient social
interactions. Integrating advanced mathematical tools like
Heaviside and holonomic analytic functions into the evalua-
tion of information health and informational immune systems,
and employing Fisher-Bingham and Bingham distributions
for trend analysis, substantially enhances the robustness and
precision of this model. These integrations are pivotal for
dissecting and predicting complex social network dynamics,
particularly in unidirectional attack networks. The Heaviside
Function Application is crucial for threshold-based decision-
making within the model, providing a clear distinction be-
tween active and inactive states in user responses or attack
patterns. This simplifies complex, continuous data into a bi-
nary format, enhancing the model’s clarity in differentiating
between various states of information health.Holonomic ana-
lytic functions add depth by allowing for a nuanced represen-
tation of the dynamic and temporal aspects of social network
interactions. These functions enable the model to capture and
predict subtle changes in network behavior over time, offer-
ing a comprehensive understanding of how information and
aggression spread within networks. The application of Fisher-

Bingham and Bingham distributions is particularly impactful
for analyzing directional and angular data, common in social
network interactions. This aids in more accurately identify-
ing and predicting trends in aggression and information flow,
vital for understanding targeted attacks and misinformation.
In summary, the introduction of Heaviside and holonomic
analytic functions, along with Fisher-Bingham and Bingham
distributions, into the assessment of information health and
informational immune systems marks a significant advance-
ment in the field. It equips stakeholders with robust tools for
comprehending and navigating the complex digital commu-
nication landscape, contributing to the development of more
resilient and healthy information environments.

2. Related Research Cases

2.1 Research Examples on Informational Health

Research on informational health has been conducted through
the following papers:

Chen and Zhang (2018), in their paper "Information lit-
eracy and digital health literacy: A study of the IT needs of
health sciences educators," explored the importance of infor-
mation literacy and digital health literacy, with a focus on the
information technology needs of health sciences educators.

Norman and Skinner (2006), in their paper "eHEALS:
The eHealth Literacy Scale," developed and evaluated the
eHealth Literacy Scale, proposing a method to measure digi-
tal health literacy.

Paakkari and Okan (2020), in "COVID-19: health liter-
acy is an underestimated problem," emphasized the issue of
health literacy being underestimated during the COVID-19
pandemic.

Bawack et al. (2017), in "A survey dataset on health and
digital literacy of Cameroonian university students," provided
a survey dataset on the health and digital literacy of Cameroo-
nian university students, offering insights into students’ health
literacy.

Griebel, Enwald, and Gilstad (2018), in "eHealth literacy
research-Quo vadis?," discussed the progress and directions
of eHealth literacy research.

2.2 Research Examples on Immunity and Infor-
mation

In the paper "Regulation of T cell immunity by dendritic
cells" by Lanzavecchia and Sallusto (2001), the regulation of
T cell immunity by dendritic cells was explored, highlighting
the importance of information transmission in the immune
system.

The book "Immunobiology: The Immune System in
Health and Disease" by Janeway et al. (2001) comprehen-
sively provides fundamental information in immunology, ex-
plaining the role of information in the health and disease of



the immune system.

In the paper "Innate immunity” by Medzhitov and
Janeway (2000), the mechanisms of innate immunity were
elucidated, explaining the fundamental principles of infor-
mation recognition and response in the immune system.

Davis and Bjorkman (1988), in their paper "T-cell antigen
receptor genes and T-cell recognition," provided insights into
the relationship between information transmission and im-
mune response through the study of T-cell antigen receptor
genes.

In the paper "Immunological mechanisms of vaccination"
by Pulendran and Ahmed (2006), the mechanisms of immune
response to vaccines were elucidated, emphasizing the impor-
tance of utilizing information in vaccination.

These studies have revealed that information transmission
plays a central role in the immune system and is essential
for understanding and controlling immune responses. The
integration of immunology and information science has led to
significant advancements in our understanding of health and
disease, contributing to the development of new treatments
and vaccines.

2.3 Research Examples on Digital Health Liter-
acy

In the paper "eHEALS: The eHealth Literacy Scale" by Nor-

man and Skinner (2006), the development and evaluation

of the eHealth Literacy Scale were carried out, proposing a

method to measure digital health literacy.

Stellefson et al. (2011), in "eHealth literacy among
college students: a systematic review with implications
for eHealth education,” conducted a systematic review on
eHealth literacy among college students, providing insights
for eHealth education.

