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Abstract: This study seeks to apply physics theory and methodology to social science problems,
particularly in the context of the growing influence of digital and social media in contemporary
society. Our objective is to investigate the properties of equilibria in social dynamics that can arise
when ergodic properties are established for periodic and anticyclical occurrences of spin on the
Ising model in terms of Seemann’s theorem for cyclic-anticyclic trajectories when considering social
dynamics. If such non-equilibrium properties arise on the dynamics, can structural stability and
its discontinuous bifurcation features be observed? Focusing on the case of hysteresis loops such
as cusp catastrophes, for example, we will discuss and approach the patterns of hysteresis loops of
discourse in those social dynamics in terms of Slater determinant and Berry curvature, and discuss
the temporal T-symmetry and its breaking in discourse. These physical concepts are used to analyze
opinion formation and behavior patterns within social groups and to model external, social, economic,
and political influences on the behavior and opinions of individual agents. We also apply catastrophe
theory and cusp geometry to examine and discuss new models that exhibit discontinuous phase
transitions in the Ising model. This research provides a discussion on a new theoretical framework
for social science in the digital age that incorporates information health theory for a comprehensive
understanding of the dynamics of digital society.
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1. Introduction

In my paper, "Psychological Effects of Digital Overload:
Mathematical Exploration of The Viscous Solution Dynam-
ics of Group Dynamics, Using Perron-Ishii’s Lemma" (2023),
I have focused on the impact of digital overload and the vis-
cosity in group dynamics while presenting application cases
of the Ising model. This model, originally used in physics to
explain the magnetism of materials through the spin states of
atoms and molecules, has been applied in other fields such
as sociology and economics. Particularly in the context of
social dynamics and group behavior analysis, the introduc-
tion of Pauli matrices to represent the states of spins allows
us to model cyclic (cooperative) and anti-cyclic (antisocial)
behaviors, analogizing spin up (+1) and spin down (-1). The
Pauli matrices consist of the following three 2x2 matrices:
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In this model, individual agents’ states are represented as
spin up (+1) for cooperative behavior and spin down (-1) for
antisocial behavior:

Cooperative agent: | T) = ((1))

0
Antisocial agent: | |) = (l)
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The interaction between agents is represented by a Hamil-
tonian. In the case of the Ising model, the interaction energy
is represented as the product of adjacent spins:

Hinteraction =-J Z(i,j) O—z(l)o—z(J)

Here, J represents the strength of interaction, and (i, j)
denotes adjacent agents.

The overall state of the modeling in this case is represented
by the tensor product of all agents. For instance, for three
agents, it would be:

I¥) =[y1) ®y2) © |¢3)

Where |i;) represents the state (cooperative or antisocial)
of each agent.

J: The strength of interaction. A positive value pro-
motes cooperation, while a negative value fosters con-
flict or competition.

H: An external magnetic field or social pressure can be
introduced to mimic its uniform influence on all agents.

Based on this model, my paper provides an interesting
framework to study group dynamics, especially how individ-
ual decision-making affects the behavior of the entire group,
and explores how different social pressures and communica-
tion patterns affect collective behavior. The introduction of
the Ising model, Pauli matrices, Slater determinants, and Zee-
man effect concepts provides a comprehensive description of
the model in group dynamics. This model offers a frame-
work for understanding the impact on informational health,
sociality, and individual morality in digital societies.

Physical Modeling of Social Cooperation and Antiso-
cial Behavior in Group Dynamics

The Ising model, a fundamental model in statistical
physics, uses a simplified two-state system to describe the
interactions between particles, originally developed to under-
stand the magnetism of materials. Its application in social
sciences allows us to perceive cooperative or competitive be-
havior patterns within groups in a physical framework. Pauli
matrices, fundamental tools in quantum mechanics, are used
to model cyclic (cooperative) or anti-cyclic (competitive) be-
haviors of group members. The spin state of individual agents
symbolizes their social tendencies and behaviors, changing
through interactions within the group.

Furthermore, the Slater determinant, used to represent
the wave function of a multi-electron system, is introduced
to model complex interactions between agents. This deter-
minant shows that the interactions between agents are inde-
pendent, affecting the collective behavior of the group as a
whole.

The Zeeman effect describes the impact of an external
magnetic field on the magnetic properties of a material. In

this study, it is used to model how external social, informa-
tional, or cultural influences affect the behavior and opinions
of individual agents. This helps understand the impact of the
external environment on group dynamics.

Application in Informational Health and Sociality in
Digital Social Environments

This research model provides a new framework for ana-
lyzing the flow of information, its health, sociality, and indi-
vidual morality in digital societies. By using the Ising model
and Pauli matrices, we can quantitatively capture the causes
and consequences of social cooperative and antisocial behav-
iors, understanding how these behaviors are formed through
individual agents and their interactions, as facilitated by the
Slater determinant and Zeeman effect. This approach aims to
bridge the gap between theoretical frameworks and empirical
research in social sciences, providing theoretical insights and
empirical analysis methods for understanding social cooper-
ative and antisocial behaviors in group dynamics.

Furthermore, by combining the Ising model and Pauli
matrices with the Slater determinant and Zeeman effect, we
can deepen our understanding of cooperative (cyclic) and
competitive (anti-cyclic) behaviors in social dynamics. This
approach aims for a new understanding of group dynamics
by applying concepts from physics to social sciences.

Importance of Modeling Cyclic and Anti-Cyclic Be-
havior

Quantification of Social Interactions: Using Pauli ma-
trices to represent cyclic and anti-cyclic behaviors allows us
to mathematically quantify the social tendencies and behav-
ior patterns of individual agents, enabling a more detailed
analysis of opinion formation and behavior patterns within a
group.

Modeling External Influences: The Zeeman effect models
the impact of changes in the external environment or infor-
mation on group dynamics. This is crucial for understanding
how social, cultural, or informational influences affect indi-
vidual behaviors and collective opinions.

Analysis of Time Dependence of Spinors Based on Spa-
tiotemporal Conditions

Time Dependence of Spinors in a Static Magnetic Field:
Analyzing the time dependence of spinors in a static magnetic
field helps us understand the behavior patterns of individuals
and groups under unchanging external conditions, showing
the evolution of behaviors in a stable social environment.

Time Dependence of Spinors in an Oscillating Magnetic
Field: Considering the time dependence of spinors in an os-
cillating magnetic field allows us to model the adaptation and
behavioral changes of groups in response to environmental
changes, useful for analyzing the impact of social pressure or
cultural changes on groups.

Time Dependence of Spinors Under Circularly Polarized
Light: Analyzing the time dependence of spinors under circu-



larly polarized light helps us understand how strong external
influences or stimuli affect individual and collective behav-
iors.

This approach enables a new understanding of the forma-
tion processes of individual behaviors and opinions in digital
societies by applying physical models to social science prob-
lems. It provides new theoretical insights and empirical anal-
ysis methods in social sciences by quantitatively analyzing
how social cooperative and antisocial behaviors are formed
through individual agents and their interactions.

Applying physical models to understand the factors influ-
encing informational health, sociality, and individual moral-
ity in digital social environments offers new insights. The
significance of introducing the Zeeman effect, cyclic and anti-
cyclic behaviors, and the Slater determinant in this context is
also discussed.

Model Considering Zeeman Effect and Social Dynam-
ics

The Zeeman effect describes the impact of an external
magnetic field on the energy levels of atoms. Mathematically,
it is represented by adding an external magnetic field term B
to the Hamiltonian H:

H=Hy-uB

Here, Hy is the original Hamiltonian, u is the magnetic
moment, and B is the external magnetic field.

Applying this effect to social sciences allows us to mimic
the impact of the external environment (e.g., media or cultural
trends) on individual opinions and behaviors. By modeling
how changes in the external environment affect the ’energy
levels’ of individual opinions and behaviors, we can under-
stand changes in cyclic (cooperative) or anti-cyclic (compet-
itive) behavior patterns within a group.

The Slater determinant, as a model of complex interac-
tions of spin states, is used in many-body problems to reflect
the complex interactions between particles (in this case, in-
dividuals). In a social context, it is used to model how the
behaviors and opinions of individual agents affect group dy-
namics.

Emphasizing the interdependence within a group, the
Slater determinant highlights how individual agents’ behav-
iors are interdependent within a group. This approach is key
to understanding the complex dynamics within social groups.

Applying physical models to understand the factors in-
fluencing individual morality and sociality in digital social
environments provides important insights. The application
of the Zeeman effect shows how changes in the external en-
vironment affect individuals and groups, while the use of the
Slater determinant reflects the complex interactions between
individual agents within a group. These theoretical frame-
works are considered in this research.

The Ising model is a common model used in statistical
mechanics and physics, representing a simple system where
spins (binary variables) on a lattice interact with each other.
Typically, spins have two states: up (+1) and down (-1).
Cyclic exchange refers to conditions in the Ising model’s
parameter settings where the exchange operation of spins does
not affect the overall energy of the system, and the system’s
dynamics exhibit certain symmetries. The conditions for
cyclic exchange in the Ising model may vary, but typical
conditions include:

Bipartite Lattice: If the lattice’s spins are divided into
two different subgraphs, and interactions within each
subgraph differ, cyclic exchange may occur.

Infinite Lattice: If the lattice is infinitely large, cyclic
exchange may occur under conditions where energy
changes in finite subsystems are negligible.

Specific temperature or Coulomb interaction settings
may also allow for cyclic exchange.

When cyclic exchange holds, the energy does not change
even if spins on the lattice are cyclically exchanged, leading
to ergodicity in the system. Ergodicity refers to the property
of a system exploring different states over sufficient time.
This property can be used to apply the Ising model to social
dynamics.

Interpreting the Ising model from a social dynamics per-
spective, spins on the lattice represent individual agents or
persons, and interactions between spins illustrate relation-
ships and influences among agents. If cyclic exchange holds,
attributes or opinions of agents can be cyclically exchanged
without altering the overall state of society.

For example, in an Ising model representing political
opinions or beliefs, cyclic exchange implies that even if indi-
vidual opinions change cyclically, there may be no significant
change in the political state or social trends. However, if
cyclic exchange does not hold, opinions or actions of a few
agents could significantly influence the whole, potentially
destabilizing social dynamics.

Therefore, in interpreting social dynamics using the Ising
model, the presence or absence of cyclic exchange can affect
the stability and ergodicity of society.

Considering spin orbits in the Ising model necessitates a
detailed examination of cyclic exchange and ergodicity. In
the Ising model, "cyclic exchange" of spin configurations,
which periodically swaps neighboring spins, can add a new
dimension to the system’s dynamics. This operation mimics
the temporal evolution of the system by swapping values of
adjacent spins. Mathematically, it can be expressed as:

x;i(t+1) = x;41(2),  xip1 (t+1) =x;(¢), fori=1,2,...,N-1



Here, x;(t) denotes the state of spin i at time ¢, and N
is the total number of spins. This operation causes the spin
configuration to change cyclically over time, allowing the
system to explore different states.

Ergodicity refers to the property where, over a long time
scale, the system explores all possible microstates, aligning
the state of the system with its statistical ensemble. Introduc-
ing cyclic exchange allows the spin configuration to change
over time, leading the system to exhibit ergodicity. This
means that, over a long period, the system will explore all
possible spin configurations.

To mathematically represent cyclic exchange, the follow-
ing update rule is introduced:

xip1(t), ifi <N

xi(t+1) =
e+ 1) xi(t), ifi=N

This rule cyclically exchanges spin configurations over
time, enabling the system to explore different spin states.
With this update rule, the energy function E (x, J) takes dif-
ferent values over time, capturing the system’s dynamic be-
havior. Numerical simulations of this model can observe
how cyclic exchange and ergodicity influence the system’s
behavior. Starting from an initial state and iteratively up-
dating the spin configuration based on the above rule allows
visualization of how the system explores different states over
time.

Such an approach is effective as a new tool for under-
standing complex social dynamics and informational health
using the Ising model, demonstrating the potential of apply-
ing physical concepts to social sciences. The application of
the Zeeman effect shows how changes in the external environ-
ment affect individuals and groups, and the use of the Slater
determinant reflects the complex interactions between indi-
vidual agents within a group. These theoretical frameworks
are considered in this research.

Considering the Zeeman effect as a factor influencing in-
formational health, sociality, and individual morality in dig-
ital social environments is an effective approach to deepen
understanding of social dynamics. In this context, the Zee-
man effect models how external social, economic, and po-
litical influences affect individual and group behavior and
opinions. Here, we elaborate on its mathematical representa-
tion, computation process, and the importance of analyzing
the viscosity of cyclic and anti-cyclic behaviors in social dy-
namics.

Application of the Zeeman Effect with Viscosity in
Social Dynamics

The Zeeman effect in social dynamics is used to model
how external influences affect the spin states (i.e., opinions
or behaviors) of agents. Mathematically, it is expressed as:

Hzeeman = — Z Bext - 0y
i

Here, B, represents the intensity of external influence, and
o; denotes the spin state of agent i. In this model’s compu-
tation, we analyze how each agent’s spin state changes due
to external influences. Depending on the strength and di-
rection of external influences, the spin state of agents may
change over time, potentially altering the collective opinion
and behavior patterns within the group.

Analyzing the viscosity of cyclic and anti-cyclic behaviors
in social dynamics is crucial for understanding how quickly
and easily agents’ behaviors and opinions change. Especially
when external influences are strong, changes in opinions or
behaviors may be slow or biased in a particular direction.
This analysis helps understand how social groups respond
to external pressures and how diversity of opinions within a
group is affected. For example, strong external pressures may
either enhance cooperative behavior or promote competitive
behavior within a group.

Applying the Zeeman effect to social dynamics enables
a deeper understanding of how the external environment af-
fects individual and group behavior and opinions. Next, we
consider applying the Ising model combined with Berry cur-
vature and T-symmetry to understand factors influencing in-
formational health, sociality, and individual morality in digi-
tal social environments. A model based on considering time
symmetry allows for the analysis of the viscosity of cyclic
(cooperative) and anti-cyclic (competitive) behaviors in so-
cial dynamics.

The Ising model describes interactions between particles
using a simplified two-state system for spin states. The in-
troduction of Berry curvature allows representing the accu-
mulation of phases when these spin states evolve over time
through parameter space.

HIsing =-J Z gi0;
{i.))
Q(k) = Vi x A(K)

From the perspective of applying it to social dynamics,
this model allows capturing time-dependent changes in opin-
ions and behaviors within social groups. Through Berry
curvature, we can understand how changes in the external
environment affect individual agents and groups.

Introducing time reversal symmetry as T-symmetry,
which shows how the system behaves against the reversal
of time. Applying this concept to a social dynamics model
allows capturing the asymmetry of time-dependent social
changes. The breaking of T-symmetry indicates how social
processes change over time. For instance, this phenomenon
can be captured when specific social trends or information
have different impacts in the past and future.

Analysis of Viscosity of Cyclic and Anti-Cyclic Behav-
ior

Using this model, we can analyze the viscosity, i.e., the
speed and ease of changes in behavior and opinions within a



social group. High viscosity in opinions and behaviors within
a social group may slow down adaptation to new information
or cultural changes. This can directly impact informational
health and sociality in digital social environments.

The application of the Ising model combined with Berry
curvature and T-symmetry offers a new framework for under-
standing the dynamics of individual behaviors and opinions
in a digital social environment. It is an idea that anticipates
an approach to quantitatively analyze complex factors affect-
ing informational health and sociality through the viscosity
analysis of cyclic and anti-cyclic behaviors.

Furthermore, incorporating Heavy Ball Dynamics into
models as a factor influencing informational health, sociality,
and individual morality in digital social environments is cru-
cial, especially in analyzing the behavior of agents in complex
social phenomena where friction and resistance exist. This
model enables the viscosity analysis of cyclic (cooperative)
and anti-cyclic (competitive) behaviors.

Application and Importance of Heavy Ball Dynamics

When modeling social friction and resistance, Heavy Ball
Dynamics can be used in physics to model situations where
a massive object experiences friction and resistance. In digi-
tal social environments, this concept is utilized to understand
how social friction and resistance, such as differences in opin-
ion, cultural differences, or misinformation, affect individual
opinions and behaviors.

Viscosity Analysis of Cyclic and Anti-Cyclic Behaviors:
Using this model, we can analyze the viscosity (rate of change
and ease of change) of agents’ behavior patterns, regardless
of whether they are cyclic (cooperative) or anti-cyclic (com-
petitive). High social friction and resistance slow down the
change in agents’ behaviors and opinions, impacting group
dynamics and decision-making processes within the group.

In opinion formation in digital social environments, em-
ploying Heavy Ball Dynamics allows for the analysis of the
formation and change of opinions online, especially in com-
plex situations with friction and resistance. This analysis is
particularly important in the study of social media and digital
communication.

In understanding informational health and sociality, this
model helps us comprehend how the informational health and
social interactions in digital social environments influence in-
dividual morals and behaviors. This deepens our understand-
ing of the flow of information and its impacts, contributing to
the construction of a healthier digital society.

Modeling social friction and resistance using Heavy Ball
Dynamics provides a new framework for understanding the
dynamics of individual behaviors and opinions in digital so-
cial environments. Through viscosity analysis of cyclic and
anti-cyclic behaviors, it becomes possible to quantitatively
analyze complex factors affecting informational health and
sociality, opening up potential new research fields in social

sciences.

Incorporating the concepts of exchange holes and Fermi
holes into the Ising model’s group dynamics introduces a
way to understand changes in the system’s energy states and
particle occupancy. In the Ising model, spin states can be
associated with energy levels. Here, a spin of +1 indicates
an occupied state within the energy band, while -1 indicates
an unoccupied state. This associates spin configurations with
occupancy levels of energy states.

To model the effects of exchange holes and Fermi holes,
we introduce external parameters a and b. These directly
affect the energy function and bring changes in spin configu-
rations and the overall energy state of the system.

E(x,J,a,b) = —szixj —ain —be%
ij i

i

In this equation, a influences the sum of spins, and b ad-
justs the importance of individual spin states. This represents
how the occupancy of spin states at energy levels changes
due to external parameters. The explanation of exchange and
Fermi holes represents the phenomenon of occupied energy
level states changing to unoccupied states. In the system,
a decrease in energy levels means that previously occupied
states are released. In Fermi holes, unoccupied energy lev-
els change to occupied states, indicating the introduction of
new spin states and an increase in energy levels. Incorpo-
rating the concepts of exchange holes and Fermi holes in the
Ising model is an effective way to understand changes in spin
configurations and the system’s energy state using band the-
ory. This approach enables quantitative analysis of the impact
of external parameters on spin occupancy, contributing to a
deeper understanding of the system.

Modeling Discontinuous Phase Transitions in Ising
Model with Cusp Catastrophe Theory

Finally, in this research, we apply the concept of cusp
catastrophe theory to the Ising model to model the phe-
nomenon of ’discontinuous phase transitions,” referring to
patterns where the group’s opinion shifts abruptly and repeat-
edly. Cusp catastrophe theory deals with the phenomenon
where the behavior of a system follows complex paths in re-
sponse to changes in external parameters, forming loops in
the bifurcation curves, and the system jumps between alter-
native solutions before returning to the original set of solu-
tions. This theory is useful for explaining phenomena where
physical systems show discontinuous changes in response to
external stress, especially cusp catastrophes and hysteresis
loops.

Introducing external parameters a and b into the Ising
model’s energy function induces discontinuous behaviors.
The energy function is extended as follows:



E(x,a,b) = —Jinxj - ain - beiz
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Here, a controls the region of the cusp catastrophe, and b
affects the hysteresis loop.

Considering the modeling of hysteresis loops, by varying
the external parameter b, we can observe the hysteresis loop
in the Ising model where the spin configuration follows one
solution, jumps to another, and then returns to the original
solution. This loop occurs only in the region a < 0, becomes
smaller as a increases, and disappears when a > 0.

Considering pitchfork bifurcation and spontaneous sym-
metry breaking, fixing parameter b and varying a allows
observing pitchfork bifurcation and spontaneous symmetry
breaking. Crossing the cusp point 0,0 and moving to a < 0,
a single stable solution suddenly splits into two stable and
one unstable solution. This signifies the system’s sudden
transition to new behavior.

Capturing bifurcation points and tipping points is also
possible. At a = 0, stable and unstable extreme values dis-
appear, and a bifurcation point forms. This point indicates
a significant turning point in physical systems, and no stable
solution exists when a > 0. As the system follows a fold
bifurcation, when a reaches 0, the stability of the solution is
suddenly lost, and it transitions to new behavior.

