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Abstract: This paper delves into the complex impacts of digital media and social networks on
mental health in contemporary society, focusing on the dynamics between opinion leaders and
their followers. It examines how opinion leaders’ interaction with external negative information
affects their supporters’ social literacy and information immunity, highlighting the risks of spreading
inaccurate information within and outside the group. The study uses viscous solutions of the Eikonal
equation (Ishii’s Complementary) to model these dynamics, quantifying how information exchange
between opinion leaders and followers influences individual and group opinions. Additionally, it
references Davis and Martinez’s (2021) work on digital resilience in the context of information
overload, emphasizing the importance of managing digital information for psychological well-being.
The paper aims to provide insights into the convergence and expansion of opinions within group
dynamics, demonstrating the intricate relationship between digital influence and mental health.In
the second half of the seminar, we will discuss some possible case studies, and simulations, issues,
hypotheses and discussions based on the solution method using viscosity and Perron-Ishii’s Lemmata
will be presented.
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1. Introduction
This paper explores the multifaceted impact of the perva-
siveness of the digital environment on the mental health of
contemporary society. The impact of the rapid evolution of
digital media and social networks on people’s mental health is
complex, and the quality and quantity of information provided
by these platforms can have profound effects on individuals’
cognition and behavior. And informative health-aware sim-
ulation and hypothesis of group dynamics in digital media
environments regarding viscous arguments, opinion exten-
sion, and adherence that can occur on group dynamics using
an application of Perron-Ishii’s Lemmata-based viscosity so-
lution method. The main focus of the project will be on the
following topics. In the second half of the seminar, we will
discuss some possible case studies, and simulations, issues,
hypotheses and discussions based on the solution method us-
ing viscosity and Perron-Ishii’s Lemmata will be presented.

In particular, we will focus on the dynamics between opin-
ion leaders and their followers and deeply analyze the impact
of these relationships on the people around them, especially

Fig. 1: Attack Indicator (A), Intentions of Information
Senders (I), Trust Level of Receivers (D), Gradient of At-
tack Indicator (DA)
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the "uninvolved". Opinion leaders’ information immunity
and risk factors, self-injurious speech and behavior, and the
degree to which they react to external negative information
can affect the social literacy and information immunity of
their supporters. This suggests that inaccurate information
and extreme opinions can be easily spread and influence per-
ceptions and behavior both within and outside the group. The
concept of viscous solutions to the Eikonal equation is used to
model this dynamics. This equation captures the complexity
of the information exchange between opinion leaders and their
supporters and quantifies how this affects individual opinions
and behavior. The model takes into account variables such
as opinion leader influence (𝐼𝑖 (𝑡)), risk factors (𝑅𝑖 (𝑡)), and
supporters’ social literacy (𝐿𝑖 (𝑡)). The speed of convergence
of opinions on group dynamics indicates how opinions move
toward agreement within a group. This speed depends on
the quality of information and influence of opinion leaders
and the efficiency of communication among their support-
ers; the Eikonal equation allows a numerical analysis of how
these factors act on the convergence of opinions within a
group. Opinion extension status indicates the extent to which
a particular opinion or idea spreads outside the group. This
depends on the influence of opinion leaders and the ability
of information to spread through the media. Analysis using
viscosity solutions makes it possible to investigate in detail
how opinions spread and how this affects the perceptions and
actions of individuals outside the group. This approach al-
lows for a deeper understanding of the impact of information
exchange between opinion leaders and their supporters on in-
dividuals inside and outside the group; by utilizing viscous
solutions to the Eikonal equation, the impact of complex so-
cial interactions and individual behavior patterns on group
opinion can be mathematically expressed and, based on this
Based on this, it is expected to develop effective communica-
tion strategies and intervention techniques.

Opinion leaders’ information immunity, risk factors, self-
injurious behaviors, and degree of exposure to external neg-
ative information may create a risk of reduced social literacy
and information immunity among their followers. Further-
more, it has been statistically observed that this dynamic
indirectly and subtly affects the cognitive levels of individu-
als in the vicinity of the endorser. This group dynamic can
sometimes lead to misperceptions of "unaffiliated people" and
cause aggressive speech and behavior patterns. Also consid-
ered are patterns of intentional or unintentional enlightenment
by opinion leaders. These interactions can have a pervasive
effect, not only within a group, but throughout society, and
can pose risks to an individual’s informational health.

In this context, an important prior study is Davis and
Martinez’s (2021) study "Digital Resilience and Psycholog-
ical Well-Being in the Age of Information Overload." This
paper focuses on the impact of information overload in the

digital age on an individual’s psychological well-being. The
study specifically explores the concept of digital resilience
and analyzes how the dynamics of information processing in
today’s society affect an individual’s mental health. Davis
and Martinez point out that in today’s society, where the vol-
ume of information in the digital environment is exploding,
the quality and quantity of information people encounter can
cause mental stress and anxiety. They emphasize the impor-
tance of "digital resilience," or the ability of individuals to
process and adapt to information effectively, as digital media
play an increasing role in our daily lives.

Through an extensive survey and case studies, the study
examines the impact of information overload on an individ-
ual’s psychological well-being. Davis and Martinez found
that individuals who are digitally resilient tend to reduce
stress and maintain a sense of psychological well-being in
information overload situations. They also noted that individ-
uals with low digital resilience are more likely to experience
mental stress and anxiety due to the overwhelming flow of
information.

Davis and Martinez identified information literacy, criti-
cal thinking, and self-regulation skills as factors that enhance
digital resilience. These skills help people protect themselves
from inaccurate or biased sources of information and effec-
tively discern the information they need. They also conclude
that proper management of information in the digital environ-
ment is important in supporting psychological well-being.

This research provides an important foundation for indi-
viduals to develop and implement strategies to cope with in-
formation overload in the digital environment. It emphasizes
the importance of digital literacy education in educational
institutions and workplaces and suggests concrete ways for
individuals to protect themselves from the stress of informa-
tion overload. The concept of digital resilience also offers a
new perspective on promoting mental health and coping with
the challenges of the digital age.

Furthermore, following the aforementioned, this study ex-
plores how the interaction between opinion leaders and their
supporters affects social literacy, information-processing ca-
pacity, and responsiveness to external information through
mathematical models. In particular, we will analyze the
mechanisms by which group dynamics cause aggressive be-
havior and misperceptions, and assess the indirect effects of
these dynamics on the individuals around them. These anal-
yses will provide a basis for assessing risks to informational
health within and outside the community and for developing
appropriate intervention strategies.

Finally, this paper uses Perron-Ishii’s method to obtain
viscous solutions to the Eikonal equation and applies them to
the informational dynamics model. This allows for a more
detailed analysis of the influence of opinion leaders and the
speed of convergence of opinions within a group, as well as



the behavior of aggression indicators, and a mathematical
understanding of the impact of these dynamics in real social
situations. In this paper, we use Perron-Ishii’s method to
obtain a viscous solution to the Eikonal equation and apply
this solution to an information dynamics model to gain insight
into the convergence speed of opinions and the expansion
status of opinions in group dynamics. eikonal equation and
information dynamics model, it is formally expressed as

|∇𝑂 (𝑥) | = 𝑓 (𝑥) inΩ

where 𝑂 (𝑥)represents the state of the opinion and
∇𝑂 (𝑥)represents its gradient (rate of change). 𝑓 (𝑥)is a rate
function that includes external factors and factors that influ-
ence the formation of individual opinions.

This model in the parameter description involves multiple
parameters that influence opinion formation and change for
individual opinion leaders and group members. These in-
clude information immunity, risk factors, social literacy, and
responsiveness to external information. These parameters are
used to quantitatively assess how they affect the convergence
of individual and in-group opinions. The speed of conver-
gence of opinions on group dynamics indicates how fast a
group reaches agreement within the group. Using viscosity
solutions to the Eikonal equation, we can numerically express
how these factors affect opinion convergence within a group.
Extension of Scrutiny on Opinion Extension Status indicates
the extent to which a particular opinion or idea spreads outside
the group. This depends on the influence of opinion leaders
and the ability of information to spread through the media.
Model analysis using viscosity solutions allows for a more de-
tailed understanding of the process by which opinions spread
outside the group and the degree of their influence. This
approach allows for a deeper understanding of the processes
of convergence and diffusion of opinions in group dynamics
using information dynamics models. using viscous solutions
of the Eikonal equation, the influence of complex social in-
teractions and individual behavior patterns on group opinions
can be mathematically and to develop more effective commu-
nication strategies and intervention techniques based on this
representation.