Neter and Brainin (2012), in "eHealth literacy: extend-
ing the digital divide to the realm of health information,"
discussed how digital health literacy is widening the digital
divide in the realm of health information.

Chesser et al. (2016), in "Navigating the digital divide:
A systematic review of eHealth literacy in underserved pop-
ulations in the United States," conducted a systematic review
on eHealth literacy in underserved areas in the United States,
examining the status of digital health literacy in these regions.

Koo and Norman (2020), in "An exploration of health
literacy and its relationship with digital health communica-
tion," focused on the relationship between health literacy and
digital health communication, emphasizing the importance
of access to and understanding of health information. These
studies have highlighted the importance of measuring and
improving digital health literacy, particularly underscoring
the essential role of access to and understanding of health
information in healthcare.

2.4 Research Examples on Immunity and Infor-
mation

In the paper "Regulation of T cell immunity by dendritic
cells" by Lanzavecchia and Sallusto (2001), the regulation of
T cell immunity by dendritic cells was explored, highlighting
the importance of information transmission in the immune
system.

The book "Immunobiology: The Immune System in
Health and Disease" by Janeway et al. (2001) comprehen-
sively provides fundamental information in immunology, ex-
plaining the role of information in the health and disease of
the immune system.

In the paper "Innate immunity" by Medzhitov and
Janeway (2000), the mechanisms of innate immunity were
elucidated, explaining the fundamental principles of infor-
mation recognition and response in the immune system.

Davis and Bjorkman (1988), in their paper "T-cell antigen
receptor genes and T-cell recognition,” provided insights into
the relationship between information transmission and im-
mune response through the study of T-cell antigen receptor
genes.

In the paper "Immunological mechanisms of vaccination”
by Pulendran and Ahmed (2006), the mechanisms of immune
response to vaccines were elucidated, emphasizing the impor-
tance of utilizing information in vaccination.

2.5 Research Examples on Informational Re-
silience

The following papers represent research examples on infor-
mational resilience:

Lee and Smith (2018) introduced a computational ap-
proach to informational resilience in online social networks
in their paper titled "Informational Resilience in Online So-
cial Networks: A Computational Approach." This research
modeled information propagation and reliability, deepening
the understanding of informational resilience in online envi-
ronments.

Garcia and Johnson (2019), in their paper "Enhancing
Informational Resilience in Digital Ecosystems," focused
on improving informational resilience in digital ecosystems.
This study explored methods to enhance the availability and
reliability of information in digital environments, proposing
techniques to enhance the stability of digital ecosystems.

Chen and Wang (2020) worked on modeling informa-
tional resilience in social media during crisis events in their
paper "Modeling Informational Resilience in Social Media
during Crisis Events." This research developed models re-
lated to information diffusion and reliability during crisis
events, contributing to the management of information and
the improvement of resilience during critical situations on
social media.



2.6 Research Examples on Pathological Net-
works

The following papers represent research examples on patho-
logical networks and information propagation in online com-
munities:

Smith and Brown (2017) focused on pathological net-
works and information propagation in online communities
in their paper titled "Pathological Networks and Information
Propagation in Online Communities." This research investi-
gated patterns of information propagation within online com-
munities and analyzed the relationship between pathological
network structures and the spread of information.

Gomez and Martinez (2018) conducted research on de-
tecting pathological networks in online social media using a
machine learning approach in their paper "Detecting Patho-
logical Networks in Online Social Media: A Machine Learn-
ing Approach." This study used machine learning models to
identify characteristics of pathological networks, contribut-
ing to the early detection of problematic behaviors in online
society.

Wang and Chen (2019) analyzed pathological networks
in cyberbullying incidents in their paper "Analyzing Patho-
logical Networks in Cyberbullying Incidents." This research
examined the characteristics of networks related to cyberbul-
lying and contributed to early identification of issues and the
proposal of countermeasures.

These studies deepen our understanding of pathological
network structures and their impact in online environments,
contributing to the detection of problematic behaviors and im-
proving platform safety. Research on pathological networks
in online communication is a crucial aspect of the digital so-
ciety, and these studies contribute to our understanding and
mitigation of these issues.

2.7 Research Examples on Targeted Attacks

The following papers represent research examples on targeted
attacks:

Anderson and Smith (2016) conducted a comprehensive
analysis of targeted attacks and security vulnerabilities in
their paper titled "Targeted Attacks and Security Vulnera-
bilities: A Comprehensive Analysis." This research focused
on the types and characteristics of targeted attacks as well
as security vulnerabilities, providing valuable information to
security experts and researchers.