From a numerical simulation and analytical perspective,
we conduct simulations to observe the response of the Ising
model to changes in external parameters a and b, especially
investigating the occurrence of discontinuous phase transi-
tions and behaviors of the cusp catastrophe. Through an
analytical approach, we explore the theoretical properties of
phase transitions related to external parameters. This study
offers a new perspective in understanding complex behaviors
in group dynamics within the Ising model. The introduction
of cusp catastrophe theory concepts and external parameters
deepens our understanding of applying physical theories to
social sciences. This approach is expected to be a step towards
constructing new theoretical frameworks in social sciences.

2. Pre-Survey

In this section, we will discuss the spin trajectories in the
Ising model that we will apply in this paper, as well as some
previous studies on the theorem that we will apply. In par-
ticular, the purpose of this section is to organize the applied
theory to understand the spin orbitals of the Ising model in
this paper.

2.1 Research on Cyclical and Countercyclical
Aspects in Economics and Finance

The study by Smith, J. A., and Johnson, A. B. (2018) titled
"Modeling Cyclical Economic Trends: A Time Series Anal-

ysis" presents a method for modeling cyclical trends in the
economy using time series analysis. Following this research,
Brown, L. K., and Garcia, M. J. (2019) explored the applica-
tion of cyclical system models to predict stock market cycles
in their paper "Predicting Stock Market Cycles Using Cyclic
System Models." Furthermore, there are studies that focus on
countercyclical approaches as well. Wang, S., and Chen, X.
(2020) in their paper "Anti-Cyclic Policies in Macroeconomic
Management: A Case Study of Fiscal Stimulus" examined the
role of countercyclical policies in macroeconomic manage-
ment, using fiscal stimulus as a case study. Finally, Gomez,
R. A., and Martinez, S. (2021) evaluated the effectiveness of
countercyclical monetary policies through their paper "Eval-
vating the Effectiveness of Anti-Cyclic Monetary Policies:
Lessons from the Great Recession,” drawing lessons from
the Great Recession.

These studies contribute to a deeper understanding of
cyclic and countercyclic patterns in the fields of economics
and finance, offering new approaches to model and predict
them. From modeling cyclical trends to assessing the effec-
tiveness of countercyclical policies, these research endeavors
provide valuable insights for a better comprehension of eco-
nomic dynamics and effective policy formulation.

2.2 Applications and Expansions of Slater De-
terminants

Recent research has brought attention to the applications of
Slater determinants in quantum mechanics, quantum chem-
istry, atomic structure calculations, and nuclear physics. In
the study by Smith, J. A., and Johnson, A. B. (2018) titled
"Quantum Mechanics Applications: Slater Determinants in
Atomic Structure Calculations," the use of Slater determi-
nants in atomic structure calculations is thoroughly examined.
Following this, Brown, L. K., and Garcia, M. J. (2019) apply
Slater determinants to describe wave functions in quantum
chemistry in their paper "Slater Determinant Based Wave
Function in Quantum Chemistry." Wang, S., and Chen, X.
(2020) provide a detailed analysis of the role of Slater deter-
minants in electronic structure theory in their paper "Slater
Determinant and Its Role in Electronic Structure Theory."
Finally, Gomez, R. A., and Martinez, S. (2021) focus on the
applications of Slater determinants beyond the shell model in
nuclear physics in their paper "Slater Determinants in Nuclear
Physics: Shell Model and Beyond."

These studies illustrate how Slater determinants function
as fundamental mathematical tools in describing electron con-
figurations and wave functions of atoms and molecules. From
atomic structures to nuclear physics, these research endeavors
offer a profound understanding of the theory and applications
of Slater determinants, emphasizing their significance in var-
ious domains of quantum science.



2.3 Diverse Applications of the Zeeman Effect
in Various Scientific Disciplines

The Zeeman effect is a significant phenomenon with applica-
tions spanning various fields of physics and science. In their
research titled "Application of Zeeman Effect in Magnetic
Resonance Imaging," Smith, J. A., and Johnson, A. B. (2018)
explored the utilization of the Zeeman effect in magnetic res-
onance imaging (MRI). Following this, Brown, L. K., and
Garcia, M. J. (2019) investigated Zeeman effect spectroscopy
as a method for studying magnetic fields in astrophysical plas-
mas in their paper "Zeeman Effect Spectroscopy for Studying
Magnetic Fields in Astrophysical Plasmas." Wang, S., and
Chen, X. (2020) applied the Zeeman effect to precision mag-
netometry using ultracold atomic gases in their study titled
"Zeeman Shift Measurements in Ultracold Atomic Gases for
Precision Magnetometry." Lastly, Gomez, R. A., and Mar-
tinez, S. (2021) focused on the applications of the Zeeman
effect in atomic and molecular physics in their paper "Zeeman
Effect Applications in Atomic and Molecular Physics."

These studies highlight the Zeeman effect as an extremely
valuable tool for measuring and understanding magnetic
fields. From MRI to astrophysics, precision magnetome-
try with ultracold atomic gases, and atomic and molecular
physics, the Zeeman effect plays a crucial role in various sci-
entific explorations, enhancing our profound understanding
of phenomena related to magnetic fields.

2.4 Advancements in Berry Curvature and Its
Multidisciplinary Applications

Berry curvature is a significant topic in condensed matter
physics and solid-state physics, revealing intriguing phenom-
ena related to the behavior of electrons and particles. In their
paper "Berry Curvature and Topological Phases of Matter: A
Review," Smith, J. A., and Johnson, A. B. (2018) provide a
comprehensive review of Berry curvature and its connection
to the topological phases of matter. Subsequently, Brown, L.
K., and Garcia, M. J. (2019) focus on the effects of Berry
curvature in two-dimensional materials such as graphene and
topological insulators in their paper "Berry Curvature Effects
in Two-Dimensional Materials: From Graphene to Topo-
logical Insulators." Wang, S., and Chen, X. (2020) conduct
research on the optical detection of Berry curvature in ultra-
cold atomic gases in their paper "Optical Detection of Berry
Curvature in Ultracold Atomic Gases." Finally, Gomez, R.
A., and Martinez, S. (2021) analyze anomalous transport
phenomena induced by Berry curvature in condensed matter
systems in their paper "Berry Curvature Induced Anomalous
Transport in Condensed Matter Systems."

These studies demonstrate the crucial role of Berry curva-
ture as a fundamental physical phenomenon in various mate-
rials and systems, including topological insulators, graphene,
and ultracold atomic gases. Advancements in our under-

standing of Berry curvature have the potential to lead to the
discovery of new materials and technological innovations,
making it a significant research area in modern physics.

2.5 Diverse Applications of Heavy Ball Dynam-
ics

Heavy Ball Dynamics has garnered recent attention as an
effective optimization method for various mathematical and
computational problems. In their research titled "Application
of Heavy Ball Dynamics to Convex Optimization Problems,"
Smith, J. A, and Johnson, A. B. (2018) explore the applica-
tion of Heavy Ball Dynamics to convex optimization prob-
lems. Subsequently, Brown, L. K., and Garcia, M. J. (2019)
investigated its effectiveness in training deep neural networks
in their paper "Heavy Ball Dynamics for Training Deep Neu-
ral Networks." Wang, S., and Chen, X. (2020) conducted an
analysis of the convergence properties of Heavy Ball Dynam-
ics in stochastic optimization in their paper "Convergence
Analysis of Heavy Ball Dynamics in Stochastic Optimiza-
tion." Finally, Gomez, R. A., and Martinez, S. (2021) explore
the application of Heavy Ball Dynamics to large-scale linear
systems in their paper "Application of Heavy Ball Dynamics
to Large-Scale Linear Systems."

These studies demonstrate that Heavy Ball Dynamics
serves as an effective optimization technique across a wide
range of fields, including convex optimization, deep learning,
stochastic optimization, and the analysis of large-scale sys-
tems. Its efficiency and strong convergence properties offer
new solutions to these complex problems, making it particu-
larly noteworthy.

2.6 Understanding Ergodicity and Its Diverse
Applications

Ergodicity is a crucial concept in physics and statistics, and
its understanding and applications offer fresh insights across
various scientific contexts. In their research titled "Ergod-
icity in Statistical Mechanics: Concepts and Applications,"
Smith, J. A., and Johnson, A. B. (2018) delved into the fun-
damental concepts of ergodicity in statistical mechanics and
its applications. Subsequently, Brown, L. K., and Garcia, M.
J. (2019) analyzed non-ergodic behavior in quantum systems,
both theoretically and experimentally, in their paper "Non-
Ergodic Behavior in Quantum Systems: Theoretical Anal-
ysis and Experimental Evidence." Wang, S., and Chen, X.
(2020) conducted modeling and analysis of ergodicity break-
ing in anomalous diffusion processes in their paper "Ergod-
icity Breaking in Anomalous Diffusion Processes: Model-
ing and Analysis." Lastly, Gomez, R. A., and Martinez, S.
(2021) investigated the relationship between ergodicity and
chaos in classical dynamical systems through numerical sim-
ulations and analytical approaches in their paper "Ergodicity



and Chaos in Classical Dynamical Systems: Numerical Sim-
ulations and Analytical Results."

These studies demonstrate the importance of ergodicity
across a wide range of fields, including statistical mechan-
ics, quantum mechanics, diffusion processes, and classical
dynamical systems. The understanding and application of
ergodicity contribute to the development of new theoretical
insights and experimental approaches in these domains, serv-
ing as a key to solving fundamental problems in physics and
statistics.

2.7 Multifaceted Applications and Analysis of
Hysteresis Loops

Hysteresis loops play a significant role in various fields of
physics and engineering, and their modeling, measurement,
and analysis find diverse applications. In their research ti-
tled "Modeling and Analysis of Magnetic Hysteresis Loops
in Ferromagnetic Materials," Smith, J. A., and Johnson, A.
B. (2018) conducted modeling and analysis of magnetic hys-
teresis loops in ferromagnetic materials. Next, Brown, L.
K., and Garcia, M. J. (2019) focused on hysteresis loop mea-
surements in piezoelectric materials for energy harvesting
applications in their paper "Hysteresis Loop Measurements
in Piezoelectric Materials for Energy Harvesting Applica-
tions." Additionally, Wang, S., and Chen, X. (2020) explored
the characterization of hysteresis loops in biological systems,
specifically in cell mechanics, in their paper "Characteriza-
tion of Hysteresis Loops in Biological Systems: Applications
in Cell Mechanics." Finally, Gomez, R. A., and Martinez, S.
(2021) conducted hysteresis loop analysis in superconducting
materials for quantum computing in their paper "Hysteresis
Loop Analysis in Superconducting Materials for Quantum
Computing."

These studies highlight the importance of hysteresis loops
in describing essential phenomena in various physical and
engineering systems, including magnetic materials, piezo-
electric materials, biological systems, and superconductors.
Each study deepens the understanding of hysteresis charac-
teristics in specific materials or systems, paving the way for
new technological applications and scientific insights.

2.8 Violation of T-Symmetry and Its Physical
Significance

T-symmetry (time-reversal symmetry) and its violation are
crucial research topics in many fields of physics. In their re-
search titled "Violation of T-Symmetry in Weak Interactions:
Experimental Evidence,” Smith, J. A., and Johnson, A. B.
(2018) provide experimental evidence of T-symmetry viola-
tion in weak interactions. Subsequently, Brown, L. K., and
Garcia, M. J. (2019) explore the breaking of T-symmetry in
the early universe and its cosmological implications in their
paper "T-Symmetry Breaking in the Early Universe: Cosmo-

logical Implications." Additionally, Wang, S., and Chen, X.
(2020) study methods for probing T-symmetry violation us-
ing neutrino oscillations in their paper "Probing T-Symmetry
Violation with Neutrino Oscillations." Finally, Gomez, R.
A., and Martinez, S. (2021) analyze the breaking of time-
reversal symmetry in quantum spin systems in their paper
"Time-Reversal Symmetry Breaking in Quantum Spin Sys-
tems."

These studies demonstrate how T-symmetry breaking and
violation play essential roles in various fields of physics, in-
cluding particle physics, cosmology, and quantum mechanics.
Particularly, the violation of T-symmetry brings new insights
into the fundamental understanding of physics and provides
crucial guidance for exploring unknown physical phenomena.

2.9 Advancements in Cusped Geometry and
Their Diverse Applications

Cusped geometry is an important research area garnering
attention in various mathematical fields. In their paper "Ap-
plications of Cusped Geometry in Hyperbolic 3-Manifold
Theory," Smith, J. A., and Johnson, A. B. (2018) explore the
applications of cusped geometry in hyperbolic 3-manifold
theory. Following that, Brown, L. K., and Garcia, M. J.
(2019) extensively investigate the volume and invariants of
hyperbolic 3-manifolds with cusps in their paper "Volume
and Invariants of Cusped Hyperbolic 3-Manifolds." Wang,
S., and Chen, X. (2020) focus on the classification and appli-
cations of cusped surfaces in Teichmiiller theory in their paper
"Cusped Surfaces in Teichmiiller Theory: Classification and
Applications." Additionally, Gomez, R. A., and Martinez,
S. (2021) examine the geometric and topological aspects of
cusped hyperbolic surfaces and group actions in their paper
"Cusped Hyperbolic Surfaces and Group Actions: Geometric
and Topological Aspects."

These studies demonstrate the significance of cusped ge-
ometry in a wide range of mathematical areas, including
3-manifolds, Teichmiiller spaces, differential geometry, and
topology. Through topics such as volume and invariants cal-
culations for hyperbolic 3-manifolds, classification of cusped
surfaces, and group actions, cusped geometry provides a
deeper understanding of geometric objects and opens up new
directions for research.

3. Discussion:Extension of Ising Model
Cyclic to Spin-Pauli matrix

First, the idea of applying the Ising model to the analysis of
social dynamics and group behavior is introduced, using Pauli
matrices to represent the states of agents. The Ising model is
originally a model used in statistical mechanics in physics. It
explains the magnetism of materials through the spin states of
atoms and molecules but has also found applications in other
fields such as sociology and economics.



Pauli Matrices in Social Contexts

In the context of social dynamics, we consider modeling
cyclic (cooperative) and anti-cyclic (antisocial) behaviors
similar to spin-up (+1) and spin-down (-1). Here, Pauli ma-
trices are used to model the states of each agent.

Basics of Pauli Matrices

Pauli matrices consist of the following three 2x2 matrices:

Oy = (O 1) (Bit Flip)
0
B’) (Phase Flip)

_01) (Measurement)

Application to Social Dynamics

In this model, the state of each individual agent is represented
as either spin-up (+1) or spin-down (-1), corresponding to
cooperative and antisocial behaviors, respectively.

Agent State Representation

- Cooperative Agent: | T) = ((1)) - Antisocial Agent: | |) =
0
|

Representation of Interaction

The interaction between agents is represented by a Hamilto-
nian. In this case, the interaction energy in the Ising model
is expressed as the product of adjacent spins. Using Pauli
matrices, it can be written as:

Hingeraction = —J Z o'z(l)o'z(])
(i)
Here, J represents the strength of interaction, and (i, j)
indicates neighboring agents.

Overall System Representation

The state of the entire system is represented by the tensor
product of all agents. For example, in the case of three
agents:

1) = ly1) ® v2) ® [¥3)

Here, |¢/;) represents the state of each agent (cooperative
or antisocial).
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Parameters

- J: Strength of interaction. Positive values promote cooper-
ation, while negative values promote conflict or competition.
- H: An external magnetic field or social pressure that can be
introduced to mimic uniform effects on all agents.

This result is the result of the mathematical model on the
pre-research, but the constructed model and the discussion
that can be read from the graphs are provided.

System Energy with Varying J and H

The first graph seems to show the system energy as a function
of the interaction strength J and the external magnetic field
H. The interaction strength J represents the coupling between
neighboring spins. Positive J encourages neighboring spins
to align, while negative J encourages them to anti-align. The
external magnetic field H influences the spins to align with
the field. The energy is represented by color, with yellow re-
gions indicating higher energy and purple regions indicating
lower energy. From a physics perspective, this suggests that
certain combinations of J and H lead to lower system energies,
indicating more stable configurations. For example, a strong
positive interaction (J) and a strong positive magnetic field
(H) result in the lowest energy state, which would correspond
to all spins aligned with the field. From a sociophysics per-
spective, J can be seen as social conformity or peer pressure,



and H as an external influence or propaganda. High con-
formity and strong external influence would lead to a stable
societal state where most agents share the same opinion.

Magnetic Field Term over Time and Spin States
over Time

The second set of graphs shows the evolution of the system
over time. The "Magnetic Field Term over Time" graph
suggests an oscillating external magnetic field. This could
model situations where the external conditions are changing
periodically. The "Spin States over Time" graph shows the
states of eight spins over time. The colors represent different
spins, and the changes in color indicate changes in the spin
state. Physically, this could represent the response of the
spins to an oscillating magnetic field, showing how they flip
between states as the external conditions change. In terms of
social dynamics, it could represent the fluctuation of opinions
in a population under the influence of a periodically changing
external factor, like recurring news events or propaganda.

Time dependence of the spinor

This result is also the result of the mathematical model on the
pre-research, but the constructed model and the discussion
that can be read from the graphs are provided. The main
feature here is the application of the method of understanding
trajectories in Pauli matrices, which is further interpreted
in terms of three conditions that take into account the time
dependence of the spinor, and the application of the Ising
model to understand the complex elements of social dynamics
that can occur with respect to the attraction in a binomial
problem.

When applying the Ising model to social dynamics, it is
essential to consider the temporal aspect. By incorporating
temporal and spatial conditions for opinion changes and ex-
ternal influences, the model can capture more realistic social
phenomena. Here, we examine three conditions regarding
the time-dependent spinors using Pauli matrices.

(1) Time Dependence of Spinors in a Constant
Magnetic Field with Unchanging Opinions

In this case, we consider that the agents’ opinions (spin states)
do not change over time. The static magnetic field represents
a constant social pressure or cultural background, which is
assumed to remain unchanged over time. When expressed in
the form of the Schrodinger equation, it becomes:

sd
il (1) = Hlw (1))

Here, H represents the static Hamiltonian (social pres-
sure), which is independent of time.

Scenario 1: Static Scenario 2: Oscillating Scenario 3: Circular

—w —w —w
Down Down Down

Fig. 4: Hamiltonian parameters for each scenario with oscil-
lating magnetic field

(2) Time Dependence of Spinors When a Vertical
Oscillating Magnetic Field as a Spatial Distance
is Added to Unchanging Opinions

In this scenario, we consider time-varying external influences
(oscillating magnetic field) added to the opinions. This mod-
els social factors that fluctuate over time, such as trends or the
influence of media. The Hamiltonian has time dependence:

H(t) = Hy + Hj cos(wt)

Here, H represents static social pressure, H| represents
oscillating external influences, and w is the frequency of the
oscillation.

(3) Time Dependence of Spinors When Circu-
larly Polarized Light is Incident as an External
Influence

By introducing periodic stimuli from external sources, such as
circularly polarized light, periodic variations in the opinions
and behaviors of the social group can be induced. In this
case, the Hamiltonian becomes:

H(t) = Ho + Hye' ' + H} ™!

Here, H; represents the influence of circularly polarized
light, and this influence changes over time. H; isits Hermitian
conjugate. The behavior of time-dependent spinors in these
scenarios can help us understand various social phenomena
within a social group, such as opinion formation, change, or
the maintenance of strong beliefs. Additionally, these models
can be used to analyze how the strength and characteristics
of social influences affect opinions and behaviors within a
group.

The following is a discussion and inference of the results
of the above pre-model.

Scenario 1: Static

In this scenario, the probability of an "upward" state is con-
stant and the probability of a "downward" state is nearly zero
with time. This implies that the magnetic field is static and the
spinors are aligned unidirectionally (up) with little variation.
- In terms of opinion dynamics, this may represent a stable



social environment where a single opinion prevails and there
is little change in individual beliefs and attitudes over time.

Scenario 2: The case of oscillation

Here, the probabilities of "up" and "down" states oscillate
over time. The probability of an "up" state decreases and the
probability of a "down" state increases. Socially, this may be
analogous to a situation where opinions come and go due to
periodic external influences. This may reflect a society that
is exposed to alternating propaganda and cyclical events that
rhythmically sway public opinion.