2. Discussion:Viscous Dissolution
Dynamics in Group Dynamics

To explain the social phenomenon related to the ’viscous dis-
solution’ in group dynamics, it is first necessary to understand
what ’viscous dissolution dynamics’ means. Viscous disso-
lution dynamics refer to the phenomenon where opinions,
actions, or decisions within a group strongly influence each
other, resulting in the entire group leaning towards a single
direction or opinion. This means that the uniform behavior of
the group supersedes the independent judgment and actions

of individual members.

Theoretical Modeling
It is challenging to represent this phenomenon with a for-
mula, but some modeling is possible using theories of social
psychology. For example,

𝑃(𝑡 + 1) = 𝑃(𝑡) + 𝛼

𝑛∑︁
𝑖=1

(𝑂𝑖 − 𝑃(𝑡))

Where,

𝑃(𝑡) represents the state of opinion or behavior of the
group at time 𝑡.

𝛼 is a coefficient indicating the strength of influence
within the group, ranging from 0 to 1.

𝑂𝑖 represents the opinion or behavior of individual mem-
bers within the group.

𝑛 is the number of members in the group.

This formula shows how the state of the group 𝑃(𝑡)
changes over time due to the influence of the members’ opin-
ions 𝑂𝑖 . Especially, the larger the value of 𝛼, the more
significant the influence of individual members’ opinions on
the group’s opinion.

Social Phenomena Examples
Examples of social phenomena include organizational culture
in companies and groupthink in political movements. In
the organizational culture of companies, strong values and
beliefs of the organization influence the actions and opinions
of individual employees, resulting in a consistent pattern of
behavior across the organization. In political movements,
shared beliefs and goals within the group can guide the actions
of individual participants, creating a strong sense of unity for
the entire group.

Impact of Aggressive Opinion Leaders
Center of Opinion Formation
The opinion leader, especially when adopting an aggressive
or proactive stance, becomes the center of opinion forma-
tion within the group. Their strong personality and beliefs
influence other members and determine the direction of the
group’s opinions and actions.

Imitation and Conformity
Group members tend to imitate the opinions and actions of the
opinion leader. Especially when the leader acts confidently,
their influence increases, creating conformity pressure within
the group.



Enhanced Viscosity
Under the influence of aggressive opinion leaders, the viscos-
ity of opinions and actions within the group is reinforced. This
is because group members hesitate to hold different opinions
and tend to follow the leader’s opinion.

Social Impact
Influence on Public Discourse
Such groups can significantly influence public discussions
and opinion formation. Particularly through activities on
social media and public forums, they can impact a broad
spectrum of society.

Amplification of Extreme Opinions
The presence of aggressive opinion leaders can lead to the
amplification of extreme opinions and biases. The homoge-
nization of opinions within the group may suppress neutral
or opposing views.

Promotion of Social Division
The activities of these groups can promote social divisions.
Differences in opinions between different groups may inten-
sify, narrowing the space for dialogue and compromise.

Case Studies
In actual social phenomena, such dynamics are observed in
groups related to political movements or specific social issues.
For example, groups that strongly support a particular politi-
cal stance or actively campaign for specific social issues (such
as environmental problems, civil rights, etc.) fall into this cat-
egory. These groups, especially under charismatic leaders,
hold homogenized opinions and exert significant social influ-
ence. Understanding these group dynamics is important in
comprehending social opinion formation processes and group
behavior. It also forms the basis for exploring means to pro-
mote healthy social discussions and recognize the importance
of diverse opinions and dialogue.

There is an opinion leader and their significantly support-
ive followers. Concerns arise regarding the potential decrease
in the social literacy, information immunity, and resistance to
external negative information of the opinion leader’s sup-
porters, depending on the opinion leader’s own information
immunity, risk factors, self-destructive behaviors, and their
demand for the influence of external negative information.
Moreover, probabilistically, these group dynamics indirectly
affect the cognitive level of the supporters, albeit to a small
extent, resulting in cases where they repeat patterns of aggres-
sive behavior due to incorrect cognition, either intentionally
or unintentionally, as the opinion leader inspires them. These
group dynamics, the risk of aggression, and the probability of

impairing information health indirectly to the surroundings
are considered somewhat mathematically.

For instance, mathematical models used in the past as
research cases for phenomena like viral hits are employed to
understand the rapid dissemination mechanisms of products
and information. When applying this model to construct
a mathematical model for the group dynamics of opinion
leaders and their supporters, it is essential to quantify the
spread, acceptance, and range of influence of information.
Below, as an application of the viral hit model, we can propose
a mathematical model that represents group dynamics related
to opinion leaders.

Let’s introduce more concise notations for the formulas
you’ve provided to make them more readable and less clut-
tered with long keywords. Here’s how we can parameterize
your equations:

Define: - 𝑆𝐿𝑖 for Social Literacy of supporters, - 𝐼 𝐼𝑆𝑖

for Information Immunity of supporters, - 𝑁𝐼𝐸𝑖 for Negative
Information Exposure, - 𝜌 for the diffusion rate of influence,
- 𝐺𝐷𝑖 for Group Dynamics, - 𝑂𝐿𝐼𝑖 for OL (Opinion Leader)
Influence, - 𝑆𝐼 𝑗 for Supporter Impact of supporter 𝑗 , - 𝜓 for
the diffusion rate of incorrect cognition, - 𝐶𝑅𝑖 for Cognitive
Risk, - 𝑁𝑒𝑖(𝑖) for the set of neighbors (supporters) of opinion
leader 𝑖, -𝑈𝑛𝑟 (𝑖) for the set of unrelated individuals to opinion
leader 𝑖, - 𝑀𝐼 𝑗 for Misinformation Impact of individual 𝑗 .

Now we rewrite the equations using these notations:
Supporter Impact:

𝑆𝐼𝑖 = 𝑆𝐿𝑖 × 𝐼 𝐼𝑆𝑖 × (1 − 𝑁𝐼𝐸𝑖)

Influence diffusion within the group dynamics:

𝐺𝐷𝑖 = 𝜌 · (𝑂𝐿𝐼𝑖 ×
∑︁

𝑗∈𝑁𝑒𝑖 (𝑖)
𝑆𝐼 𝑗 )

Risk of incorrect cognition and aggressiveness patterns:

𝐶𝑅𝑖 = 𝜓 · ©«𝐺𝐷𝑖 +
∑︁

𝑗∈𝑈𝑛𝑟 (𝑖)
𝑀𝐼 𝑗

ª®¬
With these notations, the equations are significantly

cleaner and the key terms are defined separately, improving
readability.

This model represents how the influence of an opinion
leader propagates to their supporters and indirectly affects
unrelated individuals. It also quantifies the risk of incorrect
cognition and aggressive patterns through group dynamics,
evaluating the potential to impair information health. This
mathematical model provides a foundation for designing in-
formation intervention strategies and awareness campaigns
within communities by understanding the mechanisms of in-
formation dissemination and acceptance. It may also be use-
ful in devising strategies for risk management and maintaining
the integrity of information.



3. Discussion:Example of model
extension as opinion dynamics

Here, this section’s discussion on confidence interval defini-
tion, range of opinion convergence.

In the context of the Opinion Leader-centered Bounding
Confidence Model applied mathematical model, we capture
the interaction between the influence of opinion leaders and
the confidence intervals of their supporters and demonstrate
how misinformation affects them. The model also discusses
cases where the complex relationship between information
flow and opinion formation in group dynamics is formulated
mathematically.

Furthermore, in the Opinion Leader-centered
Hegselmann-Krause Model applied mathematical model, we
represent the interaction between opinion leaders and their
supporters and show how opinions converge. It suggests
that the greater the influence of opinion leaders in opinion
formation, the more rapidly the opinions of the group
converge towards the leader’s opinion.