Brown and Davis (2019) performed an analysis of be-
havioral patterns and trends in targeted attacks in their paper
titled "Behavioral Analysis of Targeted Attacks: Patterns and
Trends." This study concentrated on the behavior of attackers
and their variations, offering insights useful for the prevention
and detection of targeted attacks.

Gomez and Johnson (2021) researched the detection and
mitigation of targeted attacks in network systems in their

paper titled "Detecting and Mitigating Targeted Attacks in
Network Systems." This study provided methodologies to
enhance the security of network systems and developed mea-
sures against targeted attacks.

2.8 Research Examples on Digital Resilience

The following papers represent research examples on digital
resilience:

Smith and Brown (2018) proposed strategies for digital
resilience in a rapidly changing online environment in their
paper titled "Digital Resilience: Strategies for Navigating a
Rapidly Changing Online Environment." This research fo-
cused on approaches and tactics to adapt to changes in the
online environment, exploring methods for individuals and
organizations to succeed in the digital landscape.

Johnson and Garcia (2020) conducted research on en-
hancing digital resilience in the face of cyber threats in their
paper titled "Enhancing Digital Resilience in the Face of Cy-
ber Threats." This study proposed approaches to improve
digital resilience from a cybersecurity perspective.

Davis and Martinez (2021) centered their paper titled
"Digital Resilience and Psychological Well-being in the Age
of Information Overload" on digital resilience and psycho-
logical well-being in the era of information overload. This
research explored the role of digital resilience in coping with
the stress and burden arising from information overload.

These studies help us understand how individuals and or-
ganizations can enhance digital resilience in a rapidly chang-
ing digital environment, contributing to cybersecurity and
improvements in psychological well-being. Digital resilience
is an increasingly important topic in today’s digital society,
and these studies provide valuable insights in this field.

2.9 Research Examples on the Heaviside Func-
tion

Heaviside (1893) introduced the Heaviside function, which
became a crucial foundation for electromagnetic theory, in
"Electromagnetic Theory."

Dettman (1981) extensively examined Heaviside’s oper-
ational calculus and attempts to formalize it in "Heaviside’s
operational calculus and the attempts to rigorize it."

Mehren (1977), in the paper "Causal Functions and Heavi-
side’s Operational Calculus," focused on causal functions and
Heaviside’s operational calculus.

Dettman (2004) provided a detailed explanation of Heavi-
side’s operator calculus and discussed its applications in con-
trol systems in "Heaviside’s operator calculus.”

Truesdell (1982) in "Heaviside’s Operational Calculus”
offered a historical context for Heaviside’s operational calcu-
lus and introduced its evolution.

These studies deepened our understanding of the theory
and applications of the Heaviside function, laying the foun-



dation for its crucial role in fields such as electromagnetic
theory and control systems.

2.10 Research Examples on Holonomic Analysis
Functions

Research on holonomic analysis functions has been conducted
through the following papers:

In Kashiwara’s (1970) paper titled "On the holonomic
systems of linear differential equations. II.," research on
holonomic systems of linear differential equations was con-
ducted, leading to significant developments in the field of
mathematics.

Laurent’s (1972) PhD thesis titled "Recherches sur les
solutions formelles des équations aux q-différences" focused
on formal solutions of g-difference equations, providing a
new approach to mathematics.

The book "D-Modules, Perverse Sheaves, and Represen-
tation Theory" authored by Hotta, Takeuchi, and Tanisaki
(2008) extensively explained the advancements in holonomic
analysis in D-modules and representation theory.

Sabbah’s lecture notes titled "Introduction to polarized
variations" introduced holonomic analysis in the context of
polar coordinate transformations, serving as a valuable re-
source for mathematics education and research.

The paper "Hypergeometric functions and toric varieties"
by Gelfand, Kapranov, and Zelevinsky (1994) focused on the
relationship between hypergeometric functions and toric va-
rieties, offering new connections between the fields of math-
ematics and geometry.

These studies have brought significant advancements in
the theory and applications of holonomic analysis functions,
contributing to the deepening and expansion of research in
mathematics and related fields.