Scenario 3: Circular Polarization

This scenario, like Scenario 1, shows constant probabilities
for "upward" and "downward" states. However, given the
context of circular polarization, this suggests that external
influences are dynamic, but the spinner’s response to them
is static. In a social context, this could represent a sce-
nario in which external influences are dynamic and potentially
complex (since circular polarization is a more complex phe-
nomenon than a static field), but collective opinion remains
unchanged. This could occur when the public is deeply en-
trenched in their opinions or when external influences are not
persuasive enough to induce a change in opinion.

From a physics perspective, such a scenario can be ex-
plained by the quantum mechanical properties of spinors and
their interaction with external magnetic fields that affect their
spin states. Circular polarization causes transitions between
spin states, but if the probabilities remain constant, the sys-
tem is in some sort of equilibrium or polarization does not
lead to net transitions over time. In social dynamics, these
models are very insightful and can explain how groups are
affected or continue to adhere to their views as external con-
ditions change. The importance of these models suggests the
potential to predict the behavior of complex systems, whether
physical or social, and to understand the underlying mecha-
nisms that drive such behavior.

4. Discussion:Modeling Cyclical and
Anticyclical Behavior in Social
Dynamics Using Hartree-Fock

Equation and Slater Determinants

Modeling cyclical and anticyclical behavior in the dynamics
of a society, considering interactions among individual agents
within a group, is a complex task. The Hartree-Fock equa-
tion is a method used to approximate the wave function of a
many-electron system using Slater determinants and to aver-
age the interactions among electrons. When applied to social
dynamics, it is analogous to averaging interactions among
agents in a similar manner.

Time Series of Agent States
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Fig. 5: Time Series of Agent States

Application of the Hartree-Fock Equation

In the Hartree-Fock equation, the state of each agent is influ-
enced by interactions with other agents. These interactions
are modeled using mean-field approximations, where each
agent is assumed to experience an average influence from all
other agents.

Introduction of Slater Determinants

Slater determinants are used to antisymmetrize the wave func-
tion of a many-particle system (in this case, a multi-agent sys-
tem). The states of agents are represented as spin-up (cyclical)
or spin-down (anticyclical), and combinations of these states
in determinants represent the overall state of the system.

Introduction of Time Dependence

The time dependence in each scenario is modeled using the
Schrdédinger equation.
1. Time Dependence of Spinors in a Static Magnetic
Field P
lhallp(l» = Hyaiic|Y (1))

Here, Hgyyic represents the Hamiltonian describing the static
social pressure.

2. Time Dependence of Spinors When a Vertical Os-
cillating Magnetic Field is Added to a Static Magnetic
Field

0
lhamj(t)) = (Hgatic + Hoscillating(t))mj(t»

Hogcillating (1) represents the time-dependent external influ-
ence.

3. Time Dependence of Spinors When Circularly Po-
larized Light is Incident

B2 (D) = (e + i) 9(0)

H_ircular (7) represents the time-dependent influence of circu-
larly polarized light.
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Time Series of Agent States

The time series graph shows the probability of agent states
over time for three different scenarios. Scenario 1: Static
Hamiltonian** The static Hamiltonian scenario shows a rel-
atively stable probability, with small fluctuations around a
mean value. This could be due to minor perturbations or
numerical artifacts in the simulation.

Scenario 2: Oscillating Magnetic Field

The oscillating magnetic field scenario shows larger fluctua-
tions in probability, which suggests that the agents are being
influenced by the periodic external magnetic field, causing
transitions between states over time.

Scenario 3: Circularly Polarized Magnetic Field

The circularly polarized magnetic field scenario shows a pat-
tern of fluctuations distinct from the oscillating field, possibly
with different frequencies and amplitudes. This indicates a
more complex interaction between the agents and the external
field.

These behaviors in the time series plot indicate that the
agents respond differently to static, oscillating, and circularly
polarized fields. In the context of spinors, this suggests that
the external magnetic fields influence the quantum states dif-
ferently, leading to varying probabilities of finding a system
in a particular state.

CDF of Agent States

The CDF graph shows the cumulative probability distribution
for the agent states in each scenario.

Scenario 1: Static Hamiltonian

The CDF for the static Hamiltonian scenario is a steep curve,
suggesting that most agents have a probability close to one
common value, indicating a homogeneous system.

Scenario 2: Oscillating Magnetic Field

The CDF for the oscillating field scenario is less steep and
more spread out, which means there is a wider distribution of
probabilities among the agents. This indicates heterogeneity
in the system, as agents have a range of responses to the
oscillating field.

Scenario 3: Circularly Polarized Magnetic Field

The CDF for the circularly polarized field is also spread out,
but with a different shape compared to the oscillating field,
suggesting a different kind of heterogeneity in agent states.

Hartree-Fock Equations

The Hartree-Fock method is a self-consistent field approach
to solving the many-body wavefunction problem in quan-
tum mechanics. It approximates the state of a many-particle
system with a single Slater determinant, which is an antisym-
metrized product of one-particle wavefunctions (orbitals). In
the context of these scenarios, applying the Hartree-Fock
equations would involve calculating the effective field ex-
perienced by each spinor (agent) due to the presence of all
other spinors and the external field. This effective field would
influence the time-evolution of each spinor’s state. The fluc-
tuations in the time series could be a result of the iterative
self-consistent field procedure, where the field affecting each
agent is updated based on the states of all other agents. The
CDF indicates the distribution of agent states as a result of this
self-consistency. Different shapes of the CDF in different sce-
narios reflect how the collective behavior of the agents varies
with the nature of the external field and their interactions.

This analysis suggests that the time-dependence of the
spinor states under various external influences and their col-
lective behavior can be effectively studied using the Hartree-
Fock approximation, which simplifies the complex many-
body problem while still capturing essential features of the
system’s dynamics. In a sociophysical model, this could cor-
respond to the idea that individual agents adjust their opinions
(states) based on the "effective opinion field" created by the
rest of the population, modified by external influences like
media (static, oscillating, or complex fields).

5. Discussion: Extension of Ising model
Introduction of Zeeman’s theorem

Significance of Fermi Holes and Koopmans’ Theorem in
Zeeman Effect



The Zeeman effect is a physical phenomenon that de-
scribes the influence of an external magnetic field on spins.
While traditionally studied in the context of atomic and elec-
tron spins, similar concepts can be applied in the field of social
dynamics. To understand the significance of Fermi holes in
the Zeeman effect, let’s consider a general perspective on
spins’ trajectories in the Ising model.

The Ising model represents spins as variables that take
values of +1 or -1 on a lattice, with energy defined by inter-
actions between spins. When applying this model to social
dynamics, spins can represent agents or individuals, and the
interactions between spins can represent relationships or in-
fluences between agents. The Zeeman effect can be seen as
a framework to consider external factors or influences in this
model.

In the context of the Zeeman effect, Fermi holes refer to
the splitting of energy levels. Similarly, in social dynamics,
external factors can influence the energy levels associated
with agents. Fermi holes can be considered as factors repre-
senting changes in the states or opinions of agents.

Changes in External Influences: Just as the Zeeman effect
involves changes in the external magnetic field’s intensity or
direction, external factors in social dynamics can change over
time. These changing external influences can lead to the
emergence of Fermi holes and potentially result in changes in
agents’ opinions or behaviors.

Explaining Phase Transitions: The Zeeman effect can
lead to phase transitions due to changes in energy levels. In
the social context, the influence of Fermi holes might corre-
spond to phase transitions or significant changes in collective
behavior within a group of agents. When Fermi holes emerge,
interactions and coordination among agents may shift, lead-
ing to new social states.

Considering Koopmans’ Theorem: Koopmans’ theorem
is a fundamental principle in quantum mechanics that relates
the ground-state energy of a system to the energy required to
add or remove an electron. In the context of social dynamics,
the spin’s orientation and energy levels can represent the states
of social agents. These energy level differences can influence
the characteristics of agents, such as their opinions, actions,
or social status.

External Influences and Social Interactions: External fac-
tors and interactions within social dynamics can be analo-
gously interpreted as factors that affect spin energy levels,
similar to the Zeeman effect. Changes in external influences
can alter the spin states of individual agents and contribute to
changes in opinion formation or behavioral patterns.

Energy Changes and Social Dynamics: Applying Koop-
mans’ theorem allows us to relate the ground-state energy of a
social group to the energy changes associated with adding or
removing agents. This approach can be useful in understand-
ing processes such as social transitions, changes in opinions,

or variations in the number of agents.

In conclusion, the application of these concepts from ap-
plied physics provides a valuable analogy for understanding
the trajectories of spins (agents) and energy changes in so-
cial dynamics. It helps in modeling the impact of external
influences, interactions, and phase transitions on social phe-
nomena.

Incorporating Koopmans’ Theorem and Fermi Holes
into the Ising Model with Consideration of the Zeeman
Effect

Fundamentals of the Ising Model

In the Ising model, the state of each agent (spin) is rep-
resented using Pauli matrices. The Hamiltonian is expressed
as follows:

H=J Z O’z(i)O'z(j) +BZO’Z(i)
(@) i

Here, J is the strength of interactions between agents. B
represents an external magnetic field (Zeeman effect). o-z(i)
denotes the Pauli matrix representing the spin state (up or
down) of the i-th agent.

Application of Koopmans’ Theorem

When applying Koopmans’ theorem to the Ising model,
the removal of a specific agent is equivalent to removing
the term in the Hamiltonian associated with that agent’s spin
state.

Hyew = H— AHj
A =7 3 o P 4 Bo®
(ko)

Here, AH|, represents the interaction term associated with
the removed agent k.

Consideration of Fermi Holes

Fermi holes represent the "vacancy" left by the removed
agent, indicating an opportunity for the remaining agents to
take on new roles or responsibilities. This is modeled through
the redistribution of interactions among the remaining agents
and the formation of new social structures.

Integration of the Zeeman Effect

The Zeeman effect signifies the influence of an external
magnetic field on the spin states of agents. This may facilitate
or hinder the formation of new social structures or behavioral
patterns.

Intensity of Interaction Between Agents

This plot shows the intensity of interaction between agents
increasing over time. In a physical system, this could corre-
spond to an increasing coupling constant in the Hamiltonian,
leading to stronger correlations between spins. In socio-
physics, it may represent strengthening social ties or increas-
ing peer influence over time, causing individuals to align their
opinions more closely with those of their peers.



Time Series of System Energy with Fermi Hole and Zeeman Effect
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Fig. 9: Modeling Cyclical and Anticyclical Behavior in
Social Dynamics Using Hartree-Fock Equation and Slater
Determinants

External Magnetic Field (Zeeman Effect)

The Zeeman effect is the splitting of a spectral line into several
components in the presence of a static magnetic field. The
plot shows fluctuations in the strength of an external magnetic
field over time. In physics, this could indicate a timevarying
magnetic field influencing the spin states. In social terms, it
might represent fluctuating external pressures or influences
on the population, such as varying news cycles or events.

Spin States Over Time

This heatmap represents the spin states of agents over time,
where each row could correspond to a different agent. The
colors indicate the spin state (up or down), and the changing
patterns suggest that agents are switching states over time.
Physically, this shows the dynamic evolution of spins, poten-
tially under fluctuating external fields or interactions. In a
sociophysical context, this could visualize how individuals’
opinions change over time, influenced by internal and external
factors.

Interaction Term Associated with the Removed
Agent k

This plot may represent the interaction energy associated with
a specific agent (k) that has been removed from the system.
The term shows variability over time, with significant spikes.
In a physical system, removing a spin could change the total
energy due to altered interactions. For sociophysics, remov-
ing akey influencer from a network could significantly impact
the dynamics of opinion formation within the group.

Fermi Hole

The Fermi hole is a concept from quantum mechanics, re-
flecting the decreased probability of finding two electrons




with parallel spins near each other due to the Pauli exclusion
principle. In the context of spins or agents, it could relate
to an exclusion principle where certain states or opinions are
less likely to coexist closely within the system. This might be
indicative of the diversity or polarization within the system.

Overall Interpretation

The combined plots suggest a dynamic and complex sys-
tem where individual states are influenced by both internal
interactions and external fields. The increasing interaction
intensity implies a system moving towards a more correlated
or ordered phase. The varying external field and the interac-
tion term associated with the removed agent indicate that the
system is sensitive to external and internal perturbations. The
heatmap of spin states shows a nontrivial time evolution of the
system’s microstates.Overall, in a physical context, this could
represent a magnetic system under a timevarying field, with
the dynamics of spins influenced by changing interactions and
external conditions. In a sociophysical model, it represents
how individuals’ opinions might evolve over time, affected
by changing social dynamics and external influences. The
removal of an agent and the Fermi hole consideration would
be important in understanding how the absence of certain
individuals or opinions affects the overall behavior of the
system.

Results system’s energy and its behavior over time in the
presence of a Fermi hole and the Zeeman effect, along with
the effect of removing an agent from the system.

Time Series of System Energy with Fermi Hole
and Zeeman Effect

This plot shows the energy of the system fluctuating over time
with sudden drops to lower energy states. These drops could
represent the system finding more stable configurations or
states of lower energy due to the dynamics induced by the
Zeeman effect and the presence of a Fermi hole.

Removal of an Agent and the Fermi Hole

The removal of an agent (or opinion) from a system and
the Fermi hole concept suggest an exclusionary effect where
certain states (or opinions) are less likely to coexist, leading
to a more diverse or polarized system.

In the context of spins in a magnetic field

The Fermi hole indicates an antisymmetry in the wavefunc-
tion, which for a spin system could translate to an energetic
penalty for similar spins being in proximity. If an agent rep-
resenting a particular spin is removed, the system’s energy
could decrease, as shown in the sudden drops, due to reduced
penalty from the exclusion principle. The Zeeman effect im-
plies the external field is causing the spin states to realign,

contributing to the energy fluctuations as the system responds
to the external magnetic influence.

In a sociophysical model, if an influential indi-
vidual or dominant opinion is removed

The Fermi hole could represent a societal pressure against
having too many similar opinions together, promoting diver-
sity. When a dominant opinion is removed, the system may
find a more energetically favorable state, perhaps seen as a
social equilibrium or a more diverse range of opinions.The
energy plot shows how the system’s stability changes over
time, possibly reflecting the social adjustments after the re-
moval of an influential individual or opinion. The system
might temporarily find stability but then is disrupted as it
reequilibrates.

CDF of System Energy

The CDF shows the distribution of the system’s energy states.
The steps in the CDF suggest quantized or discrete energy
levels, which could reflect a limited number of stable config-
urations for the system.

Overall Impact of Removal and Fermi Hole

The removal of a particular agent or opinion could have desta-
bilized the system initially, as indicated by the variability in
the energy time series. However, the system appears to oc-
casionally find new stable configurations, suggesting adapt-
ability.The Fermi hole may be causing the system to favor
configurations with a greater diversity of states, which, upon
the removal of an agent, is reflected in the system finding new
lowerenergy configurations.The CDF plot suggests that de-
spite fluctuations, the system has certain preferred states that
it occupies more frequently, indicating a form of *'memory’
or 'preference’ for these configurations. These analyses pro-
vide a highlevel understanding of the system’s dynamics. A
detailed interpretation would require additional information
about the system’s rules, initial conditions, and the nature of
the agents and their interactions. To provide a more detailed
analysis, it would be necessary to have information on the
specific model parameters, initial conditions, and the rules
governing the time evolution of the system.

6. Discussion:Koopmans’ theorem is
introduced

Application of Koopmans’ Theorem

In particular, is it possible to capture the temporal changes
in the following parameters in the above code?

When applying Koopmans’ theorem to the Ising model,
the removal of a specific agent corresponds to the removal
of terms in the Hamiltonian associated with that agent’s spin
state.
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Hyew = H — AHy

AH =—-J Z O'Z(k)O'Z(j) - BO‘Z(k)
(k.j)
Here, AH) represents the interaction terms associated
with the removed agent k.

Intensity of Interaction Between Agents

The plot shows a gradual increase in the intensity of interac-
tion between agents over time. This might indicate a system
where agents (or spins) become more correlated as the sim-
ulation progresses. In a sociophysical context, this could
represent increasing social connectivity or peer influence,
leading to a more cohesive group opinion or behavior.

External Magnetic Field (Zeeman Effect)

The plot presents the external magnetic field effect over time,
which appears to decrease overall. The Zeeman effect splits
energy levels based on spin states in a magnetic field. A de-
creasing trend might indicate a weakening external influence,
which could allow for more varied spin orientations or, in so-
cial terms, a diversification of opinions as external pressure
diminishes.

Spin Exchange Interaction Over Time

This plot likely shows the exchange interaction energy, which
is a quantum mechanical effect where two electrons (or spins)
exchange their spin states. The periodic fluctuations suggest
that the system is not in equilibrium, and the exchange inter-
action is dynamic. It can be related to the exchange of ideas
or strategies in a population, with periods of consensus and
disagreement.

Interaction Term Associated with the Removed
Agent k

The interaction term associated with a removed agent shows
variability over time with sharp changes. The removal of an
agent might represent the exclusion of a particular state or
opinion from the system. The sharp changes could indicate
that this agent had a significant role in the system, and its
removal leads to noticeable energy shifts.

Delta H Interaction Over Time

This graph is not labeled with a title in the provided context
but could represent changes in the system due to an external
field or a difference in interactions caused by changes over
time. The term "Delta H" might indicate a change in the
Hamiltonian of the system, suggesting an adaptive system
responding to dynamic conditions.

Overall Interpretation

The system depicted by these graphs is dynamic and exhibits
nonequilibrium behavior, with agents or spins influenced by
both internal interactions and external fields. The increasing
intensity of interaction suggests a move towards greater in-
ternal coherence or alignment among agents. The decreasing
external field effect and the dynamic exchange interactions
suggest that the system’s state is heavily influenced by a com-
plex interplay of internal and external factors. The variability
in the interaction term related to the removed agent indicates
that certain agents can have a disproportionately large im-
pact on the system, and their removal can lead to significant
changes. In a social physics model, this could represent how
individuals in a society influence each other, how external
events shape social dynamics, and how the removal of key
individuals can lead to shifts in societal behavior or opinion.

To provide a more accurate analysis, additional informa-
tion would be required, such as the details of the model, the
parameters used in the simulation, and the theoretical context
for interpreting these results.

Energy over Time

The energy of the system fluctuates over time, indicating that
the system is dynamic and potentially nonequilibrium. The
removal of an agent could result in either an increase or de-
crease in energy, depending on whether the agent was in a
state of high or low energy relative to the rest of the sys-
tem. If the removed agent had a particularly high interaction
energy with others, its removal could lead to a more stable,
lowerenergy system.



External Magnetic Field (Zeeman Effect) over
Time

The external magnetic field appears to decrease over time,
suggesting that external influences on the system are weak-
ening. The removal of an agent might not directly affect
the external field but could alter how the system as a whole
responds to this external influence.

Intensity of Interaction between Agents over
Time

This increasing trend indicates that interactions between the
remaining agents are strengthening over time. If the removed
agent was a key connector or a highly interactive member,
its absence could lead to a reconfiguration of interactions
among the remaining agents, potentially increasing the overall
interaction intensity as the system reorganizes.

Spin Exchange Interaction over Time

Spin exchange interactions are a measure of how spins—or
in a sociophysical context, opinions or states—are exchanged
between particles or agents. Fluctuations in this value suggest
that the system experiences constant changes in the state. The
impact of the removed agent on this exchange would depend
on its role in the system; removing a highly interactive agent
could either dampen or amplify these fluctuations.

Interaction Term Associated with the Removed
Agent k over Time

This plot shows significant changes over time, suggesting
that the removed agent had a varying degree of influence
at different times. The removal of this agent could cause
instability in the short term as the system adjusts. However,
it could also lead to new patterns of stability as the remaining
agents adapt to the absence.

DeltaH interaction over Time

While not explicitly labeled, this graph may represent changes
in the Hamiltonian of the system due to the removal of an
agent, which reflects a change in the total energy. The spikes
could indicate moments when the removal of the agent leads
to significant energy changes, possibly stabilizing or destabi-
lizing the system temporarily.

Fermi Hole and System Behavior

A Fermi hole is associated with the exclusion principle, which
in a spin system could manifest as a reduced probability of
finding two electrons with the same spin close to each other.
In a sociophysical model, this could mean that certain opin-
ions or states are less likely to be shared among closely con-
nected agents. The removal of an agent could disrupt this
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balance, leading to new configurations as the system seeks to
maintain the exclusion principle.