Opinion Leader-centered Bounding Confidence
Model Applied Mathematical Model
Parameter Definitions
- 𝑂𝐿𝐼𝑖: Influence indicator of opinion leader 𝑖 - 𝐼 𝐼𝑖: Infor-
mation immunity of opinion leader 𝑖 - 𝑅𝐹𝑖: Risk factor of
opinion leader 𝑖 - 𝑂𝑅𝑖: External influence of opinion leader
𝑖 - 𝜃, 𝜂: Weight coefficients for risk and external influence

Parameter Definitions
- 𝑆𝐶𝑖: Confidence interval of supporter 𝑖 - 𝑆𝐿𝑖: Social literacy
of supporter 𝑖 - 𝐼 𝐼𝑆𝑖: Information immunity of supporter
𝑖 - 𝑁𝐼𝐼𝑖: Impact of exposure to negative information - 𝜉:
Coefficient of negative information impact

Definition of Supporter’s Confidence Interval
𝑆𝐶𝑖 = 𝑆𝐿𝑖 · (𝐼 𝐼𝑆𝑖 − 𝜉 · 𝑁𝐼𝐼𝑖)

Parameter Definitions
- 𝐶𝑆𝑖: Confidence interval diffusion of 𝑖 - 𝑆𝑢𝑝𝑝(𝑖): Set of
supporters of opinion leader 𝑖

Confidence Interval Diffusion in Group Dynam-
ics

𝐶𝑆𝑖 = 𝑂𝐿𝐼𝑖 ·
∑︁

𝑗∈𝑆𝑢𝑝𝑝 (𝑖)
𝑆𝐶 𝑗

Parameter Definitions
- 𝑀𝐼𝑉𝑖: Variability of confidence interval due to misinfor-
mation 𝑖 - 𝜎: Rate of variability of confidence interval due to
misinformation - 𝑀𝐼𝑖: Impact of misinformation

Variability of Confidence Interval Due to Mis-
information

𝑀𝐼𝑉𝑖 = 𝜎 · (𝐶𝑆𝑖 + 𝑀𝐼𝑖)

Discussion
This mathematical model captures the interaction between the
influence of opinion leaders and the confidence intervals of
their supporters, demonstrating how misinformation affects
them. The model also mathematically formulates the complex
relationship between information flow and opinion formation
in group dynamics.

Next, we will parameterize and elaborate on the Opinion
Leader-centered Hegselmann-Krause Model and an extended
version of the Deffuant-Weisbuch Model.

Opinion Leader-centered Hegselmann-Krause
Model Applied Mathematical Model
Parameter Definitions
- 𝑂𝑖 (𝑡): Opinion of opinion leader 𝑖 at time 𝑡 - 𝑁 (𝑖): Set
of supporters influenced by 𝑖 - 𝜔𝑖 𝑗 : Weight of influence of
supporter 𝑗 on opinion leader 𝑖 - 𝜇: Coefficient regulating the
convergence speed of overall opinions

Opinion Formation of Opinion Leader
𝑂𝑖 (𝑡 + 1) = 𝑂𝑖 (𝑡) + 𝜇

∑︁
𝑗∈𝑁 (𝑖)

𝜔𝑖 𝑗 (𝑂 𝑗 (𝑡) −𝑂𝑖 (𝑡))

Parameter Definitions
- 𝑆𝑖 (𝑡): Opinion of supporter 𝑖 at time 𝑡 - 𝑀 (𝑖): Set of
other supporters influencing 𝑖 - 𝜙𝑖𝑘 : Weight of influence of
supporter 𝑘 on 𝑖 - 𝜈: Coefficient regulating the convergence
speed of opinions among supporters

Opinion Formation of Supporters
𝑆𝑖 (𝑡 + 1) = 𝑆𝑖 (𝑡) + 𝜈

∑︁
𝑘∈𝑀 (𝑖)

𝜙𝑖𝑘 (𝑆𝑘 (𝑡) − 𝑆𝑖 (𝑡))

Parameter Definitions
- 𝐺𝑖 (𝑡): State of group dynamics 𝑖 at time 𝑡 - 𝜓𝑖 𝑗 : Weight of
influence of opinion of supporter 𝑗 on group dynamics 𝑖 - 𝛿:
Coefficient regulating the rate of change in group dynamics



Influence on Group Dynamics

𝐺𝑖 (𝑡 + 1) = 𝐺𝑖 (𝑡) + 𝛿
©«

∑︁
𝑗∈𝑁 (𝑖)

𝐺 𝑗 (𝑡) − 𝐺𝑖 (𝑡)
ª®¬

Discussion
This model represents the interaction between opinion leaders
and their supporters and shows how opinions converge. It
suggests that the greater the influence of opinion leaders in
opinion formation, the more rapidly the opinions of the group
converge towards the leader’s opinion.

Extended Version of Deffuant-Weisbuch Model
Parameter Definitions
- 𝑂𝑖 𝑗 (𝑡): Average opinion of agents 𝑖 and 𝑗 at time 𝑡 - 𝜇𝑖 𝑗 :
Convergence rate of influence between 𝑖 and 𝑗 - 𝐷𝑖 𝑗 : Trust
or distrust of 𝑖 towards 𝑗

Introduction of Trust and Distrust between
Agents

𝑂𝑖 𝑗 (𝑡 + 1) = 𝑂𝑖 𝑗 (𝑡) + 𝜇𝑖 𝑗 · (𝑂 𝑗 (𝑡) −𝑂𝑖 (𝑡)) · 𝐷𝑖 𝑗

Parameter Definitions
- 𝐶𝑖 (𝑡): State of group dynamics 𝑖 at time 𝑡 - 𝑁 (𝑖): Number
of supporters for 𝑖

Dynamics of Opinion Leaders and Supporters

𝑂𝑖 (𝑡 + 1) = 𝑂𝑖 (𝑡) +
1
𝑁

∑︁
𝑗∈𝑁 (𝑖)

(𝑂 𝑗 (𝑡) −𝑂𝑖 (𝑡)) · 𝐷𝑖 𝑗

Influence on Group Dynamics

𝐶𝑖 (𝑡 + 1) = 𝐶𝑖 (𝑡) + 𝛿 · ©«
∑︁

𝑗∈𝑁 (𝑖)
𝐶 𝑗 (𝑡) − 𝐶𝑖 (𝑡)

ª®¬ · 𝐷𝑖 𝑗

Section Discussion
In this extended model, we demonstrate how trust and distrust
between agents influence opinion convergence. High trust
may lead to rapid convergence of opinions among agents,
while high distrust may result in slower convergence or polar-
ization. Additionally, the dynamics between opinion leaders
and supporters play a significant role in opinion formation
within the community, and their influence varies based on the
levels of trust and distrust. The impact on group dynamics
relates to discussions about the integrity and aggressiveness
of information within the community.

4. Discussion:Group dynamics
sometimes result in repeated patterns
of aggressive speech and behavior as a

result of false perceptions to
"uninvolved people"

Group dynamics sometimes result in repeating patterns of
aggressive behavior due to the incorrect cognition of "unre-
lated individuals." Furthermore, it is expected that patterns of
intentional or unintentional influence by opinion leaders on
those dynamics will also be considered.

What cases can be envisaged when assuming these group
dynamics, the risk of aggression, and the probability of im-
pairing the information health of indirect surroundings? Let’s
organize it.

To model the repetition of incorrect cognition and aggres-
sive behavior in group dynamics, and the subsequent impact
on the information health of the surroundings, we need to for-
mulate complex dynamics that consider both social influence
and individual information processing capabilities. Below,
we propose mathematical formulations that include these el-
ements.

Mathematical Model of Misrecognition and Ag-
gressive Dynamics
Diffusion of Misrecognition

𝑀𝑖 (𝑡 + 1) = 𝑀𝑖 (𝑡) + 𝜅 ·
∑︁

𝑗∈𝑁 (𝑖)

(
𝑀 𝑗 (𝑡) − 𝑀𝑖 (𝑡)

)
· 𝑇𝑖 𝑗

Here, 𝑀𝑖 (𝑡) represents the degree of misrecognition of agent
𝑖 at time 𝑡, 𝑇𝑖 𝑗 is the trustworthiness of agent 𝑗 affecting 𝑖’s
misrecognition, and 𝜅 is a coefficient regulating the speed of
misrecognition diffusion.

Dynamics of Aggressiveness
𝐴𝑖 (𝑡 + 1) = 𝐴𝑖 (𝑡) + 𝜂 · (𝑀𝑖 (𝑡) · 𝑃𝑖 (𝑡) − 𝐴𝑖 (𝑡))

Here, 𝐴𝑖 (𝑡) represents the level of aggressiveness of agent 𝑖 at
time 𝑡, 𝑃𝑖 (𝑡) is the level of external pressure or stress, and 𝜂 is
a coefficient regulating the responsiveness of aggressiveness.

Impact on Information Health of Surroundings

𝐻𝑖 (𝑡 + 1) = 𝐻𝑖 (𝑡) − 𝜃 · ©«𝐴𝑖 (𝑡) +
∑︁

𝑗∈𝑁 (𝑖)
𝐹𝑖 𝑗

ª®¬
Here, 𝐻𝑖 (𝑡) represents the information health of agent 𝑖 at
time 𝑡, 𝐹𝑖 𝑗 represents the negative impact of agent 𝑗’s ag-
gressiveness on 𝑖, and 𝜃 is a coefficient for the impact on the
surroundings.