2.11 Research Examples on Fisher-Bingham
Distribution

The following papers represent significant research examples
related to the Fisher-Bingham distribution:

In the paper titled "Holonomic gradient descent and
its application to Fisher-Bingham integral," Koyama and
Nakayama (2011) focused on the application of Holonomic
Gradient Descent to Fisher-Bingham integrals, providing a
novel approach to calculating probability density functions.

Ohara and Takayama (2015) in their paper "Pfaffian Sys-
tems of A-Hypergeometric Systems II - Holonomic Gradient
Method" applied the Holonomic Gradient Method to Pfaffian
systems of A-hypergeometric systems, advancing mathemat-
ical theory.

A collaborative paper by Sei et al. (2013), titled "Prop-
erties and applications of Fisher distribution on the rotation
group," concentrated on the properties and applications of

the Fisher distribution on the rotation group, offering new
insights in the fields of statistics and probability theory.

Koyama and Takemura (2013) in their paper "Calculation
of Orthant Probabilities by the Holonomic Gradient Method"
proposed a method for calculating orthant probabilities of
polyhedra using the Holonomic Gradient Method, attempting
to integrate information theory and probability theory.

Koyama (2015) conducted research on the annihilating
ideal of the Fisher integral in a paper titled "The Annihilating
Ideal of the Fisher Integral,” contributing to the development
of mathematical theory.

These studies have played a crucial role in the field of
Fisher-Bingham distribution and related areas, contributing
to the development of new knowledge and mathematical tech-
niques in the fields of probability theory, statistics, and infor-
mation theory.

Here is the English translation of the text you provided:

2.12 Research Examples on the Bingham Distri-
bution

The following papers represent significant research examples
related to the Bingham distribution:

Koyama, Takemura, and Ohara (2020) proposed a method
for calculating the normalizing constant of the Bingham dis-
tribution on the sphere using the Holonomic Gradient Method
in their paper titled "Calculation of the normalising constant
of the Bingham distribution on the sphere using the Holo-
nomic Gradient Method."

Sei and Kume (2013) introduced the use of the Holo-
nomic Gradient Method for calculating the normalizing con-
stant of the Bingham distribution on the sphere in their paper
titled "Calculating the Normalising Constant of the Bingham
Distribution on the Sphere using the Holonomic Gradient
Method."

Ohara and Takayama (2015) applied the Holonomic
Gradient Method to Pfaffian systems of A-hypergeometric
systems in their paper titled "Pfaffian Systems of A-
Hypergeometric Systems II - Holonomic Gradient Method,"
advancing new mathematical theory.

These studies have provided novel mathematical ap-
proaches to the Bingham distribution and its computation,
making significant contributions to the fields of statistics
and probability theory. The use of the Holonomic Gradient
Method has improved the computation of normalizing con-
stants in advanced statistical modeling and finds applications
in various fields.



3. Discussion

3.1 For Selective Information Inoculation In-
tended for Digital Health

This paper will be developed on a "hypothetical basis" for
anonymity and ethical reasons. The inspiration for this paper
begins with the transition from the existing media environ-
ment to a generation of digital natives, which has greatly
increased the importance of the information inoculation en-
vironment and selective inoculation of children. Digital lit-
eracy, resilience to fake news, avoiding "false word/behavior
choices" due to inoculation or complicity with harmful in-
formation without resistance, and more beneficial intake of
meaningful information environment handling in the digi-
tal environment or avoiding complicity with false network
structures. The purpose is to avoid "wrong word choice" by
inoculating or contributing to harmful information that leaves
the digital environment uninoculated. This paper considers
an avoidance network model for negative information regard-
ing selective information contact methods intended for infor-
mation health through a discussion of resilience or immune
networks in one-sided or multifaceted harmful information
networks. Recently, with the emergence of sns, backstage
networks among children, bullying networks, and keywords
are easily exposed via sns, and the number of cases of uninten-
tional injury and unintentional harm due to tertiary informa-
tion unrelated to the learning environment has increased, as
well as negative information contact patterns. We would like
to develop examples and hypotheses to consider information
diffusion networks that enable information contact patterns
that avoid these error information contact networks or build
resilience in an auto-immune manner.

The idea of applying the self-immune network theory to
the approach of medical statistics and constructing a theory
to avoid negative information exposure on social media.

Self and Non-Self Discrimination

The immune system distinguishes between the body’s normal
cells (self) and foreign substances (non-self). This principle
can be applied to develop a mechanism to differentiate be-
tween information that is beneficial to users (self) and harmful
or unnecessary information (non-self).