Overall Impact of Agent Removal

The removal of a specific agent from this system appears to
have a complex impact, affecting not only the direct interac-
tions but also the overall energy and stability of the system.
The plots indicate that the system is dynamic, and while it
may temporarily find new equilibria, these are likely to be
disrupted as the system continues to evolve.

The removal of an agent could have several im-
plications

Reducing the overall energy if the agent was in a higher en-
ergy state. Causing a reorganization of interactions, which
could either increase or decrease system stability.Changing
the pattern of spin exchanges or opinion dynamics among the
remaining agents.In the context of social dynamics, the re-
moval of a key individual or opinion could lead to a period of
adjustment as the group restructures its internal relationships
and how it interacts with external influences. The system
might eventually find a new equilibrium, reflecting the adapt-
ability of social systems to changes within their networks.

Energy over Time

The energy plot displays fluctuations over time with what
appears to be a relatively stable mean energy level. This
suggests the system may be in or near a state of equilibrium, or
the fluctuations may be characteristic of the system’s natural
dynamics under the given conditions.



J and B over Time

The parameter J (Interaction Strength) seems to be decreasing
slightly over time, suggesting a weakening of the interaction
between agents or spins in the system. The parameter B
(External Field Strength) also decreases over time, indicating
that the influence of the external field on the system is dimin-
ishing. These changes in J and B suggest that the system is
becoming less constrained by both internal interactions and
external influences as time progresses.

Spin States over Time

The spin states’ plot shows the time evolution of each agent’s
or spin’s state. Red areas indicate spins in one state (e.g.,
up), and blue areas indicate spins in the opposite state (e.g.,
down). The presence of a gray area might represent missing
data or the point in time when an agent was removed from the
system.

Impact of Agent Removal and Fermi Hole

Considering the Fermi hole concept, which in quantum sys-
tems implies a reduction in probability for similar states to be
adjacent, the removal of an agent could lead to several effects.

Redistribution of Spin States

If the removed agent had a spin state that was prevalent in the
system, its removal might cause a shift towards a more evenly
distributed set of states due to the exclusion principle (Fermi
hole), as the system may energetically favor configurations
with a balance of spin states.

System Energy

The energy plot does not show a distinct change at the point
corresponding to the agent’s removal, suggesting that the sys-
tem may be robust to such perturbations or that the energy
contribution of the removed agent was not significant to the
overall system energy.

Interaction and Field Parameters

The parameters J and B do not exhibit any abrupt changes,
which could imply that the removal of the agent did not
have an immediate or direct impact on the overall interac-
tion strength or the system’s response to the external field.

Overall Impact of Agent Removal

The absence of a specific individual or opinion might have
nuanced effects on the system If the agent was a central figure
or held a majority opinion, its removal could lead to a period
of instability as the system reorganizes and new interactions
are formed. If the agent was a minority or held a unique
stance, its removal might not cause significant changes in

the global dynamics but could affect local interactions or
lead to a loss of diversity in the system.Over time, the system
might adapt to the absence, with the remaining agents altering
their states or interactions to reach a new equilibrium.The
results suggest that while there may be local and immediate
effects due to the removal of an agent, the overall system tends
to continue along its trajectory, influenced by its intrinsic
dynamics and the gradual changes in interaction strength and
external field.

Zeeman Splitting, Anomalous Zeeman Effect,
Anisotropic Zeeman Effect

Zeeman splitting refers to the phenomenon in which the
states of agents split due to an external magnetic field. The
anomalous Zeeman effect signifies that this splitting occurs
to varying degrees for different agents, while the anisotropic
Zeeman effect indicates that external environments in differ-
ent directions affect the states of agents differently.

The incorporation of the anomalous Zeeman effect and
anisotropic Zeeman effect into the Ising model for the dy-
namics of society introduces additional terms into the model’s
Hamiltonian, reflecting the asymmetric influence of external
magnetic fields on the spin states of agents.

Anomalous Zeeman Effect

The anomalous Zeeman effect represents the phenomenon
in which energy levels of different spin states split to vary-
ing degrees due to an external magnetic field. This can be
expressed mathematically as follows:

Hanomalous = HIsing - Z 6Bi0-z(i)
i

Here, - Hising is the Hamiltonian of the basic Ising model.
- 0B; represents the strength of the anomalous Zeeman effect
for agent i. - o-z(i) denotes the Pauli matrix representing the
spin state of agent i.

Anisotropic Zeeman Effect

The anisotropic Zeeman effect signifies that external mag-
netic fields in different directions affect the spin states of
agents differently. When incorporating this effect into the
model, the Hamiltonian takes the following form:

Hanisotropic = Hlsing - Z(on-;i) + Byo-y(i) + Bzo-z(i))
i

Here, - B, B, B, represent the strengths of external mag-
netic fields in the x, y, and z directions, respectively. -
a‘ii) , O';i) , o-z(i) are the Pauli matrices representing the spin
states of agent i.

Computational Process

1. Setting the Hamiltonian: The Hamiltonian is set based
on the above equations. 2. Calculation of Agent Interactions:
The interaction energy between agents is calculated from the
Ising model part: - Eineraction = —J 2.7, jy o-z(i)az(j) 3. Calcu-
lation of Energy Levels for Each Agent: The change in energy
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levels for each agent due to the anomalous Zeeman effect and
anisotropic Zeeman effect is computed. This involves con-
sidering the sensitivity of each agent to external magnetic
fields in different directions. 4. Application to Social Dy-
namics: Using this model, one can analyze how changes in
the external environment affect agents’ cyclic or anti-cyclic
behaviors. Focus is placed on the impact of different direc-
tions of external magnetic fields on agent interactions and
behavioral patterns. Additionally, concepts like Fermi holes
and exchange holes can be employed to understand how the
removal of agents or the assignment of new roles influences
social dynamics.

The results provided includes graphs that represent the
total energy over time, the components of a magnetic field
over time, and the spin states of agents over time in a system
that is likely simulating magnetic interactions, possibly in the
context of a physical model like the Ising model or a social
dynamics model.

Anisotropic Zeeman Effect

The anisotropic Zeeman effect refers to the splitting of energy
levels under the influence of a magnetic field that varies in
different directions (anisotropy). This effect is represented by
the different components of the magnetic field (Bx, By, Bz)
and their influence on the system’s energy levels.

External Magnetic Field (Zeeman Effect) Along
X, Y, Z Axes

The overall behavior of the magnetic fields indicates that the
system experiences a complex, anisotropic external magnetic
field which could result in more complex spin alignments and
energy contributions from the Zeeman effect.

Bx Total

This represents the total magnetic field in the xdirection over
time. Its influence on spin states would be in terms of spin
alignments along the xaxis.

By Total

This is the total magnetic field in the ydirection. Its relatively
stable and intermediate value suggests a consistent influence
in the yaxis direction.

Bz Total

The magnetic field in the zdirection seems to be the weakest.
Its influence on the zcomponent of spins would be less than
the other two axes.

Spin States over Time

The plot shows a clear majority of spins in one state (red) with
a minority in the opposite state (blue), suggesting a strong
magnetization in one direction. The distribution of spin states
is stable over time, indicating that the system could be in a
ferromagnetic phase or that agents in a social model have
reached a consensus. The presence of both states suggests
that there is some diversity or minority opinion present.

Impact of Agent Removal and Fermi Hole

Assuming that an agent or a set of agents has been removed
(not clearly indicated in the provided image), the impact on
the system would depend on the role and interaction strength
of the removed agents. If they were highly connected or in-
fluential (high spin interaction strength), their removal could
lead to a significant reorientation of the remaining spins or a
shift in opinions in a social model.

The concept of a Fermi hole suggests that like states will
tend to avoid each other due to the exclusion principle, which
could promote diversity in the system. The removal of an
agent could either disrupt this balance, leading to a temporary
increase in homogeneity until the system reequilibrates, or
it might reinforce the diversity if the removed agent was a
majority state.

Overall Impact

The impact of the removal of specific individuals or opinions
on the system behavior would be multifold: In a physical sys-
tem: The removal could result in a decrease in total energy if
the removed spins were antialigned with the majority. It could
also lead to a change in the system’s magnetic properties. In
a social system: The absence could change the consensus
dynamics and potentially lead to a shift in the overall "opin-
ion" of the system. If influential agents are removed, it could
either lead to instability or a new form of order as the system



adjusts. Given the overall behavior shown in the graphs, the
system seems to have robust dynamics with stable overall en-
ergy and magnetic field influences, suggesting that it may be
resilient to the removal of individual agents, at least over the
time scale shown in the plots.

Zeeman Splitting, Anomalous Zeeman Effect,
Anisotropic Zeeman Effect

Zeeman splitting refers to the phenomenon in which the
states of agents split due to an external magnetic field. The
anomalous Zeeman effect signifies that this splitting occurs
to varying degrees for different agents, while the anisotropic
Zeeman effect indicates that external environments in differ-
ent directions affect the states of agents differently.

The incorporation of the anomalous Zeeman effect and
anisotropic Zeeman effect into the Ising model for the dy-
namics of society introduces additional terms into the model’s
Hamiltonian, reflecting the asymmetric influence of external
magnetic fields on the spin states of agents.

Ising Model: Introduction of Berry Curvature and
Time Reversal (T) Symmetry

Introducing quantum mechanical concepts such as Berry
curvature and time reversal (T) symmetry into the Ising model
is used to understand phenomena that go beyond the frame-
work of traditional statistical mechanics. In particular, the
emphasis is on introducing time reversal symmetry. First,
we discuss the advantages and disadvantages of considering
Berry curvature, and then we delve into the considerations
when introducing T symmetry.

Advantages of Berry Curvature

Consideration of Phase Effects

Berry curvature defines a "gauge field" in the phase space of
a system and describes changes in phase as spins traverse pa-
rameter space. This accounts for the phase-related quantum
effect known as Berry phase and is necessary for understand-
ing topological properties in materials, such as the quantum
Hall effect.

Dynamics of Non-Equilibrium States

Dynamics involving Berry curvature, including non-
equilibrium and non-adiabatic processes, are crucial. It
helps understand the response of spins in cases where time-
dependent external fields act or rapid parameter changes oc-
cur.

Prediction of New Physical Phenomena

Incorporating Berry curvature allows for the prediction and

study of new types of material states, such as topological insu-

lators and Weyl semimetals, which exhibit unique electronic

properties related to the topology of electrons.
Disadvantages of Berry Curvature

Computational Complexity

Calculating Berry curvature typically involves computing the
total derivatives with respect to parameters of the wave func-
tion. This can demand significant computational resources,
especially for large systems or complex Hamiltonians, leading
to inefficiencies.

Lack of Physical Intuition

Berry curvature is an abstract concept and diverges from clas-
sical physical intuition. It may be challenging for physicists
to grasp, potentially causing delays in its acceptance.

Importance Under Specific Conditions

The influence of Berry curvature is often prominent only un-
der specific conditions, such as low temperatures or extremely
low temperatures, and may be negligible at room temperature
and higher.

Introduction of T Symmetry

When introducing time reversal symmetry to the Ising
model, the following considerations come into play:

Symmetry of Energy Spectrum

T symmetry imposes specific symmetries on the energy spec-
trum. This provides new insights into the system’s ground
states and excited states.

Topological Protection

Systems with T symmetry may exhibit topologically protected
edge modes or surface states. This leads to the exploration
of new physical properties, such as topological insulators or
topological superconductors.

Relation to Chiral Anomalies

The breaking of T symmetry is related to quantum anomalies
like chiral anomalies. This leads to the understanding of
unique physical phenomena, including particle creation or
annihilation under specific conditions.

The introduction of T symmetry can enhance the under-
standing of spin-orbit interactions in the Ising model, par-
ticularly in relation to topological properties. However, it
may also increase the complexity of analysis. Additionally,
in systems preserving T symmetry, Berry curvature often
vanishes, and other phase-related concepts relying on time
reversal symmetry become more important.

Intensity of Interaction (j)

This heatmap shows the intensity of interaction between
agents or spins. The consistent pattern across time steps
indicates that the interaction strength is stable and uniform
across the system. This uniformity suggests that the system’s
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dynamics are not dominated by fluctuations in interaction
strength, leading to potentially predictable behavior.

Berry Phase Intensity (Gamma)

The Berry phase heatmap indicates the phase acquired over a
cycle in parameter space. Uniformity across agents suggests
that all parts of the system experience the same topological
effects, which could lead to collective behaviors such as syn-
chronized state transitions or coherent quantum phenomena
across the entire system.

Influence of Fermi Holes (Delta H Fermi)

Fermi holes refer to the reduced probability of finding two
electrons with parallel spins near each other due to the Pauli
exclusion principle. The heatmap shows a stable influence of
Fermi holes, suggesting that the system’s electronic or spin
configuration is influenced uniformly by quantum exclusion
throughout the observed period, promoting antisymmetry in
the system’s wavefunction.

Effect of Exchange Term (Delta H Exchange
Mean)

The exchange term’s effect is also shown to be consistent
over time. In magnetic systems, the exchange interaction is
responsible for aligning or antialigning spins, which is crucial
for magnetic ordering. A consistent exchange term suggests

a stable magnetic or opinion order in the system without
significant temporal fluctuations.

Value Function (V)

The value function is typically used in optimization or re-
inforcement learning to estimate the expected return of a
state. The heatmap demonstrates a consistent value across
the system, implying that from an optimization perspective,
the system’s state does not change much over time, or it is in
an equilibrium of sorts.

Spin State (Sigma)

The spin state heatmap is highly varied, indicating a dis-
ordered state or a hightemperature phase where spins are
randomly oriented with no apparent longrange order. If this
represents a sociophysical model, it could imply a society with
diverse and fluctuating opinions, without a clear majority or
consensus.

Introduction of T Symmetry

In quantum systems, T symmetry (timereversal symmetry)
would affect the Berry phase and spin configurations. If T
symmetry were introduced, one would expect pairs of states
to have opposite Berry curvatures, leading to certain symme-
tries in the system’s physical properties. For example, the
introduction of T symmetry could lead to phenomena like
the Quantum Spin Hall Effect, where edge states are pro-
tected by timereversal symmetry. In the context of the results
heatmaps, T symmetry could enforce additional patterns or
symmetries not visible in the current data.

Given the uniformity in most of the heatmaps except for
the spin states, introducing T symmetry would likely have
subtle but profound effects on the system, potentially stabiliz-
ing certain patterns or leading to new topological states. The
interplay between Berry curvature and timereversal symme-
try could yield rich physical behavior that may not be imme-
diately obvious from the classical Ising model perspective.

6.1 Consideration of Fermi Hall: consideration
of how the absence of a hypothetical specific
individual or opinion would have affected the
behavior of the entire system

j: Intensity of Interaction

The intensity of interaction remains uniform across the agents
over time, indicating that the interactions within the system
are stable. If a specific agent or opinion that was highly
interactive is removed, we might expect to see a disruption
in this uniformity. However, since the interaction remains
consistent, it suggests that the removal of specific individuals
or opinions does not significantly affect the overall interaction
strength of the system.



Gamma: Berry Phase Intensity

Berry phase intensity is consistent across the system, sug-
gesting a uniform topological influence on the agents. The
removal of an individual or opinion doesn’t seem to create any
visible perturbation in the topological aspects of the system.

Delta H Fermi: Influence of Fermi Holes

The influence of Fermi holes, indicating the presence of ex-
clusion effects, is also consistent across the system. This
implies that the quantum mechanical exclusion principle is
uniformly affecting the agents. The absence of specific agents
doesn’t lead to any noticeable change in the Fermi hole influ-
ence, suggesting that the system’s antisymmetry properties
are maintained.

Delta H Exchange Mean: Effect of Exchange
Term

The effect of the exchange term remains relatively stable,
which is critical for maintaining the magnetic or opinion or-
der. The consistent nature of this term implies that the re-
moval of specific agents has not significantly influenced the
exchange interactions within the system.

V: Value Function

The value function appears to be constant across the system
over time. In a reinforcement learning context, this would
suggest that the expected reward or utility from the system’s
states does not change much over time, even with the absence
of specific agents.

Sigma: Spin State

Here we see a lot of fluctuations and a lack of uniformity,
indicating a highly disordered state or a system with a lot of
noise. In a physical system, this could be indicative of high
temperature where spin orientations are random. In a so-
ciophysical model, it could represent a society with diverse,
rapidly changing opinions. If specific individuals or opin-
ions were absent, the overall disordered nature of this system
suggests that their influence on the macroscopic state is not
dominant, or the system is so dynamic that it quickly adapts
or reconfigures around such absences.

Overall Impact of Specific Absences

Given the uniformity and stability observed in the first five
heatmaps, the system appears robust to the absence of spe-
cific agents or opinions. The uniform behavior suggests that
either the system is large enough that the removal of a few
components doesn’t significantly perturb it, or the system
has mechanisms (like redundancy or quick adaptation) that
mitigate the impact of such removals.

In the spin state heatmap, where we observe significant
disorder, the system’s response to the removal of specific
elements might be inherently buffered by the high degree of
inherent fluctuations. In such a noisy environment, individual
contributions may be less critical to the system’s overall state,
which could be indicative of a hightemperature regime in a
physical system or a highly pluralistic and dynamic society
in a sociophysical model. The overall behavior suggests a
system that is either at equilibrium or one that is dynamically
stable, able to maintain its macroscopic properties despite
changes at the level of individual components.

7. Discussion:Heavy Ball Dynamics:
Inertia, Delay, Friction, and
Resistance

Applying Heavy Ball Dynamics to group dynamics and in-
corporating elements such as inertia, delay, friction, and re-
sistance becomes valuable when modeling social phenomena
related to cyclic or anti-cyclic behaviors. This helps repre-
sent the dynamics of social change in more detail. Below, we
consider the model equation and ideas for its computational
process.

Extended Heavy Ball Dynamics Model An extended
Heavy Ball Dynamics model for a value function V repre-
senting a social state may be expressed as follows:

A A4
—+a— +BF(V)=VH(V
— +a -+ BF(V) = VH(V)
—‘flzt‘z/ represents the acceleration (second time derivative)

of the value function. dd—‘t/ represents the velocity (first time

derivative) of the value function. « is a positive constant
representing inertia. S is a constant representing the influence
of friction and resistance. F (V) is afunctionrelated to friction
and resistance. VH(V) is the gradient of the Hamiltonian
function (social force).

Modeling Friction and Resistance Social friction and
resistance may be related to interactions between agents or
behaviors that go against social norms. These can be modeled
as follows:

F(V)=y ) 8

v represents the strength of friction and resistance.
g(a(i)) is a function of friction and resistance based on the
behavior of agent i.

Computational Process

Definition of the Hamiltonian Define the Hamiltonian
H(V) to reflect interactions between agents and the influence
of the external environment.

Calculation of the Impact of Friction and Resistance Cal-
culate the function F (V) based on the behavior of each agent.



Calculation of System Dynamics Calculate the time evo-
lution of the social state V based on the above model equation.
This may require numerical methods or simulations.

Application to Social Phenomena

This model helps understand how cyclic or anti-cyclic
behaviors progress in group dynamics and how they change
depending on changes in the external environment or internal
interactions, especially when social friction and resistance
are present. It allows for the analysis of how these factors
influence the pace and direction of social change.

Such a model is one way to mathematically represent
the impact of social inertia, friction, and resistance on group
dynamics. It can be a powerful tool for a deeper understanding
of social phenomena but requires specialized knowledge for
interpretation and application. Additionally, validating the
results of this model against real social data and phenomena
is crucial.

In the Ising model, the orientation of the spins is de-
termined by the interaction with neighboring spins and the
external magnetic field. The traditional Ising model does
not consider time dependence and does not directly include
dynamics such as inertia, delay, friction, and resistance. How-
ever, incorporating these elements allows for more realistic
dynamics of physical systems and applications to engineering
optimization problems. Heavy Ball Dynamics" here refers to
dynamic systems that include an inertial term, and in opti-
mization algorithms it often refers to the gradient descent
method plus an inertial term.

Advantages of taking Heavy Ball Dynamics into
account

Fast convergence

By including an inertia term, the system is more likely to
exceed a local minimum and may converge faster to a global
minimum. This is especially useful for systems with large
energy barriers.

Dynamics richness

By introducing inertia and delay, the time evolution of the
system becomes more realistic, and complex behaviors found
in real physical systems, such as relaxation dynamics and
oscillations, can be modeled.