Section Discussion
This model illustrates how misrecognition spreads and is as-
sociated with aggressiveness. It is expected that higher levels
of misrecognition will lead to increased aggressiveness, and
this aggressiveness will further reduce the information health
of the surrounding environment. This process, especially trig-
gered by opinion leaders, may have repercussions throughout
society. Therefore, strategies to mitigate misrecognition and
aggressiveness, such as enhancing information literacy edu-
cation, addressing misinformation, and providing stress man-
agement support, are essential. Additionally, this model can
be used to predict the impact of specific interventions on
group dynamics and evaluate the effectiveness of measures.

The above formulation of group dynamics in the proposed
model takes into account the exchange of opinions between
opinion leaders and supporters. Furthermore, to calculate the
impact of group dynamics on "unrelated individuals" and the
information health of the surroundings, we add mathematical
models as follows.

External Influence Model on Group Dynamics
Influence on Uninvolved Individuals

𝑈𝑖 (𝑡 + 1) = 𝑈𝑖 (𝑡) + 𝜌 · (𝐺𝑖 (𝑡) −𝑈𝑖 (𝑡))

Here, 𝑈𝑖 (𝑡) represents the opinions of uninvolved individual
𝑖 at time 𝑡, 𝐺𝑖 (𝑡) represents the state of group dynamics, and
𝜌 is the coefficient of influence that uninvolved individuals
receive from group dynamics.

Relationship between Aggressiveness and Mis-
recognition

𝐶𝑖 (𝑡 + 1) = 𝐶𝑖 (𝑡) + 𝜉 · (𝐴𝑖 (𝑡) · 𝑀𝑖 (𝑡) − 𝐶𝑖 (𝑡))

Here, 𝐶𝑖 (𝑡) represents patterns of aggressive behavior at time
𝑡, 𝐴𝑖 (𝑡) is an indicator of aggressiveness, 𝑀𝑖 (𝑡) is the degree
of misrecognition, and 𝜉 is the rate coefficient of the impact
of aggressiveness and misrecognition on aggressive behavior.

Modeling of Intentional and Unintentional En-
lightenment

𝐸𝑖 (𝑡 + 1) = 𝐸𝑖 (𝑡) + 𝜁 · ©«
∑︁

𝑗∈𝑁 (𝑖)
𝐻𝑖 𝑗 · 𝑂 𝑗 (𝑡)

ª®¬
Here, 𝐸𝑖 (𝑡) represents the state of enlightenment of agent 𝑖 at
time 𝑡, 𝐻𝑖 𝑗 represents the weight of enlightenment that opin-
ion leader 𝑗’s opinion has on 𝑖, and 𝜁 is the speed coefficient
of the impact of enlightenment.

Section Discussion
This model considers not only the exchange of opinions within
the group but also the influence on individuals outside the

community. In particular, the influence on uninvolved in-
dividuals is crucial in illustrating how dynamics within the
community propagate throughout society. The relationship
between patterns of aggressive behavior and misrecognition
demonstrates how misinformation and bias may enhance ag-
gressiveness. The modeling of intentional and unintentional
enlightenment quantifies the extent to which opinion leaders
influence opinion formation. Through these models, the risk
that group dynamics pose to individual information health
can be assessed, and necessary intervention strategies can be
developed.

5. Discussion:Viscosity dynamics with
respect to the opinion leader’s

adherence to a particular target and
the recipient’s adherence to its

influence
Regarding aggressiveness, it is believed that opinion leaders
exhibit very high stickiness when they have a specific tar-
get, and they may repeat patterns even if there are alerts from
their surroundings. Additionally, for recipients who are influ-
enced, stickiness to opinion leaders and stickiness resolution
become important factors. Let’s attempt to construct a model
incorporating the concept of stickiness dynamics.

When constructing a model that takes into account stick-
iness dynamics for opinion leaders’ stickiness to specific tar-
gets and the stickiness of recipients influenced by them, the
following approach can be taken:

Opinion Dynamics Model with Stickiness Dy-
namics
Model for Opinion Leader’s Stickiness to Target

𝑃𝑖 (𝑡 + 1) = 𝑃𝑖 (𝑡) + 𝜅 · (𝑇𝑖 − 𝑃𝑖 (𝑡)) − 𝜆 · AlertLevel𝑖 (𝑡)

Here, 𝑃𝑖 (𝑡) represents the stickiness of opinion leader 𝑖 to
the target at time 𝑡, 𝑇𝑖 is the target stickiness target value,
𝜅 is the stickiness adjustment coefficient, 𝜆 is the stickiness
reduction coefficient based on the surrounding alert level, and
AlertLevel𝑖 (𝑡) is the surrounding alert level.

Stickiness Resolution Model for Recipients to
Opinion Leaders

𝐷𝑖 𝑗 (𝑡 + 1) = 𝐷𝑖 𝑗 (𝑡) + 𝜇 ·
(
𝑃𝑖 (𝑡) − 𝐷𝑖 𝑗 (𝑡)

)
Here, 𝐷𝑖 𝑗 (𝑡) represents the stickiness resolution of recipient 𝑖
to opinion leader 𝑗 at time 𝑡, and 𝜇 is the stickiness resolution
adjustment coefficient.

Integrated Model of Aggressiveness and Sticki-
ness
𝐴𝑖 (𝑡 + 1) = 𝐴𝑖 (𝑡) + 𝜉 ·

(
𝑃𝑖 (𝑡) · 𝑀𝑖 (𝑡) · 𝐼𝑖 (𝑡) · 𝐷𝑖 𝑗 (𝑡) − 𝐴𝑖 (𝑡)

)



Here, 𝐴𝑖 (𝑡) represents the aggressiveness index at time 𝑡,
𝑃𝑖 (𝑡) is the stickiness to the target, 𝑀𝑖 (𝑡) is the degree of
misrecognition, 𝐼𝑖 (𝑡) is the level of intention of the informa-
tion disseminator, 𝐷𝑖 𝑗 (𝑡) is the stickiness resolution of the
recipient to opinion leader 𝑗 , and 𝜉 is the rate coefficient of
aggressiveness change.

Section Discussion
This model captures situations where opinion leaders exhibit
high stickiness to specific targets and the reactions of recip-
ients influenced by them. When opinion leaders have high
stickiness, recipients influenced by them may also exhibit
similar stickiness. On the other hand, the stickiness of opin-
ion leaders may decrease when the surrounding alert level is
high.

When incorporating the concept of stickiness dynamics
into the opinion leader and supporter dynamics model, the
following approach can be adopted:

Opinion Dynamics Model Using Stickiness Con-
cepts
Application of Stickiness Partials
Assuming that the opinion 𝑂𝑖 of the opinion leader satisfies
stickiness partials, it implies that the opinion decreases due to
the influence of the surrounding environment and supporters.

𝐹𝑂 (𝑥0, 𝑂𝑖 (𝑥0), 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)) ≤ 0

Here, 𝐹𝑂 is a function representing the dynamics of the opin-
ion of the opinion leader, and 𝐷𝜙 and 𝐷2𝜙 are the gradient
and Hessian matrix, respectively, related to the opinion of the
opinion leader.

Application of Stickiness Superpartials
Assuming that the opinion 𝑆𝑖 of the supporters satisfies stick-
iness superpartials, it implies that the opinion increases due
to the influence of the opinion leader.

𝐹𝑆 (𝑥0, 𝑆𝑖 (𝑥0), 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)) ≥ 0

Here, 𝐹𝑆 is a function representing the dynamics of the sup-
porters’ opinion.

Integrated Model with Stickiness Superpartials
and Partials
To model the interaction between opinion leaders and sup-
porters, the concept of stickiness superpartials and partials
can be applied.

Interaction𝑖 (𝑡 + 1) = Interaction𝑖 (𝑡) + 𝜌 · (𝐹𝑂 + 𝐹𝑆)

Here, Interaction𝑖 (𝑡) represents the interaction between opin-
ion leader 𝑖 and supporters at time 𝑡, and 𝜌 is the rate coeffi-
cient of interaction change.

Fig. 2: Attack Indicator (A), Intentions of Information
Senders (I), Trust Level of Receivers (D), Gradient of At-
tack Indicator (DA)

Section Discussion
This model provides a framework to capture a series of dy-
namics related to opinion leaders, their supporters, and the
specific targets of opinion leaders. It allows for the under-
standing of how the actions of opinion leaders influence their
surroundings and how this is reflected in the behavior patterns
of the group.