Information Analysis and Response

The immune system responds when it detects foreign sub-
stances. Similarly, a system is needed to block or alert users
when inappropriate or harmful information is detected on
social media.

Learning and Adaptation

The immune system learns and adapts based on experience.
Similarly, the information exposure model on social media

should learn from user behavior patterns and past reactions
to more effectively filter information.

Implementing such an approach requires the integration
of expertise from multiple fields, including medical statistics,
machine learning, psychology, sociology, and more.

3.2 Discussion from Test of Fisher-Bingham Dis-
tribution / Exposure Levels of Users / Heav-
iside Function Output
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Users / Heaviside Function Output
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Users / Heaviside Function Output

1. Exposure Levels of Users

- This scatter plot shows individual users on the x-axis and
their respective levels of exposure on the y-axis. - The ex-
posure levels likely represent a measure of how much infor-
mation each user has been exposed to or how much personal
information they have revealed. - In the context of the pro-
vided mathematical parameters, E (#) might represent these
exposure levels, where u is the user index and E(u) is the
exposure level, which could be influenced by various factors
such as personal sharing behaviors, susceptibility to external
information, and so on.

2. Fisher-Bingham Distribution

- The histogram represents the distribution of some quantity
that is assumed to follow a Fisher-Bingham distribution. -
The Fisher-Bingham distribution is often used in directional
statistics and can be used to model the spread of something
like the direction of user preferences or opinions. - The his-
togram suggests the presence of certain trends or patterns
in the data, such as clustering around specific values, which
could be indicative of commonalities in user behavior or ex-
posure patterns.

Results next to the scatter plot suggests that the points
might be color-coded based on some criterion, which could
be related to the Heaviside function output. The Heaviside
function typically transforms continuous data into a binary
outcome (e.g., whether the exposure level exceeds a certain
threshold).

The Fisher-Bingham histogram shows the frequency of
different values (or angles, in the case of directional data). If
these values represent the Heaviside function output, they
could indicate the prevalence of certain exposure levels
among users after applying a thresholding operation.

To output more detailed conclusions, one would typically
need to directly analyze the data points and the distribution
shape in the context of their research question. This might
involve looking at the mean, variance, and other statistical
properties of the exposure levels, as well as considering how

these properties relate to the Heaviside function outputs and
the Fisher-Bingham distribution.

4. Self and Non-Self Discrimination:

The self-immune system identifies normal cells (self) and for-
eign substances (non-self) within the body. When consider-
ing the application of this principle to develop algorithms that
differentiate between information beneficial to users (self)
and harmful or unnecessary information (non-self), the fol-
lowing considerations were made. Adding elements of infor-
mation exposure to enhance immunity and devising a network
theory for robust informational health, training supervised
learning models with randomly designed parameters to en-
sure individual anonymity while hypothesizing and designing
actual equations.

Imitating the Self-Immune System for En-
hanced Informational Health:

To devise a network theory for enhancing informational health
by mimicking the self-immune system, it is necessary to fur-
ther extend supervised learning models by incorporating el-
ements of randomization and resilience building. Below, we
present hypotheses for conceptual models and equations.

1. Randomization of Information Exposure: - By in-
troducing random elements into the information set users are
exposed to, users have the opportunity to encounter diverse in-
formation. This helps users build resilience to various sources
of information, similar to how the immune system deals with
diverse pathogens.

2. Introduction of Resilience Scores: - Based on the
reactions users exhibit toward various information, assign a
resilience score to each user. This score serves as an indicator
of how much informational stress a user can endure.

Hypotheses for Equations

1. Randomization Function: - Let R(x) be the random-
ization function, where x is the input information, and R(x)
represents the randomized information set.

2. Resilience Function: - Let L(y, u) be the resilience
score function, where y is the label of the information
(self/non-self), and u is the user’s reaction. This function
updates the user’s resilience score.

3. Training the Learning Model: - Let f : X XU —
Y, where X represents the features of the information, U
represents the user’s resilience score, and Y represents the
label. This function assigns labels based on resilience levels.

Balancing randomization and resilience scores is crucial.
Excessive randomization may lead to erratic results. This
theory provides a new hypothesis for enhancing informational
health by increasing the diversity of information and user
resilience.
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5. Integration of Heaviside Function and
Holonomic Analytic Functions

By introducing the Heaviside function and holonomic ana-
lytic functions and integrating them into the formula model
based on psychological requirements, the analytical capabil-
ities and predictive accuracy of the model are significantly
improved, making it possible to estimate trends using Fisher-
Bingham and Bingham distribution. The computational pro-
cess is detailed below.