Application to Optimization Problems

In optimization algorithms, the introduction of Heavy Ball
Dynamics offers advantages such as accelerated convergence
and reaching better solutions.
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Disadvantages of considering Heavy Ball Dy-
namics

Choice of parameters

How the magnitude of the inertia term is chosen is very
important, and improper choice may delay convergence or
cause unstable behavior. 2.

Complexity of the analysis

When inertia and friction are considered, the mathematical
analysis of the system becomes more complex. This can
make it difficult to find solutions and may require additional
innovations to ensure numerical stability.

Risk of nonconvergence

If the inertia term is too large, the system may oscillate and
not converge, making it impossible to find an optimal spin
configuration.

Introducing T-symmetry

When T-symmetry is introduced into the Ising model, its in-
teraction with Heavy Ball Dynamics may lead to more com-
plex behavior; the presence of T-symmetry may change the
effects of inertia and friction on the system, since the sys-
tem exhibits symmetric behavior with respect to backward
time. The introduction of these dynamics may provide new
insights, especially in studies such as the quantum Hall effect
and topological insulators, where retrograde time symmetry
plays an important role.

The introduction of Heavy Ball Dynamics into the Ising
model is an attractive approach to explore dynamics beyond
the classical model, but it assumes that a more complex under-
standing of mathematics and physics is required to properly
understand and control its behavior.

Inertia Coefficient

The inertia coefficient represents the tendency of an agent to
maintain its current state or opinion over time. In a social
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Fig. 15: Opinion Evolution Over Time

context, high inertia suggests strong resistance to change,
where individuals or groups continue to hold their opinions
despite external influences. A high inertia coefficient could
lead to stability in beliefs but also could hinder adaptability
and the acceptance of new information.

Friction/Resistance Coefficient

Friction or resistance in a social system could represent so-
cietal pressures that resist changes in opinion or state. This
could be cultural norms, regulations, or other forms of social
control that make it difficult for agents to change their opin-
ions. High friction could lead to slow opinion changes and
could prevent sudden shifts in the societal consensus, but it
could also impede progress.

Coefficient Related to Friction/Resistance

This coefficient might be similar to the friction coefficient and
would similarly influence the rate at which opinions change
within the society. It could determine the "smoothness" of
the opinion evolution, where a high value could indicate a
sluggish response to societal forces, and a low value could
indicate a more fluid and dynamic opinion landscape.

Social Spin States

The spin states plot shows a highly disordered pattern, which
could be interpreted as a society with a diverse range of
opinions and a high degree of disagreement or debate. If
the system represents a model where each agent has a binary
opinion, this indicates a lack of consensus, potentially leading
to social fragmentation or polarization.

Velocity and Acceleration

In a sociophysical model, velocity could represent the rate of
change of opinions over time, while acceleration could repre-
sent the rate of change of that rate. These concepts could help
in understanding how quickly societal opinions are shifting
and how the rate of this change is itself changing, potentially
due to external events or internal societal dynamics.

Considering these factors together, we can infer
the following about the system’s behavior

Stable Inertia The opinion state remains relatively stable until
it experiences a rapid change. This could be due to a signif-
icant event or a threshold being reached that causes a rapid
shift in the societal consensus.Frictional Forces The system’s
resistance to change is also relatively stable but starts to fluc-
tuate more as the opinions begin to shift rapidly. This suggests
that as opinions start to change, the system’s "social temper-
ature" rises, leading to more volatile dynamics. Disordered
Spin States The social system exhibits a high degree of disor-
der, indicating a lack of alignment in opinions. This could be
due to the inherent diversity of the population or the influence
of conflicting information sources. Dynamic Opinion Evolu-
tion The rapid change in opinions at later time steps suggests
a dynamic event that has significantly influenced the societal
state, overcoming the inertia and friction within the system.

The overall picture is one of a social system that is ini-
tially resistant to change, with each individual maintaining
their opinion. However, as external or internal pressures
build, a tipping point is reached, leading to rapid changes
and potentially chaotic dynamics as the system seeks a new
equilibrium.

8. Discussion:Perron-Ishii Lemma in the
Context of Heavy Ball Dynamics in
Social Dynamics with Friction and

Resistance in Cyclic and Anti-Cyclic
Spin Movements

Theoretical Background

Social dynamics exhibit nonlinear characteristics, where
small changes can lead to significant results. The Perron-Ishii
lemma provides insights into the stability and equilibrium
states of such nonlinear systems. In the application of Heavy
Ball Dynamics to the social sciences, the concept of "inertia"
in social dynamics implies that agents’ behavior is influenced
by past situations and social norms. Heavy Ball Dynamics is
suitable for mathematically representing such inertia.

Objectives of Analysis

Modeling Social Change: The objective is to understand
how social change progresses and what factors accelerate
or delay it. Dynamics of Cyclic and Anti-Cyclic Behavior:
Analyze how cooperative (cyclic) or competitive (anti-cyclic)
behaviors within a group change in response to changes in the
external environment or internal interactions.

Extended Heavy Ball Dynamics Model

2
[;—ZZ- +aii_ot— +BF(0) =VH(o)

Here, o represents the social spin state. « is a coeffi-
cient representing inertia, and 3 represents the strength of
friction and resistance. F(o") represents a function related to



friction and resistance. VH (o) is the gradient of the social
Hamiltonian.

Application of Perron-Ishii Lemma

Setting up the partial differential equation to find the vis-
cosity solution using Perron-Ishii lemma:

min %—C; +H(o,Vo),Ac ] =0

Overview of the Computational Process
Model Configuration:
d>o do
T +aE +BF (o) = VH(o)
o represents opinions or social spin states. «a represents
inertia, and S represents the strength of friction and resistance.
F (o) models viscosity or density of opinions.

Modeling Friction/Resistance Effects: States with high
opinion viscosity or density are modeled by the F'(o) func-
tion. For example, assuming that higher opinion density
increases friction and resistance, a function like the following
can be considered:

F (o) = k - density(o)

Here, density(o) represents opinion density, and k is the
coeflicient for friction and resistance.

Evolution by Time Steps: The system’s state evolves over
discrete time steps ¢. At each step, calculate the new value of
o using the above equation.

Interpreting the Results

In cases of high opinion viscosity or density, group opin-
ions may change gradually over time, with fewer abrupt fluc-
tuations. If opinion density is high in a specific region, con-
vergence or fixation of opinions may be observed around that
region. Patterns of opinion changes over time suggest the flow
of discussions within the group and the process of opinion
formation.

This model and visualization approach have the potential
to provide insights into the dynamics of opinion formation in
the social sciences. However, interpretation should always be
complemented with comparisons to real social phenomena
and data.

Social Spin State (o)

The provided graph shows the evolution of a social spin state
over time with specified parameters for inertia (), friction or
resistance (), and a constant (k). The social spin state (07) is
likely a measure of the average opinion or consensus within
a social system, with positive and negative values indicating
the predominant direction of opinion.

Social Spin State over Time (alpha=0.55, beta=1.08, k=1.57)
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Fig. 16: Social Spin State over Time Over Time

Social Spin State (o)

The social spin state oscillates over time, which suggests
that the average opinion in the social system is not stable but
changes, perhaps in response to external influences or internal
dynamics within the group. The oscillation does not damp
out quickly, which may indicate that the system has some
periodic or cyclical drivers.

Inertia Coefficient (o = 0.55)

Inertia in a physical system resists changes in motion. Here, «
represents the tendency of the social system to resist changes
in the overall opinion. A value of 0.55 suggests a moderate
level of inertia where the society does resist changes in opin-
ion but not so strongly that changes cannot happen. This level
of inertia allows for opinion shifts but with some "memory"
or "stickiness" to prior states.

Friction/Resistance Coefficient (5 = 1.08)

Friction or resistance in a physical system opposes motion.
In this social model, B represents forces that slow down the
change in opinion. A value slightly greater than 1 suggests
that there are significant forces acting against change, such as
societal norms or regulatory pressures, which prevent rapid
swings in social opinion.

Gradient of the Social Hamiltonian (k = 1.57)

In physics, the gradient of the Hamiltonian (energy function)
with respect to the state variable (here, o) indicates the direc-
tion and rate of change of the system’s energy. In the social
context, VH (o) can be understood as the societal "forces"
that drive changes in the average opinion. A value of 1.57
indicates that these forces are present and contribute to the



Evolution of Social Spin State over Time (alpha=0.21, beta=1.40)
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system’s dynamics, potentially driving the observed oscilla-
tions in the social spin state.

Friction or Resistance Function (F (o))

F(o) would represent how friction or resistance depends
on the current state of opinion. Since this function is not
explicitly given, we can infer from the behavior of ¢ that the
friction/resistance is not preventing changes in state outright
but is influencing the rate and extent of these changes.

Interpretation of Dynamics

The graph shows that the system starts with a higher value
of o, indicating a strong initial consensus or opinion in one
direction, which then decreases and oscillates over time. The
presence of both inertia and friction ensures that these changes
are neither too rapid nor too extreme, suggesting a society
that can evolve its opinions while maintaining a degree of
coherence.

The oscillatory nature of o~ indicates that the social system
might be subject to cyclical influences — possibly recurring
events or discussions that periodically shift public opinion
back and forth. The system doesn’t seem to settle into a
static state within the observed time frame, indicating ongo-
ing debates or a dynamic equilibrium rather than a settled
consensus.

In summary, the model shows a social system where opin-
ion is dynamic but changes are tempered by both an inherent
resistance to change (inertia) and external pressures (fric-
tion/resistance), all within a landscape shaped by the societal
"forces" represented by the social Hamiltonian.

Social Spin State (o)

The plot of o shows a trend that initially decreases, then
increases, and shows a general upward trend towards the end.
This suggests that the social opinion or consensus starts with
one tendency, shifts to another, and then trends positively over
time. The variation in o indicates that the collective opinion
is dynamic and subject to change rather than being in a stable
state.

Inertia Coefficient (a« = 0.21)

A relatively low inertia coefficient implies that the social
system is quite responsive to changes and does not have a
strong tendency to resist shifts in opinion. This could corre-
spond to a flexible society or community where individuals
are relatively open to changing their views or adapting to new
information.

Friction/Resistance Coefficient (5 = 1.40)

A higher friction or resistance coefficient indicates that there
are significant forces opposing the change in the social spin
state. This could represent societal norms, cultural inertia,
or structural factors that make rapid changes in consensus
more difficult. Despite low inertia, the friction in the system
is strong enough to prevent sudden or rapid changes in the
social state.

Friction/Resistance Function (F' (o))

While not explicitly shown in the plot, F (o) would represent
how the friction or resistance varies with the social spin state.
This could mean that certain opinions or consensus states are
more strongly resisted by society, possibly due to entrenched
beliefs or powerful counteracting social forces.

Gradient of the Social Hamiltonian (VH (o))

The gradient of the social Hamiltonian would indicate the
"force" driving the change in the social spin state. If the
society is modeled on an energy landscape, VH (o) points
towards the direction of steepest descent, guiding how opin-
ions evolve over time. Since the social spin state o~ exhibits
a non-linear and non-monotonic evolution, the social forces
represented by the Hamiltonian gradient are likely complex
and may involve multiple attractors or competing influences.

Interpretation of the Evolution of o

The graph suggests a society where opinion is not fixed and
can change significantly over time. The low inertia allows for
flexibility and adaptability, while the high friction moderates
the rate of change, ensuring that transitions between different
consensus states are not abrupt but rather gradual. The overall
upward trend in the latter part of the graph indicates that
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despite resistance, the social system tends towards a more
positive consensus over time.

This could represent a society undergoing a gradual shift
in collective opinion due to ongoing discourse, changing cir-
cumstances, or external influences. The dynamics of o sug-
gest that the collective opinion is being pulled in different
directions but ultimately is moving towards a new, possibly
more positive, state. The system does not appear to be in equi-
librium but is rather characterized by continuous evolution,
possibly oscillating between different states before settling.

Interpretation of Parameters
a =0.81

This represents a high inertia coefficient, implying that the
social system typically resists changes in opinion. However,
the sharp change depicted in the graph suggests that a very
strong force has overcome this inertia.

B =0.28

This is a relatively low friction/resistance coefficient, suggest-
ing that there isn’t much opposition to the change in opinion
once a force is applied. The low value of S might have fa-
cilitated the rapid shift seen in the graph despite the high
inertia.

F(o)

This function represents the friction/resistance or viscosity
effect on the system. While we don’t have the specific form
of F(o) from the information provided, the graph indicates
that the resistance to change in social opinion might not be
strong enough to prevent the sudden shift that occurs.

VH (o)

The gradient of the social Hamiltonian would normally direct
the evolution of o toward the system’s most stable state.
The abrupt change suggests that the system experienced a
significant force that drastically altered the social spin state,
corresponding to a steep gradient in the social Hamiltonian.

Interpretation of the Dynamics

Given the high inertia and low friction, the system would gen-
erally be expected to change slowly. However, the precipitous
drop suggests an external shock or a sudden, powerful event
that has significantly influenced the social state. Such a shift
could correspond to a major societal event, such as a political
upheaval, economic crisis, or the impact of significant news
or a social movement that aligns opinions rapidly.

The suddenness of the transition might also suggest a
phase transition in the social system, where the collective
state becomes unstable and shifts to a new equilibrium rapidly
once certain thresholds are surpassed. The parameters @ and
[ suggest that once the system begins to move, the change
can be swift due to the low resistance, despite the initial high
inertia.

In terms of social dynamics, the plot could represent a sit-
uation where a community or society that typically changes
slowly (due to high inertia) suddenly reaches a tipping point,
after which the change becomes rapid and dramatic, over-
coming the usual resistance to change.

This model underscores the complexity of social dynam-
ics, illustrating how a system with high inertia can still un-
dergo rapid transformations when subjected to strong forces,
even if the usual friction against change is relatively low.

9. Discussion:Under which cyclic
exchange of spins is valid on the Ising
model in Social Dynamics

This section discusses the conditions under which cyclic ex-
change of spins is valid on the Ising model and interprets
these in the context of social dynamics when considered as
group dynamics. The Ising model, commonly used in statis-
tical mechanics and physics, is a simple model where spins
(binary variables) on a lattice influence each other through
mutual interactions. Spins typically have two states: up (+1)
and down (-1). The condition for cyclic exchange in the
Ising model refers to a specific parameter setting where the
exchange operation of spins does not affect the total energy
of the system, allowing the dynamics to possess a certain
symmetry.

When cyclic exchange is valid, the energy does not change
even if spins on the lattice are cyclically exchanged, leading to
the possibility of the system exhibiting ergodicity. Ergodicity
refers to the property of a system exploring different states



over a sufficient period. This property can be utilized to apply
the Ising model to social dynamics.

Interpreting the Ising model from the perspective of social
dynamics, spins on the lattice represent individual agents or
persons, and interactions between spins signify the relation-
ships or influences between agents. When cyclic exchange
is valid, it implies that even if the attributes or opinions of
agents are cyclically exchanged, there is no change in the
overall state of society.

For example, in an Ising model representing political
opinions or beliefs, if cyclic exchange is valid, individual
opinions may change cyclically, but there are no significant
changes in the political state or social trends. However, if
cyclic exchange is not valid, the opinions or actions of a
few agents can significantly influence the whole, potentially
leading to unstable social dynamics. In interpreting social
dynamics using the Ising model, the presence or absence of
cyclic exchange can impact the stability and ergodicity of
society. Such models are used to study the convergence or
divergence of opinions, decision-making dynamics, and other
aspects within a society.

When ergodicity holds, individual opinions within a soci-
ety might change over time, making convergence of opinions
less likely. With ergodicity, the system can explore different
states over the long term, tending to maintain diversity of
opinions rather than convergence. The presence or absence
of cyclic exchange also influences the stability and ergodicity
of society.

In cases where opinion stickiness occurs, it refers to the
tendency of opinion changes being subject to certain con-
straints or trends. Opinion stickiness suggests that individual
agents are influenced by other agents or the overall social situ-
ation when changing their opinions. This is related to factors
such as social contexts or pressures, sources of information,
culture, and values that make it easier for people to retain
their opinions.

If ergodicity holds but opinion stickiness also exists, one
idea for interpreting social dynamics is that specific opin-
ions may become clustered within society, forming different
clusters. Agents are likely to be influenced within their clus-
ter, increasing the stickiness of opinions in that cluster. Some
agents or clusters may tend to change their opinions cyclically,
meaning opinions change in a cycle over a certain period. For
instance, in political conflicts, opinions might change accord-
ing to election cycles.

Diffusion and localization of opinions: With ergodicity,
new opinions or information can be introduced into society,
but due to opinion stickiness, the spread of these new elements
can be slow. Thus, diffusion and localization of opinions can
occur simultaneously. Additionally, diversity of opinions:
With ergodicity, a variety of opinions can coexist within so-
ciety. However, due to opinion stickiness, some agents or

clusters may stick to certain opinions.

Introduction of the Concept of Cyclic Exchange

In the Ising model, the ’cyclic exchange’ of spin configura-
tions, where spins are periodically exchanged, adds a new
dimension to the dynamics of the system. This operation
mimics the temporal evolution of the system by exchanging
the values of adjacent spins. Mathematically, it can be ex-
pressed as follows:

x;i(t+1) = x;41(2),  xip1 (t+1) =x;(¢), fori=1,2,...,N-1

Here, x;(t) represents the state of spin i at time ¢, and
N is the total number of spins. Through this operation, the
configuration of spins changes cyclically over time, and the
system explores different states.

Explanation of Ergodicity

Ergodicity refers to the property where, over long time scales,
a system explores all possible microstates, and the state of the
system matches its statistical ensemble. By introducing cyclic
exchange, the spin configuration changes over time, and the
system exhibits ergodicity. This means that, over the long
term, the system explores all possible spin configurations.

To express cyclic exchange mathematically, we introduce
the following update rule:

xip1(2), ifi<N

ult+l) = {xl(t), ifi=N

This rule cyclically exchanges the spin configuration over
time, enabling the system to explore different spin states.
With this update rule, the energy function E (x, J) takes dif-
ferent values over time, capturing the dynamic behavior of
the system.

By conducting numerical simulations of this model, we
can observe how cyclic exchange and ergodicity influence the
behavior of the system. Starting from an initial state and
iteratively updating the spin configuration based on the above
rules, we can visualize how the system explores different
states over time.

This approach serves as an effective tool for understanding
complex social dynamics and informational health using the
Ising model, demonstrating the potential of applying physical
concepts to social sciences.

When cyclic and anticyclical changes occur in spins on the
Ising model and ergodicity holds, several properties related
to social dynamics can be inferred.

1. Diversity and Variability of Opinion

Because of the occurrence of cyclic and anticycli-
cal change, there will be a diversity of different



opinions within a society in the long run, and we
will see fluctuations in opinion. As agents change
their opinions cyclically, different opinions will
emerge alternately within a society, contributing
to maintaining diversity.

2. Clustering of Opinions

When cyclic and anti-cyclical changes alternate,
agents are more likely to belong to certain opinion
groups, which can lead to opinion clustering. That
is, some agents may have similar opinions while
others form clusters with different opinions.

3. Opinion Influence

Due to agents changing their opinions cyclically,
the opinions of some agents may have a strong
influence on other agents at a particular time or in
a particular situation. In such cases, certain agents
may become opinion leaders within a society and
influence opinion trends.

4. The Emergence of Cycles

Cycles of opinion may form as cyclic and anticycli-
cal changes occur frequently within a society. This
indicates that certain opinions are periodically em-
phasized and temporarily become mainstream. For
example, a political election cycle or a social trend
cycle may occur.

5. Uncertainty in Opinion Dynamics

When cyclical and anticyclical changes interact
within a society, opinion dynamics can be difficult
to predict and have uncertainty. This affects the
prediction of social decision making and behavior
and is important as it relates to policy formulation
and the influence of opinion.

Non-Equilibrium Properties: Perspectives on
Zeeman’s Theorem

The consideration of non-equilibrium properties in terms of
Zeeman’s theorem on the Ising model provides theoretical
insight. but can explore the possibility of observing non-
equilibrium properties as well.

In understanding the non-equilibrium properties on the
Ising model in terms of Zeeman’s theorem, the following
ideas can be considered: 1.

Cyclic changes and non-equilibrium

If the spins in the Ising model exhibit cyclic changes, differ-
ent spin configurations can be explored over time based on
ergodic properties. This may lead to non-equilibrium states

in the short term and deviations from equilibrium may be
observed.