The model considering stickiness of opinion leaders to
specific targets and the stickiness of recipients to opinion
leaders can help understand the complex aspects of opinion
dynamics. A similar approach can be used to model sticki-
ness dynamics in social dynamics, providing insights into the
impact of influential individuals on their surroundings.

Attack Indicator (A)
This plot shows the fluctuating levels of an "Attack Indicator"
for different agents over time. The variability in the lines
suggests that each agent has a unique and changing level of
aggression or attack potential throughout the simulation.

Intentions of Information Senders (I)
This plot shows the intentions of information senders, pre-
sumably reflecting their propensity to share accurate or mis-
leading information. The lines vary over time, indicating
changes in intentions.

Trust Level of Receivers (D)
Here, the trust levels of receivers are plotted. Since trust is
a dynamic and subjective attribute, it is natural to see a lot
of fluctuations, as depicted. Each agent shows varying levels
of trust, which could be influenced by the behavior of the
information senders or other factors in the simulation.



Gradient of Attack Indicator (DA)
The gradient of the attack indicator could be interpreted as
the rate of change in aggression. The plots show that the
aggression levels of agents change at varying rates over time,
with some agents experiencing more rapid changes (steeper
slopes) than others.

Observations and Insights
Variability, All variables exhibit significant variability, sug-
gesting a complex system where agent states are interdepen-
dent and influenced by multiple factors. Correlations, there
could be correlations between the attack indicators, inten-
tions, and trust levels. For example, a high attack indicator
might correlate with lower trust levels. However, without
additional context, it’s not possible to draw definitive conclu-
sions.

Patterns and Trends, while there are fluctuations, certain
overarching trends might be discernible. For example, if one
agent consistently shows higher trust levels despite fluctua-
tions, it could imply an inherent bias or robustness to external
influences.

Gradient Interpretation, The gradient plots are particu-
larly useful for understanding the dynamics of the system.
Sharp peaks or troughs in the gradient plot suggest moments
of rapid change, which could be critical events in the context
of the simulation.

Noise vs. Signal
It is essential to distinguish between genuine patterns in the
data and noise. Real-world data often contain a mix of both,
and the ability to distinguish between the two is crucial for
analysis.

Statistical Analysis
Beyond visual inspection, statistical tools could provide more
insights. For instance, calculating the correlation coefficients
between different agents’ behaviors could quantify the rela-
tionships observed in the plots.

Model Validation
These visualizations can be used to validate the underlying
model. If the behavior of the agents does not align with
expected or known patterns, the model’s assumptions and
parameters may need to be re-evaluated.

Model Complexity
The complexity of the model should be appropriate for the
phenomena being simulated. Overly complex models can be
as misleading as overly simple ones, as they may fit the noise
rather than the signal.

The results are helpful in getting an intuitive understand-
ing of the system’s behavior over time, but further analysis
would be necessary to draw more specific conclusions about
the system dynamics, the interactions between agents, and the
potential implications of these interactions.

6. Discussion:Modeling the Relationship
between Aggressiveness and

Misrecognition
We are considering the application of the concept of Degen-
erate Elliptic to a model of the relationship between aggres-
siveness and misrecognition. This concept is related to the
classification of partial differential equations (PDEs), where
equations meeting certain conditions are referred to as "de-
generate elliptic." To apply this concept in the context of
opinion dynamics, we propose the following approach:

In essence, we are exploring how to apply the concept of
Degenerate Elliptic to a model of the relationship between
aggressiveness and misrecognition. This concept is related
to the classification of partial differential equations (PDEs),
where equations meeting certain conditions are referred to as
"degenerate elliptic." To apply this concept in the context of
opinion dynamics, we propose the following approach:

Opinion Dynamics Model with Degenerate El-
liptic Concept
Definition of Equations
We express the model of opinion dynamics in the form of
partial differential equations (PDEs) and design it to satisfy
the conditions of Degenerate Elliptic.

𝐹 (𝑥, 𝑂, 𝐷𝑂, 𝐷2𝑂) = 0

Here, 𝑂 represents the opinions of opinion leaders, 𝐷𝑂 rep-
resents the gradient of opinions, and 𝐷2𝑂 represents the Hes-
sian matrix of opinions (second-order derivatives).

Application of Elliptic Conditions
In the model, we apply specific elliptic conditions to the
change in opinions of opinion leaders represented by 𝑂.

𝐹 (𝑥, 𝑂, 𝐷𝑂,𝑌 ) ≥ 𝐹 (𝑥, 𝑂, 𝐷𝑂, 𝑋) for all symmetric matrices𝑌, 𝑋

This ensures that the equations related to the change in opin-
ions of opinion leaders satisfy the conditions of Degenerate
Elliptic.

Modeling Opinion Dynamics as an Elliptic
Model
We analyze the dynamics of opinion dynamics using the el-
liptic model for the change in opinions of opinion leaders.

−Δ𝑂 = 0 whereΔ denotes the Laplacian of𝑂



This approach mathematically models the evolution of
opinion leaders’ opinions over time and helps in understand-
ing how opinion leader opinions are influenced by various
factors. Furthermore, this model is valuable for understand-
ing how opinion leader opinions affect the surrounding con-
ditions and factors.

When modeling the relationship between aggressiveness
and misrecognition, taking into account the intention of infor-
mation disseminators and the trust of recipients, the concept
of Viscosity Subsolution can be applied to construct a math-
ematical model as follows:

Modeling Aggressiveness and Misrecognition
with Viscosity Subsolution Concept
Definition of Viscosity Subsolutions for Aggres-
siveness and Misrecognition
In this model, we use the concept of viscosity subsolutions
to model the relationship between aggressiveness and mis-
recognition.

𝐹 (𝑥0, 𝐴𝑖 (𝑡), 𝐷𝐴𝑖 (𝑡), 𝐷2𝐴𝑖 (𝑡)) ≤ 0 ∀𝜙 ≥ 𝐴𝑖 (𝑡) neighbor of 𝑥0

Here, 𝐴𝑖 (𝑡) represents the aggressiveness index, 𝐷𝐴𝑖 (𝑡) rep-
resents the gradient of the aggressiveness index (first-order
derivative), and 𝐷2𝐴𝑖 (𝑡) represents the Hessian matrix of the
aggressiveness index (second-order derivative).

Integration of Information Disseminator’s In-
tention and Recipient’s Trust
We model how the intention of information disseminators and
the trust of recipients influence the viscosity subsolutions of
aggressiveness and misrecognition.

𝐹 (𝑥0, 𝐼𝑖 (𝑡), 𝐷𝐼𝑖 (𝑡), 𝐷2𝐼𝑖 (𝑡)) ≤ 0 ∀𝜙 ≥ 𝐼𝑖 (𝑡) neighbor of 𝑥0

𝐹 (𝑥0, 𝐷𝑖 𝑗 (𝑡), 𝐷𝐷𝑖 𝑗 (𝑡), 𝐷2𝐷𝑖 𝑗 (𝑡)) ≤ 0 ∀𝜙 ≥ 𝐷𝑖 𝑗 (𝑡) neighbor of 𝑥0

Here, 𝐼𝑖 (𝑡) and 𝐷𝑖 𝑗 (𝑡) represent the intention of information
disseminators and the trust of recipients, respectively.

This model mathematically represents the impact of in-
formation disseminators’ intention and recipients’ trust on
aggressiveness and misrecognition, and how these elements
interact. It is particularly useful for understanding the re-
lationship between opinion leaders and their supporters and
how their influence affects communities and external individ-
uals.

When applying the concept of Viscosity Supersolution to
model the relationship between aggressiveness and misrecog-
nition, considering the intention of information disseminators
and the trust of recipients, a mathematical model can be con-
structed as follows:

Fig. 3: Attack Intensity Indicator 𝐴𝑖 (𝑡), Information Senderś
Intent 𝐼𝑖 (𝑡), Receiverś Trust 𝐷𝑖 𝑗 (𝑡)

Modeling Aggressiveness and Misrecognition
with Viscosity Supersolution Concept
Definition of Viscosity Supersolutions for Ag-
gressiveness and Misrecognition
We use the concept of viscosity supersolutions to model the
relationship between aggressiveness and misrecognition.