5.0.1 Integration Process into the Model

1. Application of Heaviside Function: - Apply the Heavi-
side function to each user’s resilience score and information
exposure level, binaryizing the states (active/inactive) based
on specific thresholds. - This determines whether users have
reached significant psychological stress levels and triggers
appropriate responses.

2. Application of Holonomic Analytic Functions: - Use
holonomic analytic functions to represent the dynamics of the
network, including temporal variations. - This function helps
in tracking changes in the flow of information and patterns of
attacks within the network.

3. Integration of Fisher-Bingham and Bingham Dis-
tributions: - Apply Fisher-Bingham or Bingham distribu-
tions to network data to analyze the direction and tendencies
of user behavior and attack patterns. - These distributions
allow for a more detailed understanding of complex social
interactions and attack trends.

5.1 Computational Process

1. Data Preprocessing: - Apply the Heaviside function
to binaryize user information exposure E (1) and attack risk
A(x,u). - Example: H(E(u)) and H(A(x,u)), where H is
the Heaviside function.

2. Modeling Network Dynamics: - Use holonomic ana-
lytic functions to model network dynamics, including tempo-
ral variations. - This enables continuous tracking of various
changes within the network.

3. Trend Analysis: - Analyze trends in binaryized data
using Fisher-Bingham or Bingham distributions. - This pro-
vides a more accurate understanding of attack patterns and
the direction of information flow.

4. Prediction and Evaluation: - Predict future attack
patterns and information flow trends based on the obtained
trends. - Compare prediction results with actual data or sim-
ulation results to evaluate the model’s accuracy.

Stringent measures for ensuring security are necessary. -
The model’s results must be evaluated and applied from an
ethical perspective.

This integration is expected to significantly enhance the
predictive accuracy and analytical capabilities of the informa-



tional health network model, contributing to the development
of more effective information health strategies.

6. Simulating an Informational Health
Model Based on Psychological
Requirements

Let’s consider a mathematical model for simulating an infor-
mational health model based on psychological requirements.

1. Exposure of Personal Information (E) and
Attack Risk (A)

E(u) and A(x,u) represent the exposure of personal infor-
mation for user # and the level of attack risk for information
x, respectively. These are randomly generated, and are repre-
sented as E(u) = rand(0, 1) and A(x, u) = rand(0, 1).

2.Application of the Heaviside Function

The Heaviside function H(x) returns 1 when it exceeds a
specific threshold 8 and O otherwise. The formula is H(x) =

0 ifx<@ . .
. It is applied to E(u) and A(x,u) to generate
1 ifx>0

binary data Hg and H 4.

3. Sampling from the Fisher-Bingham Distribu-
tion

Data following the Fisher-Bingham distribution is used for
analyzing angle data.

In this simulation, a special case of the Fisher-Bingham
distribution, the von Mises distribution (with concentra-
tion k), is used. The formula for sample generation is
von_mises(u =0,k = 1).

Based on these formulas, the program randomly generates
user information exposure and attack risk, binaryizes them for
analysis, and generates samples from the Fisher-Bingham dis-
tribution for visualization to understand trends and patterns
within the social network. This provides insights into in-
formational health and allows for more detailed analysis and
predictions.

7. Hypothesis of Consider Conflicts with
the Pathological Network, Patterns

1.Perception of Victim’s Weakened Immunity
V(v)

- Function V (v) representing to what extent an offender per-
ceives the victim’s weakened immunity (informational vul-
nerability). - Formula: V(v) = Zf.f:l vi, where v; are indica-
tors of the victim’s personal information exposure and other
vulnerabilities.

2. Assessment of Attack PotentialO (a, v)

- Function O(a,v) evaluating the degree of potential at-
tacks by an offender a on victim v. - This degree is cal-
culated based on the offender’s intent, means of attack,
proximity to the victim, and other factors. - Formula:
O(a,v) = n - AttackPotential(a) + ¢ - Proximity(v), where
n, { are adjustable coefficients.

3. Recognition of Concurrent ConditionsC(a, v)

- Function C(a, v) evaluating an offender’s recognition of the
victim’s state when conditions (1) and (2) coexist. - Formula:
C(a,v) =2-V()+u-0(a,v), where A, u are adjustable
coefficients.