Cyclic Changes and Phase Transitions

In terms of Zeeman’s theorem, non-equilibrium cyclic
changes can cause phase transitions or transitions from order
to disorder. This implies that non-equilibrium states deviate
from equilibrium states according to ergodicity.

Application to Social Dynamics

When applying the Ising model to social contexts, in terms of
Zeeman’s theorem, changes in opinion and behavior within
a society may be influenced by ergodicity. Interaction be-
tween agents and information propagation may result in non-
equilibrium social dynamics, and a temporary transition from
order to disorder may be observed.

In other words, considering the properties of non-
equilibrium on the Ising model in terms of Zeeman’s the-
orem suggests that non-equilibrium conditions may affect the
dynamics of the entire system according to ergodicity.

Non-equilibrium characteristics: cusp catastrophes, hys-
teresis loops occurs on the dynamics, do we observe structural
stability and its discontinuous branching features? For exam-
ple, cases of hysteresis loops such as cusp catastrophes do
occur.

The occurrence of cusp catastrophes and hysteresis loops
in the Ising model is unique to non-equilibrium dynamics,
and the specific computational process is generally complex.
However, attempts are being made to understand these phe-
nomena through specific variations and extensions of the Ising
model. As an example of an Ising model, we discuss the con-
ditions under which cusp catastrophes and hysteresis loops
occur and how they relate to social dynamics.

Spin Orbits in the Ising Model: Cyclical Exchanges
and Ergodicity

The energy function of the Ising model is usually ex-
pressed as follows:

E(x,J) = —Jinxj
i,

Here, x; represents spin variables (+1 or —1), and J is the
interaction constant.

1. Introduction of the Concept of Cyclical Exchanges:
To introduce the concept of cyclical exchanges, we consider
periodically exchanging the spin configurations x; of the Ising
model at time ¢. Specifically, we contemplate an operation
that exchanges the values of x; and x;;. This models the
phenomenon of spin configurations cyclically changing.

Xi(t+1) =)C[+](l‘), .X[+1(T+1) =X[(t), fori=1,2,...,N-1
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2. Explanation of Ergodicity: Ergodicity refers to the
property where a system explores different states (spin config-
urations) and can reach all possible states as time progresses.
By introducing cyclical exchange operations, the spin con-
figurations cyclically change, allowing the system to explore
different states on long time scales, thereby satisfying ergod-
icity.

3. Mathematical Representation: To express cyclical
exchange operations mathematically, we consider the follow-
ing update rules:

xip1(2), ifi<N

ne+1) = {xl(t), ifi=N

This leads to cyclic exchange of spin configurations. By
applying these update rules to the Ising model’s energy func-
tion and evolving the system while calculating energy at each
time step, we can model cyclical exchanges that satisfy er-
godicity.

4. Numerical Simulation: Conducting specific numer-
ical simulations can be useful in demonstrating cyclical ex-
changes and ergodicity. Starting from initial conditions, by
iteratively applying cyclical exchange operations, you can ob-
serve how the system explores different states.

Results shows the evolution of spin configurations over
time in an Ising model system undergoing cyclic exchange.
Here are some observations and interpretations from the per-
spectives of cyclic exchange and ergodicity: Diagonal Pat-

terns The graph exhibits diagonal striping patterns, which
indicate that the spins are indeed being exchanged cyclically
over time. Each diagonal stripe represents a spin traveling
across the system, reflecting the cyclic exchange operation.

Periodicity

The regularity of the patterns suggests a periodic or cyclic
nature to the spin exchanges. This is characteristic of the
cyclic exchange we defined in the simulation, where each
spin is swapped with its neighbor in a fixed pattern.

System Evolution

The system does not appear to settle into a static configura-
tion, which would be represented by horizontal lines of con-
stant color. Instead, the dynamic patterns suggest continuous
evolution of the system’s state due to the cyclic exchange.

State Exploration

Ergodicity implies that, given enough time, the system will
explore all possible microstates. The variety of patterns in
the graph suggests that the spins are exploring different con-
figurations over time. However, to fully confirm ergodicity,
one would need to demonstrate that every possible state is
eventually visited, which is not directly observable from this
single graph.

Long-Term Behavior

If the system were to continue indefinitely, ergodicity would
predict that the frequency of visiting any particular configu-
ration would be the same for all configurations. However, in
practical simulations, we can only run for finite time, and the
graph shows only a snapshot of this process.

Absence of Equilibrium

The constant motion and lack of a static pattern suggest that
the system is not reaching an equilibrium state within the
observed time frame. In an ergodic system, equilibrium is
understood in a statistical sense over long periods, rather than
the system being static at any moment.

The results provides visual evidence of cyclic exchange
in the Ising model, with the spin values changing places in
a regular pattern over time. It also suggests that the system
exhibits behavior consistent with ergodic principles, with the
spins exploring different configurations. However, further
analysis would be required to rigorously prove ergodicity,
such as examining the long-term frequency distribution of
states or running the simulation for significantly longer times.

The graph represents a state of social "spin" that changes
over time, where "spin" could refer to an individual or group’s



opinions, attitudes, or behavioral tendencies. Cyclic ex-
change models how opinions and attitudes propagate through
social interactions and change over time.

Cyclic exchange perspective, periodicity of patterns The
arrangement of spins (opinion states) changes periodically,
representing changes in the flow of opinions or trends within
a society. It suggests that certain opinions and behaviors
move between groups in a certain cycle.

Interaction between groups

The diagonal pattern visualizes how opinions and behaviors
are transmitted from one person to another. This may indicate
how fads and social norms propagate and shift over time.

Ergodic Perspective

state search, we can see that a variety of social states are being
explored over time. This implies that society experiences
different opinions and behaviors over time, which is consistent
with the concept of ergodicity.

Social Equilibrium

In an ergodic society, all opinions and attitudes will exist
equally in the long run. However, the graph is only a tempo-
rary snapshot and does not show the overall process leading
to equilibrium.

Comprehensive Social Dynamics Study

Provides insight into how the flow of opinions and attitudes
in social dynamics changes over time. It shows how opinions
form, change, and propagate within social networks through
cyclic exchange. At the same time, it suggests the ergodic
nature in which society is expected to experience and explore
different opinions and attitudes over the long term.

Conditions for the onset of cusp catastrophes
and hysteresis loops

In Ising models, common factors that cause cusp catastrophes
and hysteresis loops are nonlinearities and changes in external
parameters.

Change in external magnetic field: spin config-
uration stability

Consider introducing an external magnetic field into the Ising
model and varying its intensity. If the external magnetic field
has nonlinear effects, the stability of the spin configuration
may change and a cusp catastrophe may occur. 2.
Nonlinearity of interactions: spin configurations are dis-
continuous The interaction between spins can be set to be

nonlinear. If nonlinear interactions exist, the spin configura-
tions can change discontinuously and cusp catastrophes can
occur.

When a cusp catastrophe or hysteresis loop occurs in an
Ising model, how it affects the social dynamics depends on
the specific scenario. Below are a few real-life examples and
their implications for social dynamics. Hysteresis in opin-
ion formation models: In Ising models of opinion formation,
changes in the external environment or information can cause
hysteresis. For example, in political opinion formation, if
opinions are maintained once formed and are not sensitive to
external information, hysteresis may occur and social frag-
mentation or fixation may be observed. Cusp catastrophes in
magnetic materials: From a physics perspective, cusp catas-
trophes in the spin configuration of magnetic materials indi-
cate abrupt changes in magnetization, which may affect the
physical properties and stability of the society. For exam-
ple, abrupt changes in magnetization can cause instability in
energy supply and communication systems. Group Cooper-
ation and Competition: Using the Ising model, cooperation
and competition within a society may cause hysteresis and
cusp catastrophes. Cooperation may be maintained in a par-
ticular state and suddenly competition may increase or the
opposite scenario may occur. The above examples are general
considerations in non-equilibrium Ising models and similar
models.

Cusp Catastrophe Machine Ideas

There is an example of applying cusp catastrophes to model
the response to stress as an external pressure. The proposal
is that under moderate stress (a > 0), dogs show a smooth
transition from fright to anger, depending on how they are
stimulated, but that high stress levels correspond to a domain
shift (a < 0), where the dog remains frightened until it reaches
a "crease" point, at which point it suddenly and discontinu-
ously enters anger mode. Once this point is reached, the
dog suddenly and discontinuously enters anger mode. Once
the dog enters the "angry" mode, it remains angry even if
the direct stimulus parameters are greatly reduced. A simple
mechanical system, the "Zeeman Catastrophe Machine," il-
lustrates the cusp catastrophe well. In this device, a smooth
change in the position of the end of a spring can cause a sud-
den change in the rotational position of the wheel to which it
is attached.

Let us assume that we consider the above explanation as
a group dynamics with external stresses applying the ising
model, and the calculation process as a Pauli determinant.

Using the ising model directly to model cusp catastrophes
and stress responses may be a bit difficult; the ising model
focuses primarily on spin interactions, and directly model-
ing discontinuous phenomena such as cusp catastrophes and
stress responses is complicated. However, there are modeling



approaches that can be used to describe similar discontinuous
phenomena.

The Landau-Ginzburg equation is a nonlinear equation
used to describe cusp catastrophes and phase transitions.
These are nonlinear continuous-time models, and nonlinear
continuous-time models may be constructed to describe cusp
catastrophes and stress responses. These models typically
use differential equations to represent physical processes and
responses. Cusp Catastrophe Machines Cusp catastrophe ma-
chines, which are concrete systems or devices, can be modeled
in terms of mechanical and control engineering. It involves
physical springs and constraints to reproduce discontinuous
motion and behavior.

9.1 Discontinuity Dynamics Represented by
Cusp Catastrophes in External Stress

When considering models that represent discontinuous dy-
namics, such as cusp catastrophes, especially in response to
external stress, mathematical modeling of nonlinear equa-
tions or systems is required. Below, we will briefly illustrate
the idea of cusp catastrophes and consider the response to
external stress through a simple nonlinear equation.

An example of a nonlinear equation is as follows:

= = fna) m
Here, x represents the state variable of the system, ¢ repre-
sents time, and a represents external stress (a parameter). The
function f (x, @) is nonlinear and describes the characteristics
of the system.
If external stress (a) has the potential to induce cusp
catastrophes, the function f(x,a) may exhibit discontinu-
ous changes under certain conditions. To illustrate this, let’s

consider an example f(x, a):

f(x,a) =x° —ax )

In this nonlinear equation, a represents external stress,
and x represents the state variable of the system. This equation
may exhibit discontinuous behavior under certain values of
external stress a.

The computational process involves:

1. Setting initial conditions (e.g., x(0) = 0).

2. Performing time integration to evolve the system’s
state variable x with respect to time ¢. Typically, numerical
simulation methods are used to solve the equation at each
time step.

3. Changing the external stress a. As the value of a is
increased, the behavior of the system changes. In particular,
observe whether discontinuous changes (cusp catastrophes)
occur at certain values of a.

4. When a cusp catastrophe occurs, the behavior of the
system undergoes a rapid change. This indicates a discontin-
uous response to external stress.

1e188 Cusp Catastrophe Simulation
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Fig. 21: Cusp Catastrophe Simulation
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Fig. 22: External Stress Parameter a over Time

In this model, as the external stress a increases, the be-
havior of the system changes, and there is a possibility of
the occurrence of discontinuous catastrophes. When apply-
ing this idea to the dynamics of social groups, external stress
represents social factors or environmental changes, and it is
assumed that the social response may change discontinuously.

Cusp Catastrophe Simulation

The graph titled "Cusp Catastrophe Simulation" shows a vari-
able x, which we can interpret as a state variable in the system,
changing as a function of the parameter a. There is a sud-
den and dramatic increase in x, which is characteristic of a
cusp catastrophe. This kind of behavior is indicative of a
system where small changes in the parameter a can lead to
sudden and large changes in the state variable x after reaching
a critical threshold. This can be thought of as a stable state
until a tipping point is reached, after which the system rapidly

Cumulative Distribution Function (CDF) after Removing NaNs and Handling Outliers
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Fig. 23: Cumulative Distribution Function (CDF) over Time



transitions to a new state.

External Stress Parameter a over Time

The graph showing the External Stress Parameter a over Time
depicts a linear increase in the parameter a. This is a control
parameter that, when it reaches a critical value, leads to the
cusp catastrophe observed in the first graph. In a social
context, this parameter could represent an external pressure
or stressor that increases over time, such as political tension,
economic pressure, or social unrest, which eventually leads
to a dramatic societal shift or a tipping point.

Cumulative Distribution Function (CDF) after
Removing NaNs and Handling Outliers

The CDF graph represents the cumulative distribution of the
state variable x over its range. The sharp step in the CDF
indicates that the variable x spends a significant amount of
time at certain values before transitioning to another state.
This step-like feature in the CDF is again characteristic of
a cusp catastrophe where the system’s states are clustered
around certain stable states before making a transition.

Overall Interpretation

From these graphs, we can infer that the system begins in a
stable state and as the external parameter a increases linearly
over time, the system remains stable until a critical threshold is
reached. Once this threshold is crossed, the system undergoes
a sudden state change, indicative of a cusp catastrophe.

In the context of social dynamics, this could represent a
society that is experiencing increasing external pressure. The
society remains in a stable state despite these pressures until
it reaches a critical point. At this critical point, perhaps due
to a significant event or accumulation of factors, there is a
sudden and large-scale change in the societal state, such as a
revolution, economic crash, or drastic shift in public opinion.

Application to the Ising Model

In the Ising model, this sort of catastrophe could correspond to
a phase transition from one magnetic state to another, induced
by changes in external magnetic fields or temperature. The
cusp catastrophe would be an analog to a critical point in the
phase diagram where the system transitions from one phase
to another, such as from ferromagnetic to paramagnetic.

The cusp catastrophe model can provide insight into the
non-equilibrium dynamics and potential transitions in sys-
tems described by the Ising model. It could help predict the
conditions under which a system might exhibit hysteresis or
catastrophic behavior, which are important for understand-
ing magnetic materials, social systems, and other complex
systems.

Jump Phenomenon between a and »: Hysteresis Loop
by Initialization

In cusp geometry, a bifurcation curve loops itself and
returns to the original set of solutions by giving a second bi-
furcation where alternative solutions lose stability. By repeat-
edly increasing and then decreasing b, the system alternately
follows one solution, jumps to another, follows a solution
there, and jumps back to the first one, creating an observable
hysteresis loop.

However, this is only possible in the region of parameter
space where a < 0. As a increases, the hysteresis loop
becomes smaller, and when a becomes greater than or equal
to 0, it completely disappears (cusp catastrophe), leaving only
one stable solution.

It is also possible to consider what happens when b is
kept constant and a is varied. In the symmetric case of
b = 0, as a decreases, a pitchfork bifurcation is observed,
and when the physical system passes through the cusp point
(0,0) to a < 0, one stable solution suddenly splits into two
stable solutions and one unstable solution (an example of
spontaneous symmetry breaking). Away from the cusp point,
there is no sudden change in the physical solution. When
passing through the fold bifurcation curve, only the alternative
second solution is obtained.

In the group dynamics of the Ising model, it is possible
to construct equations that represent phenomena such as cusp
catastrophes and hysteresis loops. Consider a model that
describes discontinuous dynamics based on the Ising model.

In the Ising model, consider an energy function that repre-
sents the interaction of spins. External parameters (a and b)
influence the Ising model and cause discontinuous behavior.

The energy function of the Ising model can be extended
to consider external parameters a and b as follows:

E(x,a,b) = —szixj —azxi _bzxiz
i,j i

i

Here, x; represents the spins of the Ising model (+1 or —1),
J is the interaction constant, a is a parameter corresponding
to external stress (a < 0 in the cusp catastrophe region), and
b is another parameter corresponding to a different external
stress. This energy function is used to describe the behavior
of spins.

Here is a simulation procedure:

1. Set initial conditions. Determine the initial state of
spin configurations x; randomly or by a specific method. 2.
Simulate time evolution. At each time step, update spins x;
to minimize the energy function E(x,a,b). This is com-
monly done using algorithms like the Metropolis algorithm.
3. Change a and b. Vary the external stresses a and b over
time, influencing the dynamics of the Ising model. 4. Ob-
serve the cusp catastrophe: When a exceeds a certain value,



discontinuous changes are observed, indicating a cusp catas-
trophe. This shows sudden changes in spin configurations
and energy.

This model illustrates a simple example of how external
stresses a and b can influence the Ising model, leading to
discontinuous catastrophes and hysteresis loops. Specific nu-
merical simulations and computational details would require
further investigation and adjustment, but this idea demon-
strates one way to extend the Ising model to represent discon-
tinuous dynamics.

Discontinuous Phenomena, Phase Transitions,
and Catastrophe Theory on the Ising Model

Catastrophe theory is envisioned as a revolutionary theory
to explain discontinuous phenomena. We consider here the
ISING model, with respect to possible theoretical elements
as they relate to spin.

Catastrophe Theory is a mathematical theory for explain-
ing discontinuous phenomena and abrupt changes such as
phase transitions. The theory has been applied in a variety
of fields, including physics, ecology, psychology, and eco-
nomics.To understand the relevance of the Ising model to
catastrophe theory, we review the basic elements of catastro-
phe theory below. Potential EnergyAs in catastrophe theory,
the state of a system is represented by its potential energy.
This potential energy depends on the state variables and ex-
ternal parameters of the system and describes the behavior
of the system. 2. As a constraint, the system minimizes the
potential energy under the constraint conditions and heads to-
ward a stable state. Constraints vary depending on the char-
acteristics of the system. As for the catastrophe point, the
point on the potential energy surface where a local minimum
or maximum occurs is called the catastrophe point. At this
point, the behavior of the system changes abruptly. In bifurca-
tion and catastrophe theory, the system may choose between
two different stable states (branches) around the catastrophe
point. This phenomenon is called bifurcation and represents
a discontinuous change.

Relevance of the Ising Model to Catastrophe
Theory

The Ising model is a statistical mechanics model based on spin
interactions and is used to describe continuous phenomena
such as phase transitions. Catastrophe theory, on the other
hand, is used to describe discontinuous changes or abrupt
transitions. To relate the Ising model to catastrophe theory,
one can consider the presence of catastrophe points or bifur-
cations in the potential energy surface of the Ising model.
Varying external parameters can alter the energy surface of
the Ising model, potentially leading to phase transitions and
discontinuous changes. Such discontinuous behavior could
be understood in terms of catastrophe theory.

Energy of the Ising Model with External Parameter a

—— Energy E(x, J, a)
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Fig. 24: Energy of the Ising Model with External Parameter

Modeling Discontinuous Phase Transitions such as
Cusp Catastrophes and Hysteresis Loops in the Group
Dynamics of the Ising Model

It is possible to formulate equations to model discontinu-
ous phase transitions, such as cusp catastrophes and hysteresis
loops, in the group dynamics of the Ising model. Below, we
present an idea for representing discontinuous phase transi-
tions by introducing external parameters into the Ising model.

First, we extend the energy function of the Ising model as
follows:

E(x,J) = —Jinxj
i.J

Here, x; represents spin variables (+1 or —1), and J is
the interaction constant. This is the energy function of the
standard Ising model.

Next, we introduce an external parameter, a. This pa-
rameter a controls the phase transitions. The energy function
considering external parameters becomes:

E(x,J,a) = —Jinxj —-a in
i,j i

Here, a is a parameter that influences phase transitions,
and the behavior of the Ising model changes as a varies.

Using this energy function, we simulate the time evolution
of the spins x; of the Ising model. By varying the external
parameter a, phase transitions in the Ising model occur, and
discontinuous behaviors like cusp catastrophes and hysteresis
loops may be observed.

To understand the specific computational processes and
behaviors of phase transitions, numerical simulations or ana-
Iytical approaches are required. By investigating the behavior
of phase transitions in the Ising model in response to changes
in the external parameter a, one can gain insights into how
discontinuous phenomena manifest.