𝐹 (𝑥0, 𝐴𝑖 (𝑡), 𝐷𝐴𝑖 (𝑡), 𝐷2𝐴𝑖 (𝑡)) ≥ 0 ∀𝜙 ≤ 𝐴𝑖 (𝑡) neighbor of 𝑥0

Here, 𝐴𝑖 (𝑡) represents the aggressiveness index, 𝐷𝐴𝑖 (𝑡) rep-
resents the gradient of the aggressiveness index (first-order
derivative), and 𝐷2𝐴𝑖 (𝑡) represents the Hessian matrix of the
aggressiveness index (second-order derivative).

Integration of Information Disseminator’s In-
tention and Recipient’s Trust
We model how the intention of information disseminators and
the trust of recipients influence the viscosity supersolutions
of aggressiveness and misrecognition.

𝐹 (𝑥0, 𝐼𝑖 (𝑡), 𝐷𝐼𝑖 (𝑡), 𝐷2𝐼𝑖 (𝑡)) ≥ 0 ∀𝜙 ≤ 𝐼𝑖 (𝑡) neighbor of 𝑥0

𝐹 (𝑥0, 𝐷𝑖 𝑗 (𝑡), 𝐷𝐷𝑖 𝑗 (𝑡), 𝐷2𝐷𝑖 𝑗 (𝑡)) ≥ 0 ∀𝜙 ≤ 𝐷𝑖 𝑗 (𝑡) neighbor of 𝑥0

Here, 𝐼𝑖 (𝑡) and 𝐷𝑖 𝑗 (𝑡) represent the intention of information
disseminators and the trust of recipients, respectively.

This model mathematically represents the impact of in-
formation disseminators’ intention and recipients’ trust on
aggressiveness and misrecognition, and how these elements
interact. It is particularly useful for understanding the re-
lationship between opinion leaders and their supporters and
how their influence affects communities and external individ-
uals.

series of three 2D contour Results representing different
simulation parameters over a twodimensional domain. These
parameters are labeled as Attack Intensity Indicator 𝐴𝑖 (𝑡), In-
formation Sender’s Intent 𝐼𝑖 (𝑡), and Receiver’s Trust 𝐷𝑖 𝑗 (𝑡).

Attack Intensity Indicator 𝐴𝑖 (𝑡)
This plot shows the attack intensity indicator as an exponen-
tially decaying function from the origin. The highest values
are concentrated at the center (where 𝑋 and𝑌 are both small),



and they fade off toward the edges of the plot. The contour
lines are circular and centered, suggesting that the attack in-
tensity is symmetric around the origin.

Information Sender’s Intent 𝐼𝑖 (𝑡)
The intent of information senders is modeled as a linear func-
tion of 𝑋 , independent of 𝑌 . The plot has vertical bands
of color, each representing a constant value of intent across
the 𝑌axis for a given 𝑋axis value. The intent increases lin-
early from left to right, as shown by the color gradient in the
contour plot.

Receiver’s Trust 𝐷𝑖 𝑗 (𝑡)
Receiver’s trust is approximated as a linear function of 𝑌 ,
independent of 𝑋 . The plot has horizontal bands, indicating
that trust is uniform along the 𝑋axis for any given𝑌axis value.
The trust level increases linearly from bottom to top.

Considerations and Insights
The contour plot of the attack intensity indicator suggests that
the risk or severity of an attack decreases as one moves away
from the source (origin). The information sender’s intent plot
indicates that the propensity to convey certain information
may be dependent on a particular variable represented by the
𝑋axis, perhaps signifying a factor like time, influence level,
or some other onedimensional metric. The receiver’s trust
plot suggests that trust is not influenced by the same factor
that affects the sender’s intent but rather by another factor
represented by the 𝑌axis. The distinct patterns between the
three plots indicate that these parameters are influenced by
different factors and evolve independently in this simplified
model.

Mathematical and Simulation Considerations
The decaying exponential function used for the attack indi-
cator implies that the attack’s influence is strongest near the
source and diminishes rapidly. The linear functions for intent
and trust suggest a direct proportionality with their respective
variables, which may not capture more complex or nuanced
behaviors often seen in realworld scenarios. While the plots
provide a clear visual representation of each parameter, they
would need to be coupled with more complex dynamics and
interactions for a more realistic simulation. In a more sophis-
ticated model, the interdependencies between these factors
would likely be considered, and their representations would
not be independent of each other.

Overall, the plots provide an initial visualization of how
these parameters might be distributed across a domain. How-
ever, for a more detailed and realistic analysis, one would
need to incorporate more complex functions and interactions

that capture the dependencies and feedback loops between
the attack intensity, sender’s intent, and receiver’s trust.

7. Conclusion:Perron-Ishii’s
complement, Eikonal Model for

Viscosity Solution
Perron-Ishii Method and Viscosity Solutions in
Nonlinear PDEs
The Perron-Ishii method is one of the techniques used in con-
structing viscosity solutions of nonlinear partial differential
equations (PDEs), aiding in demonstrating the existence and
properties of viscosity supersolutions. It is based on Perron’s
method and plays a significant role in the analysis of nonlinear
PDEs.

Viscosity Supersolution
A viscosity supersolution can be considered as an upper
bound solution to a given partial differential equation. Ac-
cording to the definition of a viscosity supersolution, for a
function to be a supersolution to a given PDE, it must satisfy
the PDE at points where any test function touches it from
above.

Perron-Ishii Method
The Perron-Ishii method uses the following steps to demon-
strate the existence of solutions:

(1) Construction of a Family of Supersolutions: First,
construct a family of supersolutions for the considered
PDEs. These are functions that satisfy the given PDE.

(2) Definition of an Upper Bound Function: Then, define
a new function by taking the upper bound (the least
upper bound) of this family of supersolutions. This new
function is a candidate for being a viscosity solution of
the PDE.

(3) Verification as a Viscosity Supersolution: Finally,
show that the upper bound function is a viscosity super-
solution of the PDE. This is typically done by proving
that the upper bound function has the necessary proper-
ties under certain conditions.

Perron’s method is a technique used in classical potential
theory, and Ishii applied it in the context of viscosity solutions
of PDEs. This method constructs a viscosity solution by
taking an upper bound of functions that satisfy the boundary
conditions, thus providing a powerful means of demonstrating
the existence of solutions.

This method is particularly important in finding solu-
tions to nonlinear and non-convex problems. However, it is
abstract, and many technical details are involved in construct-
ing the solution in practice. When applying the Perron-Ishii



Fig. 4: Approximate Viscosity Solution for Eikonal Equation

method to each specific PDE, fine-tuning according to the
characteristics of that equation is necessary.

To illustrate the Perron-Ishii method using formulas, con-
sider the following nonlinear PDE:

𝐹 (𝑥, 𝑢, 𝐷𝑢, 𝐷2𝑢) = 0

Here, 𝐹 is a nonlinear operator, 𝑢 is the unknown function,
𝐷𝑢 represents the gradient (first-order derivatives) of 𝑢, and
𝐷2𝑢 denotes the Hessian matrix (second-order derivatives)
of 𝑢.

By defining a function ‘f(x, y)‘ based on a simplified
combination of three approximated factors: an attack indi-
cator ‘A‘, the intentions of information senders ‘I‘, and the
trust level of receivers ‘D‘. In the specific case of the Eikonal
equation, the function ‘f(x, y)‘ would typically represent the
squared speed function that the gradient norm of the solution
should match.

Analysis of the 3D Plot
The 3D plot displays the viscosity solution ‘Z‘ as a surface
over the domain. The surface appears smooth, which suggests
that the combined effect of the three factors ‘A‘, ‘I‘, and
‘D‘ leads to a smooth change in the viscosity solution over
the domain. The plot uses the ‘viridis‘ colormap, which
typically maps low values to purple and high values to yellow,
indicating that the highest values of the viscosity solution are
found where the function ‘f‘ is largest.

Considerations for Interpretation
Center of Activity: The peak of the solution is near the origin,
indicating the highest ’activity’ in terms of the combination
of the three factors is there. Linear Influence: The linear in-
crease of ‘I‘ and ‘D‘ with ‘X‘ and ‘Y‘ respectively, suggests
that the viscosity solution would also exhibit a linear increase

in these directions, but this is modulated by the exponential
decay of ‘A‘. Physical Interpretation: In the context of infor-
mation dynamics, this plot could represent the overall ’state’
or ’potential’ in a social system where the attack indicator,
intentions, and trust levels interact.

Mathematical Rigor
While this plot provides a good visualization, it is essential
to note that in a realworld scenario, determining the viscosity
solution to a PDE like the Eikonal equation would require
rigorous numerical methods that ensure convergence to the
true solution. The square root operation used here is a sim-
plification and may not always provide an accurate viscosity
solution for more complex or different forms of the Eikonal
equation.