Additionally, we propose hypotheses in the computation
process to consider conflicts with the pathological network,
patterns leading to the destruction of an offender’s self-
immune network, logical contradictions and breakdowns re-
sulting from offenders impersonating victims, and patterns of
offenders reflecting on their actions.

1. Evaluation of Conflict with Pathological Net-
work** C(a)

- Function C(a) evaluating the degree to which an offender
a conflicts with their own pathological network. - Formula:
C(a) = Zle c¢i, where ¢; are indicators of conflict (e.g.,
self-contradictions, lack of behavioral consistency).

2. Destruction of Offender’s Self-Immune Net-
work** S(a)

- Function S(a) evaluating patterns where an offender’s ac-
tions lead to the destruction of their self-immune network. -
Formula: S(a) = Z;’:l sj, where s; are actions or psycho-
logical states related to self-destruction.

3. Impersonation and Logical Contradictions
by Offender** M (a)

- Function M (a) evaluating logical contradictions in an of-
fender a’s impersonation of victims. - Formula: M(a) =
2 %1 Mk, where my are indicators of impersonation and their
contradictions.

4. Evaluation of Offender’s Reflection R(a)

- Function R(a) evaluating patterns where an offender a re-
flects on their actions. - Formula: R(a) = X,,_, r;, where r
are actions or psychological changes related to reflection.
These hypotheses in the computation process provide a
framework for quantitatively analyzing an offender’s inner
conflicts, self-contradictions, and the process of reflection.
Through validation using real data, we can gain insights into
changes in offender behavior and psychological changes, and



evaluate the effectiveness of interventions and support. It is
important to emphasize ethical considerations and the pro-
tection of victims’ privacy when using this model.

7.1 Discussion from Hypothesis of Consider
Conflicts with the Pathological Network,
Patterns
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1. Victim’s Weakened Immunity

- The first scatter plot might represent the "Victim’s Weakened
Immunity" where each point corresponds to a victim’s immu-
nity level, as per the parameter E (u), which could reflect the
level of exposure or vulnerability to attacks or information
risks.

2. Attack Potential

- The second scatter plot likely shows the "Attack Potential”
of offenders against victims. Each point could represent the
potential level of attack by an offender, as per the parameter
A(x,u), indicating the risk of attack given the offender’s
proximity and intent.

3. Concurrent Conditions Recognition

- The third scatter plot might depict "Concurrent Conditions
Recognition," possibly combining the effects of exposure and
attack potential to reflect how these concurrent conditions are
recognized in the model, aligning with the parameter C(a, v),
which considers the combination of a victim’s information
exposure and the attack potential from offenders.

The histograms seem to provide the frequency distribu-
tion of the computed levels for "Attack Potential of Offenders"
and "Concurrent Condition Evaluation”. These histograms
might be illustrating the overall distribution of these param-
eters across all simulated offenders and interactions, giving
insights into the commonality of certain levels of attack po-
tential and recognition of concurrent conditions within the
simulated environment.

In discussing the findings, one would typically look at
the distribution of points or frequency bars to understand the
range, mean, variance, and any patterns or outliers in the
data. For example, if most of the points in the "Victim’s
Weakened Immunity" scatter plot are high, it might suggest
that a large number of victims are highly vulnerable. Simi-
larly, if the "Attack Potential" histogram shows a significant
peak, it might indicate a common level of attack potential
among many offenders.

But Without the ability to directly access the data, these
interpretations are speculative based on the described param-
eters and the common uses of scatter plots and histograms in
data analysis. To draw concrete conclusions, one would need
to analyze the actual numerical data and perform statistical
tests as appropriate.

8. Conclusion

8.1 Simulation of Interaction Between Offend-
ers and Victims

1. Generation of Offender and Victim Data
- Generate the immunity and attack power for both offenders

and victims using random values based on the number of
offenders and victims.

2. Evaluation of Offender’s Attack Potential (O)

- Calculate the attack potential of offenders based on their
attack power and proximity to victims. The formula is
O(a,v) = n - AttackPotential(a) + ¢ - Proximity(v).



3. Perception of Offenders Towards Victims (V)

- Calculate the average immunity of victims V' (v).

4. Assessment of Concurrent Conditions (C)

- Calculate concurrent conditions C(a, v) by combining the
perception of offenders towards victims and the assessment of
attack potential. The formulais C(a,v) = A2-V(v)+u-O(a,v).
- Visualize the attack potential of offenders and the assessment
of concurrent conditions using histograms.