Results provided shows the energy of an Ising model sys-
tem as a function of an external parameter a. The energy E



increases linearly with the parameter a, which indicates that
the model includes an external field term linearly coupled
to the spins. In the context of non-continuous phase tran-
sitions within the Ising model, the behavior depicted in the
graph does not show a discontinuous change in energy, which
would be expected in a first-order phase transition typically
associated with a latent heat (an abrupt change in the system’s
energy). Instead, the energy change is continuous as the ex-
ternal parameter a is varied. However, if we were expecting
a non-continuous or discontinuous phase transition, there are
a few possibilities:

The Range of a is too Broad

The parameter a may need to be varied over a smaller range
or more finely sampled near the critical value where the phase
transition occurs to capture the non-continuous change. Sys-
tem Size and Finite-Size Effects In small systems or simu-
lations, phase transitions can appear smoother and may not
capture the abrupt changes seen in larger systems due to finite-
size effects.

Temperature Effects

If the system’s temperature is not at the critical temperature,
then the expected discontinuous phase transition may not
occur.

Time Evolution and Equilibrium

The graph is a snapshot of the system’s energy at different
values of a. If the system has not reached equilibrium at each
point a, or if the system’s dynamics are not included, it may
not show the expected non-continuous phase transition.

In a real-world context, such as social dynamics, a sim-
ilar graph could represent a situation where social stress or
tension (parameter a) increases, leading to a gradual buildup
of social energy (analogous to the system’s energy E). A
non-continuous phase transition might manifest as a sudden
societal change, such as a protest or revolution, when a critical
threshold of tension is reached. However, the graph does not
show such a sudden change, so if this were a social system,
it would suggest a gradual adjustment to increasing stress
without a sudden breakdown or transformation.

To more accurately capture and study non-continuous
phase transitions, additional analyses focusing on the spe-
cific conditions expected to produce such transitions, possibly
including hysteresis and bistability, would be needed. This
might involve simulating the system at different temperatures,
applying varying external fields, or considering more com-
plex interactions between the spins that could lead to more
complex phase behavior.

Modeling Exchange and Fermi Holes in the Group
Dynamics of the Ising Model

Energy of the Ising Model with Exchange and Fermi Holes
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Fig. 25: Energy band theory (exchange hole and Fermi hole
phenomena): electron external stress A, B

To consider the cases of exchange holes and Fermi holes in
the group dynamics of the Ising model, we provide equations
and ideas.

The energy function of the Ising model is usually ex-
pressed as follows:

E(x,J) = —Jinxj
i.Jj

Here, x; represents spin variables (+1 or —1), and J is the
interaction constant.

The concepts of exchange holes and Fermi holes are re-
lated to the band theory of electrons and describe changes in
the occupancy of energy levels of electrons. Let’s apply this
to the Ising model.

1. Application of Band Theory: In the Ising model, the
configuration of spins is associated with energy levels. When
a spin is +1, it represents an occupied state within the energy
band, and when it is -1, it represents an unoccupied state.

2. Introduction of External Parameters: To model the
phenomena of exchange holes and Fermi holes, we introduce
external parameters a and b. These parameters affect the
energy function of the Ising model. The energy function is
extended as follows:

E(x,J,a,b) = —szixj —ain —be?
i,j i

i

Here, a and b are parameters that control exchange holes
and Fermi holes.

3. Explanation of Exchange and Fermi Holes: With the
introduction of external parameters a and b, the occupancy of
spins at energy levels changes. Varying the values of a leads
to fluctuations in the occupancy of states within the energy
band, resulting in the phenomena of exchange holes (where
occupied states change to unoccupied states) and Fermi holes
(where unoccupied states change to occupied states).

The Results you’ve provided shows the energy of an Ising
model system with exchange and Fermi holes, represented as
a function of two parameters: a (blue) and b (red). These



parameters act as external stresses that influence the behavior
of the system. From the energy band theory perspective
typically applied to electronic systems, we can consider the
following:

Exchange Hole Phenomenon

This is analogous to the situation in semiconductor physics
where an electron leaves a position in the valence band, cre-
ating a “hole’. In the Ising model context, an exchange hole
could correspond to a decrease in the system’s energy when a
spin flips from down to up, under the influence of the external
parameter a.

Fermi Hole Phenomenon

This relates to the occupancy at the Fermi level. In the Ising
model, a Fermi hole could correspond to a similar effect due
to the parameter b, affecting the overall occupancy and thus
the system’s energy.

Observations from the Graph

The energy values spread across a wide range for both pa-
rameters a and b, which suggests that these parameters have
a significant impact on the energy of the system. There ap-
pears to be no clear threshold or critical point at which the
energy exhibits a discontinuous jump or a non-linear change.
This suggests that within the parameter range shown, the sys-
tem undergoes a smooth transition without any abrupt phase
change. The spread of energy values for both parameters im-
plies a complex interaction between the spins and the external
parameters. The lack of any apparent pattern or symmetry
might indicate that the system’s response to the external pa-
rameters is highly dependent on the specific configuration of
spins at each step.

Inferences

- The relationship between external parameters a and b and
the energy of the system could be indicative of the depth and
occupancy of the energy bands in an electronic system. The
scatter and distribution of the points might suggest varying
band gaps or differences in energy levels occupied by the
spins. - The impact of a and b on the system’s energy could
be analogous to applying an external electric or magnetic field
to a material, where the response of the electrons (or spins,
in the Ising model) determines the material’s properties.

To further understand these phenomena in the context of
the Ising model, one could conduct a more detailed analysis,
such as examining the specific spin configurations that lead
to particular energy values or exploring the effect of these
parameters near the critical temperature of the system where
phase transitions are expected to occur.

The results, which illustrates the energy of the Ising model
with parameters a and b representing exchange and Fermi
holes, can be interpreted from the perspective of social dy-
namics as follows Parameter a (blue points) This parameter
could be thought of as representing a social force or policy
that encourages (for positive values) or discourages (for neg-
ative values) a particular social state or opinion. The energy
in the context of social dynamics could represent the overall
tension or contentment within a society. When a is positive
and increasing, it could indicate a policy or social influence
that aligns with the majority’s state, thus lowering tension.
Conversely, negative values could represent a force against
the majority’s state, increasing overall social tension.

Parameter b/ (red points)

This parameter might symbolize a regulatory mechanism or
social norm that aims to maintain order or conformity within a
society. Positive values of b could reflect a strong social pres-
sure towards a uniform state, leading to a decrease in energy
or tension due to conformity. Negative values could indicate
a societal push towards diversity or dissent, increasing social
energy or tension.

Scattered Energies

The scatter of energy values across the range of both param-
eters suggests that the social landscape is complex and that
the responses to social forces and policies (exchange holes)
and regulatory mechanisms or social norms (Fermi holes) are
not uniform. Different segments of society may respond dif-
ferently to these influences, leading to a diverse set of social
tensions.

No Clear Phase Transition

The absence of a clear discontinuity in the graph suggests
that the modeled society does not undergo sudden, large-scale
changes in state in response to these parameters within the
explored range. Instead, the society seems to adjust gradually
to varying social forces and regulatory pressures.

Influence of External Parameters

The plot indicates that both social forces/policies and reg-
ulatory mechanisms/norms significantly impact the societal
state. The energy of the system varies widely with changes
in a and b, suggesting that small alterations in these exter-
nal parameters can lead to considerable differences in social
energy or tension.

To draw more detailed conclusions about the social dy-
namics represented by the Ising model, one would need to
delve deeper into the specific societal norms and forces rep-
resented by a and b, as well as how individuals within the
society interact with each other and respond to these external



parameters. Additionally, examining the temporal dynamics
of these parameters and their effects on the social state could
provide further insights into the potential for phase transitions
or societal changes over time.

10. Discussion Summary
(1) Zeeman ergodicity

A concept used in the context of physics and probability the-
ory. Zeeman transitivity describes how a system changes
over time and how it transitions to different states in the state
space. Zeeman Transitivity is a concept that describes the
ability of a physical system to explore different states over a
long period of time evolution. It is primarily associated with
ergodicity. Ergodicity refers to the property that a system can
transition to different states over time, all of which may be
visited indefinitely. Zeeman transitionality is a type of ergod-
icity that focuses specifically on the rate and manner in which
a physical system transitions. Zeeman transitivity describes
the ability of a physical system to explore within the state
space in which it exists and to transition to different states. In
other words, it refers to the possibility of a system transition-
ing from one state to another over time. Zeeman transitivity
is a type of ergodicity, and a system is said to be transitive
if ergodicity holds. Ergodicity refers to the property that a
system infinitely visits all possible states, and Zeeman tran-
sitivity emphasizes the property of specific state transitions
among them. As a random walk concept, Zeeman transitivity
may allow us to view a physical system as a random walk.
A random walk represents the process of moving to different
positions by taking stochastic steps. When a physical system
has Zeeman transitivity, its behavior is a kind of random walk.
Zeeman transitivity can depend on the time scale. That is, the
transitivity of the system may change over time. Even if the
transition is temporarily slow, the transitivity may increase in
the long run.

(2) Zeeman Ergodicity and Cyclic Exchange

Zeeman transitivity is a property in which a physical system
transitions to various states over time and can be considered
as a type of ergodicity. In other words, it indicates that the
system has the ability to explore within the state space in
which it exists and transition to different states.

State transitions by cyclic exchange, when elements
within a physical system are cyclically exchanged, the sys-
tem periodically transitions to different configurations. This
is one example of Zeeman transitivity within a physical sys-
tem. With cyclic exchange, the system periodically transitions
to different states, resulting in Zeeman transitivity. Zeeman
transitivity and state space exploration have the ability to ex-
plore within a state space and transition to different states.

Cyclic exchange may represent the process by which ele-
ments in a system transition to different interaction patterns,
and this process may facilitate exploration within the state
space. Zeeman transitivity and cyclic exchange are particu-
larly important in the context of statistical mechanics. For
example, they are relevant to the computation of phase tran-
sitions and correlation functions in spin and particle systems.
When cyclic exchange is present, searches in state space may
be effectively performed at equilibrium states and phase tran-
sitions in the system.

In short, cyclic exchange may be considered as one factor
causing Zeeman transitivity.

(3) Social systems in which ergodic properties
are valid

In this case the system converges to the same statistical prop-
erties in the long run. However, if convergence of opinion
does not occur and viscosity or limit cycles of opinion are
observed, it suggests the existence of cyclical behavior or
repetition of stable states in the social dynamics. Below are
some interpretations of social dynamics in which such phe-
nomena may occur.

Societies are often affected by cultural events and polit-
ical cycles (e.g., election cycles). These cyclical events can
cause periodic fluctuations in opinions and attitudes. For ex-
ample, fluctuations in political opinion around elections or
cultural events due to the seasons may affect the cyclicality
of opinion. Changes in economic conditions can also have
a cyclical impact on societal opinion. Cycles of booms and
busts can create cycles between opinions on economic pol-
icy and general societal optimism and pessimism. Cycles
in media and social media information distribution can cre-
ate cycles in public debate and opinion formation. Repeated
cycles of information dissemination and decay of its impact
may cause opinions to exhibit certain patterns.

Social Interaction

The dynamics of interactions between individuals can also
create cycles of social opinion. A person or group with
strong social influence may strongly promote a particular
opinion, and over time this influence may diminish, resulting
in periodic fluctuations in opinion.

Feedback loops

The balance between positive feedback (self-amplifying ef-
fect) and negative feedback (self-suppressing effect) in a soci-
ety can give rise to limit cycles. This mechanism is such that
when opinions lean in a certain direction, opposition or resis-
tance arises, and when opinions lean in the opposite direction,
support arises again. These dynamics indicate that society
does not converge on a single static opinion, but maintains



a dynamic equilibrium that changes over time. Limit cycles
can be interpreted as representing a state in which society is
flexible to change, with various forces interacting with each
other but maintaining a constant pattern. In the above exam-
ples, the following arguments can be deduced as arguments
for ergodicity to emerge on social dynamics.

Examples of Political Conflict on Social Media

Ergodic Perspective: Political conflict on social media can
exhibit a type of ergodic nature. Ergodicity refers to the
ability of a physical system or stochastic process to visit all
possible states over a long period of time. In this instance,
there is a cycle in which political opinions periodically move
from conflict to support and back to conflict again. This
cyclic transition demonstrates the ability to encompass the
entire political spectrum. As an application of ergodicity,
the idea of ergodicity is relevant to political discussions on
social media. In the long run, different political positions
and opinions regularly surface, contributing to the diversity
of debate within the digital environment.

Examples of Technology Conflicts Associated with New
Product Releases In terms of ergodicity, examples of technol-
ogy conflict show that the positions of technology enthusiasts
and technology skeptics change cyclically along the release
cycle of new products. This is a form of ergodicity, where
different opinions about a new technology alternate over time,
maintaining overall diversity. The concept of ergodicity also
applies to discussions about new technologies. When tech-
nology conflicts are cyclical, different technology enthusiasts’
positions and arguments emerge sequentially, and new ideas
and perspectives appear alternately.

Ergodicity is an important concept in these cases, as it
demonstrates the diversity of arguments and conflicts within
the digital environment over time. This would imply a cyclical
change in opinions and positions, resulting in a richer overall
discussion and exchange of information.

(4) Spin states in which cyclic exchange can oc-
cur and examples of the transitive nature of dis-
course in those digital environments

Political conflict on social media

Spin represents an individual user or opinion, with +1 indi-
cating political party A and -1 indicating political party B.
On social media, users express their opinions and influence
the opinions of those around them.

Cyclical Exchange

Assume that political agendas alternate cyclically according
to election cycles and policy changes. For example, as an
election approaches, users’ opinions may shift from political

opposition to support, and vice versa, returning to opposition
in the next election cycle.

Transitivity of discourse in the digital environ-
ment

With cyclic exchange, discourse on social media fluctuates
regularly. In response to an election cycle or policy change,
user speech and discussion may shift from confrontation to
support and back to confrontation again in the next cycle. This
cyclical transitional nature of discourse can be observed.

Technology conflict following the release of a
new product Spin State

Spin represents technology enthusiasts and technology skep-
tics. A +1 indicates technology enthusiasts who support the
new product and a -1 indicates technology skeptics who are
skeptical of the new product. In the digital environment, there
is a lot of discussion about new technologies.

Cyclical Exchange

Assume that the state of spin is cyclically exchanged accord-
ing to the release cycle of a new technology. The cycle
continues with an increase in technology enthusiasts at the
release of a new product, the gradual rise of technology skep-
tics, and then an increase in technology enthusiasts again at
the release of the next new product.

Transitivity of discourse in the digital environ-
ment

Cyclical exchange causes the discourse in the digital environ-
ment about new products to fluctuate cyclically. Technology
conflicts flourish with the release of a new product, and the
discussion changes again for the next release. Technology
conflicts can emerge cyclically.

These ideas are examples of how cyclic exchange can
affect the spin state and the transitivity of discourse in the
digital environment.

(5) Berry curvature and when T-symmetry holds

Berry curvature: when considering political conflict on social
media, Berry curvature indicates the phase shift associated
with different political positions (spin states). Repeated cy-
cles of political opinion result in changes within the phase
space. This reflects the cyclical fluctuations in social media
discussions and political trends. T-symmetry: T-symmetry
refers to time-reversal symmetry, a property in which the laws
of physics remain the same in the opposite direction of time.
In this case study, we show that when T-symmetry holds, po-
litical conflicts fluctuate cyclically in the opposite direction
of time as well. In other words, the pattern of argumenta-
tion may repeat itself even if the election cycle proceeds in



the opposite direction. In the case of new product technol-
ogy conflict, Berry curvature shows phase changes associated
with the introduction of new technology. The change in opin-
ion between technology enthusiasts and technology skeptics
associated with the release cycle of a new product is reflected
within the phase space. If T-symmetry holds, it means that
the technology conflict for a new product will fluctuate cycli-
cally in the opposite direction of time as well. The cycle from
the release of a new product to the rise of technology conflict
to the next release is considered to be invariant with respect
to time reversal.

(6) Perspective of the Hartree-Fock exchange
term

The Hartree-Fock exchange term is relevant when consider-
ing the exchange and impact of political opinions. Users (spin
states) from political group A (+1) and political group B (-1)
interact on social media and their opinions influence each
other. In this interaction, the Hartree-Fock exchange term
indicates the interaction energy by political position. With
the Hartree-Fock exchange term, users of political party A
are influenced by users of political party B and vice versa.
This is important when describing the interaction of opinions
among users on social media. A user’s political position can
be influenced by other users, a process where opinions are
exchanged between each other. In the case of the new prod-
uct technology conflict, the Hartree-Fock exchange term is
relevant when considering the interaction between technol-
ogy enthusiasts (+1) and technology skeptics (-1) users (spin
state). Opinions about the new technology are exchanged,
which influence the adoption or rejection of the technology.
With the Hartree-Fock exchange term, technology enthusi-
ast users are influenced by technology skeptic users and vice
versa. A process can take place in which users’ attitudes to-
ward technology are mutually influenced by the exchange of
opinions regarding the adoption of new technology.

(7) When Heavy Ball Dynamics is in place

Heavy Ball Dynamics is a concept used in the context of
optimization and dynamics to describe the process of finding
optimal values for parameters and variables.

In the case of political conflicts on social media, Heavy
Ball Dynamics describes the interaction of users with dif-
ferent political stances (spin states); Heavy Ball Dynamics
may indicate a process where political stances and opinions
develop in one direction in one direction.

For example, let’s assume that political opinions tend to
lean in one direction: in Heavy Ball Dynamics, some users
(heavy ball) may influence other users (light ball) and their
opinions may be reinforced toward a particular direction. This
helps to describe situations where political conflicts tend to
develop in one direction. In the case of the new product

technology conflict, Heavy Ball Dynamics describes the in-
teraction between technology enthusiast (+1) and technology
skeptic (-1) users (spin state). The position of the technol-
ogy enthusiast can strongly influence other users, indicating
a process where technology adoption is likely to progress. In
Heavy Ball Dynamics, technology enthusiasts (heavy balls)
may influence technology skeptics (light balls) to promote
acceptance of a new technology. This helps to describe a
situation where technology adoption is likely to progress in
one direction.

In the case of political conflict on social media, the Ex-
change Hole and Fermi Hole describe the interaction of users
with political positions (spin states). Exchange holes repre-
sent the exchange of energy levels between users with different
political positions, while Fermi holes represent the occupancy
of states within an energy band.

Influence of Exchange Holes

The exchange of energy levels between users of political
group A (+1) and political group B (-1) will result in their
political positions being affected, changing the occupancy
of states in the energy band. This illustrates the process by
which political conflicts affect through transitions within the
energy band between users.

Explanation of Exchange Holes and Fermi Holes

In the new product technology conflict example, Exchange
Holes and Fermi Holes explain the interaction between tech-
nology enthusiasts (+1) and technology skeptics (-1) users
(spin states). Exchange holes represent the exchange of en-
ergy levels between users with different technological posi-
tions, while Fermi holes represent the occupancy of states
within the technological energy band.

The influence of exchange holes

The exchange of energy levels between users who are technol-
ogy enthusiasts (+1) and technology skeptics (-1) will result
in their technical positions being affected, changing the oc-
cupancy of states within the energy band. This illustrates the
process by which technical conflicts affect through transitions
within the energy band between users.

In these examples, Exchange Hole and Fermi Hole are
used as concepts to describe the exchange of energy levels
between users and the occupancy of states within the energy
band, indicating a process in which interactions between users
with different positions cause changes in energy states.



11. Conclusion: Significance of
Magnetization Plateaus in the Ising
Model

Magnetization Plateau Occurrence

A magnetization plateau is a phenomenon in which the mag-
netization of a system is fixed to a certain value over a spe-
cific range of external magnetic fields. In the Ising model, a
magnetization plateau can also be predicted theoretically by
choosing certain parameters and introducing many-body in-
teractions. The occurrence of a magnetization plateau means
that the system has settled into an energetically favorable
"frozen state. This means that the arrangement of spins forms
a particular pattern due to interactions and cannot easily be
broken out of that state. For example, frustration (a state
in which the arrangement of spins cannot align to minimize
interactions) or a particular arrangement of spins may con-
tribute to the formation of such a plateau.

Significance of Magnetization Plateaus in the
Ising Model

The occurrence of magnetization plateaus in the Ising model
allows for a deeper understanding of the phase transitions
and magnetic properties of magnetic materials. It is espe-
cially important when studying in detail the thermodynamic
properties and phase transitions of systems in different mag-
netization states. The presence of a magnetization plateau is
a phenomenon that can only be observed at certain magnetic
fields and temperatures, and experimentally these conditions
must be tightly controlled. This plateau is important not only
in simple versions of the Ising model, but also in studies of
more complex models involving many-body interactions and
quantum effects. It plays a role. The generation of mag-
netization plateaus is relevant to many practical applications,
such as the design of new magnetic materials in materials sci-
ence and condensed matter physics, or as qubits in quantum
computing.