In summary, the plot seems to show a wellbehaved ap-
proximate solution to an Eikonallike equation, capturing the
combined effects of the defined variables. However, for a rig-
orous analysis, one would need to ensure that the numerical
methods used to approximate the solution are valid and that
the solution satisfies the necessary conditions for viscosity
solutions, which typically involve comparison principles and
consistency checks.

Step 1: Construction of a Set of Supersolutions
First, consider a set of supersolutions.

𝑆 = {𝑣 ∈ 𝑈𝑆𝐶 (Ω) : 𝐹 (𝑥, 𝑣, 𝐷𝑣, 𝐷2𝑣) ≥ 0 in Ω}

Here, 𝑈𝑆𝐶 (Ω) denotes the set of upper semicontinuous
functions, and Ω is the domain of the functions. 𝑆 is the set
of all possible supersolutions.

Step 2: Definition of an Upper Bound Function
Next, define the upper bound function �̄� from the set of su-
persolutions.

�̄�(𝑥) = sup{𝑣(𝑥) : 𝑣 ∈ 𝑆}

Step 3: Verification as a Viscosity Supersolution
Finally, it is necessary to verify that the upper bound function
�̄� is indeed a viscosity supersolution. For verification, use a
test function 𝜙 and demonstrate the following condition.

𝐹 (𝑥0, �̄�(𝑥0), 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)) ≥ 0

The test function 𝜙 is a 𝐶2 function that “touches” �̄� and
𝑥0 is the point of contact. If this condition is satisfied, then �̄�

is a viscosity supersolution.



Notes
To demonstrate that the upper bound function �̄� is ac-
tually a viscosity supersolution of the PDE, additional
technical conditions must be satisfied. For example, 𝐹
might need to meet certain continuity or monotonicity
conditions.

The Perron-Ishii method depends on how boundary con-
ditions are handled. Proper treatment of boundary con-
ditions ensures the existence and uniqueness of solu-
tions.

This is a mathematical overview of the Perron-Ishii
method, but in practice, it requires very advanced analyti-
cal techniques. Depending on each PDE, the conditions and
verification procedures may vary.

Eikonal Equation and Viscosity Vanishing
Method
The Eikonal equation is a nonlinear first-order PDE that ap-
pears in geometric optics and Hamilton-Jacobi theory. The
equation is as follows:

|∇𝑢(𝑥) | = 𝑓 (𝑥)

Here, 𝑢 is the function to be found, ∇𝑢 is the gradient
(vector of first-order spatial derivatives) of 𝑢, and 𝑓 (𝑥) is a
given non-negative function. The Eikonal equation typically
appears in contexts such as the propagation of light waves or
the shortest path problem.

The viscosity vanishing method is an approach for finding
viscosity solutions of nonlinear PDEs, especially Hamilton-
Jacobi equations. This method involves adding a small vis-
cous term (a second-order differential term) to regularize the
original equation and then considering the limit as this vis-
cous term approaches zero to obtain the viscosity solution of
the original equation.

Applying the viscosity vanishing method to the Eikonal
equation, consider the following regularized equation:

|∇𝑢𝜖 (𝑥) | = 𝑓 (𝑥), 𝑢𝜖 (𝑥) − 𝜖Δ𝑢𝜖 (𝑥) = 0

Here, Δ𝑢𝜖 is the Laplacian (sum of all second-order spa-
tial derivatives) of 𝑢𝜖 , and 𝜖 > 0 is a small positive parameter
representing the viscous term. This regularized equation is
expected to be more amenable to finding a viscosity solution,
and as 𝜖 approaches zero, it is expected to converge to the
viscosity solution of the original Eikonal equation.

Ultimately, as 𝜖 approaches zero, we obtain the following
viscosity solution:

|∇𝑢(𝑥) | = 𝑓 (𝑥)

Here, 𝑢 is the viscosity solution of the Eikonal equation.

This viscosity vanishing method has become a powerful
tool in the analysis of nonlinear PDEs, such as Hamilton-
Jacobi equations. Viscosity solutions provide an appropriate
concept of solution even when the equation does not have
smooth solutions or when shock waves or discontinuous so-
lutions appear.

Shock Wave Problem in the Eikonal Equation
The problem of shock waves in the Eikonal equation is gen-
erally modeled by the following equation:

|∇𝑢(𝑥) | = 1 in Ω

Here, 𝑢(𝑥) represents the arrival time of the wavefront,
and Ω is the domain (usually the entire space or a subset of
it). Shock waves can occur when waves propagate through
heterogeneous media with different propagation speeds or
through media where the speed varies with distance from the
source.

To solve this problem using the viscosity vanishing
method, first regularize the Eikonal equation by adding a
small viscous term as follows:

|∇𝑢𝜖 (𝑥) | = 1, 𝑢𝜖 (𝑥) − 𝜖Δ𝑢𝜖 (𝑥) = 0

Here, 𝜖 is a small positive parameter controlling the
strength of the viscous term. Due to the presence of the
viscous term, this equation is expected to have a smooth so-
lution.

(1) Formulation of the Regularized Eikonal Equation
with Viscous Term: Set up the above equation.

(2) Selection of Numerical Approximation Method:
Choose a method for numerically solving this regular-
ized equation. Common methods include finite differ-
ence, finite volume, or finite element methods.

(3) Discretization: Discretize the equation based on the
chosen numerical approximation method. For instance,
using the finite difference method, an approximation like
the following is made:

𝑢𝜖 (𝑥 + ℎ) − 2𝑢𝜖 (𝑥) + 𝑢𝜖 (𝑥 − ℎ)
ℎ2 ≈ Δ𝑢𝜖 (𝑥)

Here, ℎ is the grid step size.

(4) Iterative Computation: Perform iterative computa-
tions to solve the discretized equation. This can be
achieved, for example, using methods like Newton’s
method or fixed-point



8. Computational Processes for
Viscosity Solutions of the Eikonal

Equation Using Perron-Ishii Method

Setting Up the Eikonal Equation

The Eikonal equation is given in the form:

|∇𝑂 (𝑥) | = 𝑓 (𝑥) inΩ

Here, 𝑂 (𝑥) represents the function to be solved, 𝑓 (𝑥) is
the given speed function, and ∇𝑂 (𝑥) denotes the gradi-
ent of 𝑂.

Setting Up the Lower and Upper Bound
Functions

In the Perron-Ishii method, lower bound (subsolution)
and upper bound (supersolution) functions are used to
construct the viscosity solution. For the Eikonal equa-
tion, rational lower bound function 𝑈 and upper bound
function 𝑉 are set as:

|∇𝑈 (𝑥) | ≤ 𝑓 (𝑥), |∇𝑉 (𝑥) | ≥ 𝑓 (𝑥) inΩ

Constructing the Solution Using Perron’s
Method

The viscosity solution 𝑂 (𝑥) of the Eikonal equation is
constructed using the lower and upper bound functions.
The solution is defined as the supremum of all functions
between 𝑈 and 𝑉 :

𝑂 (𝑥) = sup{𝑊 (𝑥) : 𝑈 (𝑥) ≤ 𝑊 (𝑥) ≤ 𝑉 (𝑥), 𝑊 is a subsolution}

Applying Ishii’s Lemma

Ishii’s Lemma is used to confirm that the constructed function
is a viscosity solution of the Eikonal equation. This lemma
ensures that a function is a viscosity solution if it is both a
viscosity subsolution and a viscosity supersolution.

Verifying the Uniqueness of the Solution

The uniqueness of the viscosity solution of the Eikonal equa-
tion is verified using an appropriate comparison principle.

Through this computational process, the viscosity solution
of the Eikonal equation is obtained. However, depending on
the characteristics of the Eikonal equation and the specific
problem setting, this process may be modified. It is also
important to note that this is a complex process requiring
mathematical insight and expertise.

Viscosity Solutions for Aggression and Mis-
recognition Models with Trust Integration Us-
ing Perron-Ishii Method

Setting Up the Eikonal Equation

Set up the Eikonal equation representing the aggression and
misrecognition model with trust integration. For example,
the equation for the aggression index 𝐴 can be:

|∇𝐴(𝑥) | = 𝑓 (𝑥)

Here, 𝑓 (𝑥) is a function influencing the aggression index,
dependent on factors like the stickiness of opinion leaders,
misrecognition, and the intent level of the information dis-
seminator.