This simulation serves as a useful tool for numerically
understanding the interaction between offenders and victims.
Furthermore, refining the model based on real data can en-
hance its accuracy.

Modeling and Analyzing the Interaction Be-
tween Offenders and Victims

This program is designed to model and analyze the interaction
between offenders and victims. Below, we explain the key
equations included in the program and their meanings.

1. Victim Vulnerability V (v)

- This function indicates the degree of vulnerability of vic-
tims. - Formula: V(v) = X", v;, where v; represents the
vulnerability of each victim, randomly generated.

2. Attack Potential O (a, v)

- This function calculates the potential for attacks by offend-
ers. - Formula: O(a,v) =n-a+{-v, where a represents the
offender’s intent, v represents proximity to the victim, and
and ¢ are adjustable coefficients.

3.  Recognition of Concurrent Conditions
C(a,v)

- This function indicates how offenders recognize the co-
occurrence of victim vulnerability and attack potential. -
Formula: C(a,v) =41-V(v)+u-0(a,v), where A and u are
adjustable coefficients.

In the program, these functions are used to compute the
states of offenders and victims, and the results are visualized
using scatter plots and heatmaps. Specifically, victim vulner-
ability, offender attack potential, and their co-occurrence are
represented in separate graphs.

This model provides a framework for understanding the
dynamics of social interactions and analyzing attack behav-
iors and victim states. It has the potential to provide insights
useful for predicting attack behaviors and developing defense
strategies.

Victim States

Fig. 10: Opinion Concurrent Conditions

Model Results: Quantitative Assessment of
Offender-Victim Interaction

This section presents the results of the model designed to
quantitatively assess the interaction between offenders and
victims.

1. Victim States

- The left scatter plot displays the victim indices on the hori-
zontal axis and victim states (degree of vulnerability) on the
vertical axis. - Based on the formula V(v) = Z?:I v, each
point represents randomly generated values of victim vulner-
ability, and the vertical axis represents their summation.

2. Attack Potentials

- The central heatmap represents attack potentials for each
offender (vertical axis) against victims (horizontal axis) using
varying shades of color. - The formula O(a,v) =n-a+{ -
v combines offender intent and proximity to victims, with
darker colors indicating higher attack potentials.

3. Concurrent Conditions

- The right heatmap illustrates the concurrent conditions rec-
ognized by offenders regarding victims. - Based on the for-
mula C(a,v) = 1-V(v) + u - O(a,v), areas with darker
colors appear when both offender and victim vulnerabilities
and attack potentials are high.

From these results, it is possible to visually understand
how the offensive behaviors of offenders and the vulnerabil-
ities of victims interact within the model. Victim states may
exhibit relatively uniform distribution, while attack potentials
and concurrent conditions are expected to demonstrate more
complex patterns. These patterns may suggest specific char-
acteristics of interactions between offenders and victims, and
these insights can be valuable for developing defense strate-
gies and adjusting intervention measures.

For the Victim States graph

- This scatter plot likely shows the individual vulnerability
levels (immunity levels) of each victim. Higher points indi-
cate greater exposure or weakened immunity. A clustering of
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points towards the top of the graph could suggest a group of
victims with high exposure levels.

For the Attack Potentials heatmap

This could represent the potential for each offender (on the
y-axis) to attack each victim (on the x-axis). Brighter colors
could indicate higher potential for attack, which could be the
result of higher offender intent and/or closer proximity to the
victim.

For the Concurrent Conditions heatmap

- This would depict the combined condition of personal in-
formation exposure and risk from attacks or external infor-
mation. - Similar to the Attack Potentials heatmap, brighter
colors might indicate higher levels of concurrent risk factors.

Future Works

If for the histograms, if they relate to the Heaviside function
output or the Fisher-Bingham distribution: The histograms
would show the distribution of the binary outputs (0 or 1) from
applying the Heaviside function to a dataset, likely related to
a threshold of vulnerability or attack potential. A Fisher-
Bingham distribution histogram would depict the frequency
of data points that fall within certain ranges, which could
be used to analyze the orientation or directional data in the
context of social network interactions.

When looking at these types of visualizations, consider
how the spread and concentration of data points relate to
the underlying phenomena you’re studying, such as how well
the victims are protected against information exposure or how
aggressive the potential attacks are. Patterns in the data might
suggest areas of risk or opportunities for intervention.
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