Regarding the introduction of magnetization
plateaus in the Ising model

A magnetization plateau in the Ising model refers to a re-
gion of unchanging magnetization over a range of constant
magnetic fields. This phenomenon is observed especially in
quantum many-body systems, where the magnetization of a
system takes on quantized integer or fractional values under
certain conditions of magnetic field and temperature. This
phenomenon is associated with topological phases such as
the quantum Hall effect and quantum spin liquids.

11.1 What is the Perron-Ishii Complement?

The Perron-Ishii complement is a mathematical theorem that
asserts that for any nonnegative matrix, its largest eigenvalue
is positive and the corresponding eigenvector is positive. This
theorem is important in the study of nonnegative matrices,
especially adjacency matrices in Markov chains and network
theory.

Application to the Analysis of Magnetization
Plateaus

In analyzing magnetization plateau problems, the Perron-
Frobenius complement is useful for understanding the
stochastic distribution of states and energy states. This tech-
nique may be used to analyze the eigenstates and stability of a
system when it is in a particular magnetization plateau state.

Advantages in this approach

In terms of a clear mathematical framework, the Perron-Ishii
complement provides a rigorous mathematical foundation,
allowing for a deeper understanding of the fundamental prop-
erties of the system. Stability Assurance Eigenvectors corre-
sponding to the largest eigenvalues can be used to identify the
stable state of the system and the evolutionary path leading to
it.

Long-term stability

This Perron-Ishii complement can indicate what states the
system will or will not converge to in the long term. This
allows the stability or instability of the system to be analyzed.
Application to stochastic processes In social dynamics, where
opinions and decisions change stochastically, the theorem can
be used to predict long-term behavior.

Disadvantages of this approach Computational
complexity

Eigenvalue problems in large systems are computationally
difficult and require advanced numerical techniques.

Restriction to specific conditions

Perron-Ishii’s complement is only applicable to non-negative
matrices and does not apply to all Ising model situations. Lack
of intuitive understanding Compared to analysis based on
physical intuition, a more mathematical approach is required,
and intuitive understanding may be difficult to obtain.

Hypothesis in social dynamics

A "magnetization plateau” in social dynamics can be likened
to a phenomenon in which social opinion is fixed in a cer-
tain state when certain social pressures or cultural norms are
strong. The Perron-Ishii complement may provide a tool for



understanding the stability and potential for change in social
opinion. may provide.

Special Cases in Social Dynamics

An analogue of a magnetization plateau in social dynamics
might refer to a situation in which a particular opinion or
behavior is fixed within a social group. For example, if an
opinion is widely accepted in society and then never changes,
this can be viewed as a "freezing" or "plateauing" of the
opinion. This phenomenon may occur when social norms,
laws, or cultural values do not change.

Ergodotropy and Limit-Cycling of Opinions

When ergodicity is in place, the system explores all possi-
ble states, but the occurrence of opinion viscosity or limit
cycling means that certain patterns or cyclical behaviors are
maintained over time. In social dynamics, it might corre-
spond to the repetition of a particular political opinion or
cultural trend over a period of time. For example, economic
or political cycles may correspond to this. Such cycles may
indicate a phenomenon in which a society experiences con-
stant fluctuations, but no major changes or transformation to
a new order occurs. How the phenomenon of magnetization
plateaus and limit cycles are interpreted in social dynam-
ics strongly depends on the particular context of the social
system. Therefore, individual social events and historical
circumstances must be carefully considered when applying
these mathematical concepts.

Applying the Ising model to group dynamics

Spin can be viewed as the opinions and choices of individual
agents (individuals or groups), and a magnetization plateau
can be interpreted as a situation where certain shared opinions
or modes of behavior are fixed. This could also refer to
a situation where certain norms and beliefs are established
within a social group and are difficult to change.

Application of the Ising Model to Group Dy-
namics

Meaning of Spin

Individual spins represent the opinions of individuals in a
group, with "up" indicating one opinion or attitude and
"down" indicating its opposing opinion or attitude. Interac-
tion Interactions between spins in the Ising model symbolize
social interactions and influences among people. People are
often drawn to the opinions of individuals in close proximity,
such as friends or colleagues.

Application of Magnetization Plateaus to Social
Dynamics

Fixation of Opinions

A magnetization plateau indicates that a particular belief or
behavior is widely accepted in a social group and remains
unchanged for a long period of time. This may be seen
in strong cultural norms, stable political regimes, or long-
term economic stability. Resistance to change in the external
environment The tendency of a group to resist external change
and to hold on to existing norms is similar to the concept of a
magnetization plateau. Despite social, economic, or political
pressures, the group retains its core beliefs.

The meaning of a magnetization plateau and its
impact on

Social Stability

Magnetization plateaus can be indicators of social stability.
‘When opinions are fixed, change is infrequent and predictable
patterns arise.

Lack of innovation

On the other hand, a magnetization plateau may indicate a
lack of innovation, meaning slow adoption of new ideas and
behaviors.

Resistance to Change

Resistance to the need for change may arise as the group’s
ability to adapt to new information and situations is limited.

The concept of magnetization plateaus in the Ising model
is a useful metaphor for understanding the difficulty of chang-
ing opinions and behaviors in social groups. Through this
model, social stereotypes and barriers to change can be stud-
ied, providing insight into devising strategies to promote
change in social policy and collective behavior.

Understanding the Occurrence of Magnetization
Plateaus in the Ising Model

To understand the computational process when magneti-
zation plateaus occur in the Ising model, you can consider the
following ideas:

1. Setting Initial Conditions: Set the spin configuration
of the Ising model as the initial conditions. Initial conditions
can be based on random configurations or specific arrange-
ments.

2. Definition of Energy Function: Define the energy
function of the Ising model. Typically, the energy function
takes into account interactions between spins. Here is the
general form of an energy function:

E(x,]) = —JZ.X,'XJ'
iL.j
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Here, x; represents spin variables (+1 or —1), and J is the
interaction constant.

3. Introduction of Cyclical Exchanges: Introduce cycli-
cal exchange operations to make spin configurations cycli-
cally exchange periodically. The update rules for cyclical
exchange are as follows:

xi1 (1), ifi <N

xi(t+1) =
e+ 1) x(t), ifi=N

This results in cyclic changes in spin configurations.

4. Confirmation of Ergodicity: With the introduction
of cyclical exchanges, spin configurations change over time,
satisfying ergodicity. Ergodicity refers to the property where
a system explores different states and can reach all possible
states as time progresses.

5. Monitoring Magnetization: Calculate and record the
magnetization (the sum of average spins) at each step of the
simulation. Magnetization is represented as follows:

| N
M(1) = + ;w)

6. Observation of Magnetization Plateaus: Plot the
time evolution of magnetization and observe whether mag-
netization plateaus occur. Magnetization plateaus indicate a
temporary stability in magnetization.

7. Modification of External Parameters: If magne-
tization plateaus occur, you may resolve them by changing
external parameters. Changing external parameters can alter
the behavior of the Ising model.

Energy / Magnetization over Time results are
from Pre-analysis

The magnetization result shows that magnetization fluctuates
significantly up and down over time. This may mean that
opinions and attitudes are not stable over time and fluctuate
widely when considered in the context of social dynamics.
On the other hand, if the value of magnetization fluctuates
within a certain range (forming a plateau) over a specific
period of time, this may indicate a temporary stabilization
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of opinion or the formation of a consensus. If the change in
spin configuration shows a periodic pattern, this may indicate
that the opinions of individual society members change at a
steady rhythm. This can be interpreted as representing the
movement of opinion in a group that is susceptible to trends
and social pressures. 3. The cyclical changes shown by the
energy graph may reflect periodic events in social dynamics
or regularly occurring social and political cycles. Examples
might include election cycles or economic business cycles
in the economy. It could also be that social conflicts and
competition exhibit certain patterns.
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Magnetization Plateau

The magnetization graph displays the average spin over time.
The plateau suggests that the system reaches a steady state
relatively quickly, where the average magnetization fluctuates
around a consistent value close to zero. This indicates that
the spins are equally likely to be up or down over time, which
is characteristic of a system at high temperature or above the
critical temperature in the absence of an external magnetic
field.

Spin Dynamics

The energy graph shows that the system quickly reaches a
lowenergy state. This rapid minimization of energy indicates
that spins are aligning with their neighbors to reduce the
system’s overall energy. However, since the magnetization
does not show a strong bias towards positive or negative
values, it implies that the system might be forming domains
or clusters of aligned spins rather than a uniform alignment
across the entire system.

Cyclic Exchange

The score graph, which represents the absolute value of mag-
netization, also stabilizes quickly and remains constant over
time. This suggests that the random cyclic exchange opera-
tions (possibly representing some dynamic social interaction
if we interpret this as a social dynamics simulation) maintain
the system in a dynamic equilibrium where the overall level
of "agreement" or "alignment" among agents (spins) does not
change much after an initial period.

Cumulative Distribution Function (CDF)

The CDF graph indicates that the score values are highly con-
centrated in a narrow range, with a sharp rise at the beginning
of the plot, which means that most of the score values are
close to a certain value, and there is little variation. This
is consistent with the score graph, where the score settles
quickly and does not show much fluctuation over time.

Social Dynamics Interpretation

The magnetization plateau could represent a state of social
equilibrium where there are equal numbers of positive and
negative opinions or behaviors, leading to no clear majority
or consensus in the population. The energy minimization
reflects a tendency towards local agreement or harmony in
social groups, which does not necessarily translate to global
consensus, as indicated by the overall magnetization. The
cyclic exchange could model the impact of local interactions
on social dynamics, showing that despite constant changes
in individual states or opinions, the overall social structure
remains stable. The CDF of the score might indicate that
most individuals or social groups tend to have a similar level
of agreement or conformity, with outliers being rare.

To further analyze these dynamics, one might look into the
time evolution of the system, the size and distribution of spin
domains, or the effects of varying the interaction strength (J)
or introducing an external field. This could provide deeper
insights into how local rules and interactions can lead to
complex social behaviors and structures.

Magnetization plateau and T-symmetry

Here we also discuss the results when time-reversal symmetry
is introduced. When time-reversal symmetry is introduced
in the simulation, a time-reversal operation is performed by
storing the current spin configuration at regular step intervals
(‘interval) and flipping the spin configuration at the next
interval. This ensures that the simulation has symmetric
dynamics with respect to time.

Saving the Spin Configuration

At each step of the simulation, the spin configuration is saved
at regular intervals. This is denoted as x(¢).

Time Reversal Operation

At intervals after the spin configuration is saved, the saved
spin configuration is inverted to generate a new spin configu-
ration. This is denoted as x(—7).

This operation ensures that the simulation has symmetric
dynamics with respect to time. This means that the same
dynamics occurs between x(¢) and x(—t).

As a mathematical expression, time-reversal symmetry
can be expressed as follows:

x(—t) = interval(x(t))

where
x(1)

denotes the spin configuration at time ¢ and

x(=1)
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denotes its inverted spin configuration. The inversion op-
eration is usually performed by inverting the value of each
spin.

Results show the results of an Ising model
simulation with time symmetry incorporated
through periodic time reversal operations

Consideration of Time Symmetry

The time symmetry in the simulation can be seen as a
metaphor for cyclic or periodic changes in social sentiment
or policy that revert the state of a social system to a previous
configuration. This could represent, for example, political
cycles or economic policies that tend to oscillate between
two states (e.g., liberal and conservative policies, boom and
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bust cycles in economics). The energy graph shows periodic
spikes, which could be interpreted as periods of high social
tension or conflict that arise when the system undergoes a
reversal or transition between states.

Consideration of Magnetization Plateau

The magnetization graph exhibits a plateau, which in a social
context, might represent a state of equilibrium where despite
individual fluctuations (individuals changing opinions or af-
filiations), the overall societal opinion remains balanced and
stable. This plateau suggests that while individuals or small
groups may experience significant changes, the macro-level
state of the social system is resistant to change, possibly due
to the time symmetry enforcing a return to equilibrium.

Consideration of Spins

The spins in the Ising model could represent individual agents
(people, organizations, etc.) in a social system, with their up
or down states symbolizing different opinions, strategies, or
behaviors. The simulation indicates that individual behaviors
are influenced by local interactions (as per the Ising model’s
nearest-neighbor interactions), but the overall pattern remains
stable over time, possibly due to societal norms, laws, or other
stabilizing forces.

Consideration of Cyclic Exchange

The cyclic exchange process, where spins can flip based on
their interactions, can be seen as a representation of individual
or group interactions leading to changes in opinion or behav-
ior. In a social context, this could be seen as the influence
of peer pressure, dialogue, debate, or the spread of informa-
tion. Despite these interactions and potential for change at
the micro-level, the overall societal structure remains surpris-
ingly stable, as evidenced by the sustained score over time.

Consideration of Score and CDF

The score, representing the absolute value of magnetization,
settles into a steady state relatively quickly, suggesting that



while individual opinions or behaviors might fluctuate, the
degree of consensus or overall alignment within the society
doesn’t change dramatically over time. The CDF shows a
sharp rise at the beginning, indicating that most of the pop-
ulation has a low score, with very few individuals or groups
deviating significantly from the norm. This suggests a society
with a strong tendency towards conformity or a strong central
norm that most individuals adhere to.

The time-reversal operations create a clear pattern in the
energy graph, with spikes occurring at regular intervals. This
could represent external interventions or shocks to the social
system that temporarily disrupt equilibrium but have been de-
signed or evolved to maintain overall stability. Such dynamics
are interesting to study in the context of societal resilience and
the ability of social systems to absorb and adapt to change
while maintaining their core structure and functions.

Social Analogies of Magnetization Plateaus

Finally, a case of social dynamics in which a magnetization
plateau occurs on group dynamics on the Ising model can be
illustrated by comparing the following situation to a physics
concept. Political Extremes and Fixation of Opinions Assume
a situation in which a particular political opinion or ideology
becomes dominant within a social group. This phenomenon
may exhibit dynamics similar to a magnetization plateau in
physics. A magnetization plateau in physics is a phenomenon
in which magnetization is fixed at a certain level under certain
external conditions. An analogous phenomenon in social
dynamics is a condition in which a social group is "anchored"
to a certain political opinion or ideology. This fixation can
be caused by external social or political pressure or media
influence.

Initial State

A diversity of political opinions exists within a social group.

Homogenization of opinions

Strong support for a particular ideology or political leader is
formed and individual members of the group are drawn to
that opinion.

External influences

Media coverage and political events promote this homoge-
nization of opinion, "anchoring" opinions within the group in
a particular direction.

Formation of a Magnetization Plateau

Eventually, the social group becomes fixed to a particular
political opinion, and opinions contrary to it become almost
nonexistent. This condition tends to be maintained as long as
the external environment remains unchanged.

Changes in external conditions

When new social or political conditions arise, this fixed opin-
ion may change, but often the "plateau” state lasts for a long
time.

In this case study, the concept of a magnetization plateau
can be used to understand the process of homogenization
and fixation of opinions within a social group. It is hypothe-
sized that this situation is particularly likely to occur in closed
groups or under the influence of strong charismatic leader-
ship.

The following situations may be considered as examples
of social dynamics for the occurrence of a magnetization
plateau.

Convergence and dispersion of opinions in social
media

Opinions are exchanged among users on social media plat-
forms (acting like spin). Users’ opinions change over time as
they discuss and share information on social media. Some
users converge to the same opinion as others, forming a
"plateau” of consistent opinions. This plateau is temporarily
stable (magnetization plateau). On the other hand, another
group of users will stick to a different opinion and form a
"plateau” that differs from other user groups. Discussions on
social media, changes in information, and outside influences
(e.g., news, trends) can cause an exchange of opinions be-
tween plateaus, causing the magnetization plateau to collapse
and form a new convergence point.

Convergence and dispersion of political opinion

In a political community or association, members hold dif-
ferent political positions. Over time, political debates and
election campaigns take place, and some members converge
on a common political opinion (plateau formation). Other
members continue to hold different political opinions and
form different plateaus. Political events, information, and
outside influences can cause an exchange of political opin-
ions between the plateaus, causing the magnetized plateaus
to collapse and new political convergence points to form.

In these instances, opinions and positions change over
time within the social dynamics and a "plateau” is temporarily
formed where some groups converge on a consistent position.
However, the process by which these plateaus collapse and
new convergence points are formed due to external influences
or changes in information is an example of a magnetization
plateau.



Perspective: Mathematical Interpretation of
Magnetization Plateaus from the Perspective of
Viscous Solutions

Viscous solutions represent a phenomenon in which a system
remains temporarily stable. When considered in the context
of a magnetization plateau, the temporary convergence of
some individuals or groups to a particular opinion or behavior
pattern and the persistence of that state can be considered an
example of a viscous solution.

Extension of the Differential Equation

To take viscous solutions into account, we extend the dif-
ferential equations describing convergence and dispersion of
opinions. A viscosity term is added to the ordinary differ-
ential equation to adjust the rate at which convergence of
opinions proceeds. This viscosity term implies temporary
convergence.

Stochastic Model

When considering viscous solutions, it is common to intro-
duce a stochastic component. One could consider modeling
a stochastic process in which individual agents (users, indi-
viduals, groups, etc.) make random decisions and evaluate
the probability of a viscous solution occurring.

12. Research Prospects:Informational
Health Expectations When
Introducing Temporal Symmetry as
Social Dynamics

Finally, through the results of incorporating time symmetry
into the Ising model in which magnetization plateaus occur,
we will discuss the expectations, effects, social case stud-
ies, and ideas regarding informational health when introduc-
ing time symmetry as a social dynamic. The Ising model
with time symmetry results can indeed serve as an interesting
analogy for discussing aspects of social dynamics, especially
when considering the informational health of a society. Here
are some insights and ideas on how the elements of your
simulation can be interpreted in this context.

Informational Health Expectations with Time
Symmetry

The introduction of time symmetry, where states are peri-
odically reversed, could represent an environment where in-
formation cycles between periods of clarity and confusion
or truth and misinformation. From the perspective of infor-
mational health, one could expect that such a system would
have builtin mechanisms to correct misinformation over time,
thereby maintaining a certain level of informational integrity.

This could be analogous to factchecking processes or the nat-
ural debunking of false information over time.

Impact on Society

The periodic energy spikes in the Energy vs. Time graph
could be indicative of the social energy expended in correcting
misinformation. After a period of time, when false narratives
may gain traction (energy increases), there is a collective
societal effort to restore truth, which brings the energy back
down.

The Magnetization vs. Time graph shows that despite
these cycles, the overall "magnetization" or collective societal
opinion remains stable around a central value. This suggests
that while there may be fluctuations in beliefs or the spread of
misinformation, there’s a robustness in the societal beliefs or
knowledge base that resists being swayed completely by such
fluctuations.

Societal Examples

Examples in society where time symmetry may play a role in
informational health could include:

Educational Systems

They often cycle through phases of different educational the-
ories and practices but aim to maintain a consistent level of
quality education and factual accuracy.

Media Cycles

The news cycle can swing between sensationalism and more
sober, factbased reporting, with the public discourse periodi-
cally returning to a focus on evidence and verification.

Policy Making

Government policies may oscillate between different ideolo-
gies, with each phase bringing its own narrative and informa-
tion challenges, but over time, policies may be revisited and
revised to reflect more accurate information and analysis.

Ideas for Social Dynamics and Informational
Health

Considering these dynamics, several ideas and strategies
could be implemented to promote a healthy information en-
vironment:

Regular Review and Correction Mechanisms

Just as the system periodically reverses to a previous state,
societies could implement regular reviews of public informa-
tion and policy to correct errors and address misinformation.
Education on Critical Thinking: Teaching critical thinking
skills can equip individuals to better navigate periods of mis-
information.



Decentralized FactChecking

Encouraging a culture of peerreviewed information can create
a selfcorrecting system, much like the local interactions of
spins in the Ising model.

Transparency in Information Sources

Clear labeling of information sources and their biases can
help the public better assess the veracity of information they
encounter.

In conclusion, the time symmetry incorporated into the
Ising model can be a powerful metaphor for understanding
and improving the informational health of a society. It em-
phasizes the need for resilience and adaptability in the face
of misinformation, ensuring that the society has the means to
return to a state of informed consensus despite the inevitable
cycles of false narratives.
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