Setting Up the Lower and Upper Bound Func-
tions

Define rational lower bound function 𝑈 and upper bound
function 𝑉 for the aggression index 𝐴.

Constructing the Solution Using Perron’s
Method

Construct the viscosity solution 𝐴(𝑥) of the Eikonal equa-
tion using the lower bound function 𝑈 and the upper bound
function 𝑉 . This is defined as the supremum of all functions
between 𝑈 and 𝑉 .

Applying Ishii’s Lemma

Use Ishii’s Lemma to confirm that the constructed function
is a viscosity solution of the Eikonal equation.

Verifying the Uniqueness of the Solution

Verify the uniqueness of the viscosity solution of the Eikonal
equation using an appropriate comparison principle.

This process yields the viscosity solution of the Eikonal equa-
tion for the aggression and misrecognition model with trust
integration. However, depending on the specific form of the
function 𝑓 (𝑥) and the details of the model, this computational
process may be subject to changes. Also, this process requires
mathematical expertise, so detailed analysis and calculations
may need the advice of mathematics experts.

Viscosity Solutions for Eikonal Equation with
Randomness in Parameters

Setting Up the Eikonal Equation

Set up the Eikonal equation:

|∇𝑂 (𝑥) | = 𝑓 (𝑥) inΩ



Fig. 5: Upper Function V(x)

Here, 𝑓 (𝑥) is the given speed function, and parameters are
generated using randomness.

Setting Up the Lower and Upper Bound Func-
tions

Set parameters using randomness for the lower bound func-
tion𝑈 (𝑥) and the upper bound function𝑉 (𝑥). Ensure that the
lower bound function is always smaller, and the upper bound
function is always larger than 𝑓 (𝑥):

|∇𝑈 (𝑥) | ≤ 𝑓 (𝑥) + 𝜖1 (𝑥), |∇𝑉 (𝑥) | ≥ 𝑓 (𝑥) − 𝜖2 (𝑥)

Here, 𝜖1 (𝑥) and 𝜖2 (𝑥) represent small deviations due to ran-
domness.

Constructing the Solution Using Perron’s
Method

Construct the viscosity solution 𝑂 (𝑥) of the Eikonal equation
as the supremum of all functions between 𝑈 (𝑥) and 𝑉 (𝑥):

𝑂 (𝑥) = sup{𝑊 (𝑥) : 𝑈 (𝑥) ≤ 𝑊 (𝑥) ≤ 𝑉 (𝑥), 𝑊 is a subsolution}

Applying Ishii’s Lemma

Use Ishii’s Lemma to confirm that the constructed function
is a viscosity solution of the Eikonal equation.

Ishii’s Lemma is a result in the theory of viscos-
ity solutions

Particularly for second-order partial differential equations. It
provides a way to handle the comparison between a test func-
tion and a viscosity solution at points where the test function
touches the viscosity solution from above or below. This is
crucial in establishing uniqueness and stability properties of
viscosity solutions.

Fig. 6: Viscosity Solution O(x)

Fig. 7: Lower Function U(x)

Fig. 8: Lower Function U(x)



Fig. 9: Upper Function V(x)

Fig. 10: Viscosity Solution O(x)

Upper Function V(x)

The heatmap for ‘Upper Function V(x)‘ shows a gradient of
colors from blue to red, where blue represents lower values
and red represents higher values. The function seems to
increase linearly from the bottom left corner to the top right
corner. If we consider this in the context of a PDE, ‘V(x)‘
could represent an upper bound or a supersolution to the PDE.

ower Function U(x)

Similarly, the heatmap for ‘Lower Function U(x)‘ shows a
gradient from blue to red, increasing from the top left corner to
the bottom right corner. In PDE terms, ‘U(x)‘ could represent
a lower bound or a subsolution to the PDE.

Viscosity Solution O(x)

The heatmap for ‘Viscosity Solution O(x)‘ seems to represent
the maximum of the two functions ‘U(x)‘ and ‘V(x)‘ at each
point, as suggested by the provided code snippet. This is a
common approach in viscosity solution theory to combine
subsolutions and supersolutions to form a candidate viscosity
solution. The colors suggest that ‘O(x)‘ takes on the higher
values from either ‘U(x)‘ or ‘V(x)‘ at each point.

Considerations Based on Heatmaps

The heatmaps show a clear continuous change in values, indi-
cating that the functions are at least continuous with respect to
both spatial dimensions. The transition from blue to red in the
‘Viscosity Solution O(x)‘ heatmap indicates that the viscos-
ity solution is indeed capturing the maximum values between
the ‘Lower Function U(x)‘ and ‘Upper Function V(x)‘, as
expected from the theory of viscosity solutions. The smooth-
ness of the color transitions suggests that the gradients of
these functions would also be continuous, which is important
for the Eikonal equation that requires the gradient norm to be
equal to a given speed function.

Subsolution Verification

Mathematically, we would need to verify that for any smooth
test function that touches ‘O(x)‘ from above, the Eikonal
condition is satisfied from above.

Supersolution Verification

Similarly, for any test function that touches ‘O(x)‘ from
below, the Eikonal condition should be satisfied from below.



Uniqueness

The visualizations alone do not confirm the uniqueness of
the solution. This would require a comparison principle ar-
gument, showing that if there were two distinct viscosity
solutions, they would necessarily be equal.

Stability and Convergence

In numerical analysis, stability and convergence are critical.
The visualizations suggest a stable solution as there are no
apparent anomalies like oscillations or discontinuities, which
are common numerical issues.

In summary, the visualizations align well with what one would
expect for upper and lower bounds and a viscosity solution
in the context of the Eikonal equation. However, rigorous
mathematical checks are necessary to confirm that 𝑂 (𝑥) is
indeed a viscosity solution. The heatmaps provide an intuitive
understanding of the functions’ behavior across the domain
but do not substitute for the necessary mathematical proofs.

Verifying the Uniqueness of the Solution

Verify the solution’s uniqueness using an appropriate compar-
ison principle. This principle is used to confirm that different
solution candidates satisfying the same conditions are identi-
cal.

Through this computational process, the viscosity solution
of the Eikonal equation can be determined. However, using
randomness can result in some variability in the results, so
selecting an appropriate range and precision of randomness
is important. Additionally, this process is theoretical, and
actual calculations may require numerical analysis expertise.
In considering the application of viscosity solutions of the
Eikonal equation using the Perron-Ishii method in opinion
dynamics, the following cases and scenarios might be in-
ferred:

Case Study 1: Information Spread on Social
Media

Problem Setting

The spread of information on social media is shaped by
the opinion dynamics among users. This involves model-
ing the process through which information about a particular
topic spreads via exchanges of opinions and influences among
users.

Application of the Eikonal Equation Using
Perron-Ishii Method

In this scenario, the Eikonal equation represents the speed
and direction of opinion diffusion. The speed of information

spread 𝑓 (𝑥) varies depending on factors like the influence of
opinion leaders, media exposure, or the urgency of the topic.

Utilization of the Viscosity Solution

The viscosity solution demonstrates how specific information
spreads among certain user groups and is eventually accepted
as a general opinion. This analysis helps understand how
particular information might exert social influence.

Case Study 2: Impact and Mitigation of Fake
News

Problem Setting

Exploring how fake news and misinformation spread in online
communities and how to minimize their impact.

Application of the Eikonal Equation Using
Perron-Ishii Method

The Eikonal equation is used to quantify the spread rate and
patterns of fake news. Here, 𝑓 (𝑥) depends on the persuasive-
ness of the fake news and the emotional reactions associated
with the topic.

Utilization of the Viscosity Solution

The viscosity solution shows how certain communities re-
spond to fake news and how they counteract it. This informa-
tion is useful in developing strategies to prevent the spread of
fake news.

Case Study 3: Convergence of Social Opinions

Problem Setting

Understanding the convergence or divergence of opinions on
major social issues (e.g., political events or public health
crises).

Application of the Eikonal Equation Using
Perron-Ishii Method

The Eikonal equation represents the speed of formation and
change of opinions. The convergence speed of opinions 𝑓 (𝑥)
is influenced by factors such as media coverage, expert opin-
ions, and political leadership.



Utilization of the Viscosity Solution

The viscosity solution illustrates how opinions on specific
social issues are formed and change over time. This helps
understand patterns of how social opinions either converge or
diverge.

In these case studies, the concept of viscosity solutions of the
Eikonal equation using the Perron-Ishii method enables us to
quantitatively capture the complex interactions and outcomes
in opinion dynamics. This allows for a better understanding
of social phenomena and aids in developing more effective
communication strategies and policy-making.
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