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Abstract: This study presents an ambitious interdisciplinary approach to applying the mathematical
framework of quantum field theory, traditionally restricted to the domain of physics, to elucidate
digital issues in the social sciences. The principles of remote interaction and proximity interaction
are used. By developing a model based on quantum field theory, we mathematically represent the
resonance and echo chamber effects of opinions within the filter bubble. The model incorporates
non-physical factors known as FP ghosting phenomena, such as misinformation and confirmation
bias, to simulate the complexity of social communication. In addition, the model integrates the
concept of uncertainty ghosting, similar to the uncertainty principle in the social sciences, to account
for information uncertainty and nonlinearities in opinion formation. This approach demonstrates
the variability of social opinion and provides a detailed understanding of the dynamics within the
filter bubble. The introduction of the spin glass phase provides a new discourse on the energy
conservation and memory aspects of arguments within the filter bubble. This is achieved through
the combination of the Edwards-Anderson and Hopfield models based on the ferromagnetic Ising
model, allowing quantitative discussion of complex phenomena such as social associative memory.
Incorporating the Hopfield model allows us to understand the behavior of the system when storing
patterns. p patterns 1, 2,... are present at the minima of the Hamiltonian, which facilitates memory
recall. This model application shows that when certain patterns are aligned at the minima of the
Hamiltonian, the state is low energy and minimal memory storage is possible. In equilibrium, the
transition probability W(Sjhj) confirms the increase in the probability Pt(S) of the current state
(-Sj→Sj), consistent with the Boltzmann coefficient of the master equation, thereby stabilizing the
left-hand side at zero. This theoretical framework is invaluable in the discussion of long-term
memory and energy conservation of fake news diffusion in both the digital and offline space of filter
bubbles. Specifically, by extrapolating n to zero, we can theoretically model the selective diffusion of
information associated with filter bubbles and obtain accurate results. However, this method requires
complex calculations and, as a drawback, may lead to non-intuitive interpretations.
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1. Introduction
This study presents an ambitious interdisciplinary approach
to applying the mathematical framework of quantum field
theory, traditionally restricted to the domain of physics, to
elucidate digital issues in the social sciences. By using the
principles of remote interaction and proximity interaction,
this innovative approach traces the evolution of opinions and
group dynamics among agents and delves deeply into the
complexities of social communication and information diffu-
sion.

It introduces the concept of filter bubbles, characterized

Fig. 1: Identification of critical points during spin glass
condition
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by the selective diffusion of information and viewpoints, lim-
iting access to a variety of perspectives. By developing a
model based on quantum field theory, we mathematically
represent the resonance and echo chamber effects of opinions
within the filter bubble. The model incorporates non-physical
factors known as FP ghosting phenomena, such as misinfor-
mation and confirmation bias, to simulate the complexity of
social communication. In addition, the model integrates the
concept of uncertainty ghosting, similar to the uncertainty
principle in the social sciences, to account for information
uncertainty and nonlinearities in opinion formation. This
approach demonstrates the variability of social opinion and
provides a detailed understanding of the dynamics within the
filter bubble.

1.1 Spin Glass Phase
The introduction of the spin glass phase provides a new dis-
course on the energy conservation and memory aspects of ar-
guments within the filter bubble. This is achieved through the
combination of the Edwards-Anderson and Hopfield models
based on the ferromagnetic Ising model, allowing quantitative
discussion of complex phenomena such as social associative
memory.

In particular, the application of the replica method in the
context of replica symmetry breaking allows for the discus-
sion of coexisting models of diversity and stability. Coex-
istence models of stability can be discussed. The replica
method, which considers multiple copies with different infor-
mation access patterns, calculates the configurational average
of the free energy and proves to be an effective tool in under-
standing the dynamics of filter bubbles.

This study also delves into the role of the Hebbian rule in
models where randomly oriented Ising spins (+1 or −1) at-
tempt to preserve memory aligned in a perfect ferromagnetic
state; when 𝐽𝑖 𝑗 is set to 1/𝑁 , the system shows dependence on
initial conditions and between different spin states majority
state. Incorporating the Hopfield model allows us to under-
stand the behavior of the system when storing patterns. 𝑝

patterns 𝜉1, 𝜉2, ... are present at the minima of the Hamilto-
nian, which facilitates memory recall. This model application
shows that when certain patterns are aligned at the minima of
the Hamiltonian, the state is low energy and minimal memory
storage is possible. In equilibrium, the transition probabil-
ity 𝑊 (𝑆 |ℎ 𝑗 ) confirms the increase in the probability 𝑃𝑡 (𝑆)
of the current state (−𝑆 𝑗 → 𝑆 𝑗 ), consistent with the Boltz-
mann coefficient of the master equation, thereby stabilizing
the left-hand side at zero.

This theoretical framework is invaluable in the discussion
of long-term memory and energy conservation of fake news
diffusion in both the digital and offline space of filter bub-
bles. Specifically, by extrapolating 𝑛 to zero, we can theoret-
ically model the selective diffusion of information associated

with filter bubbles and obtain accurate results. However, this
method requires complex calculations and, as a drawback,
may lead to non-intuitive interpretations.

The following is a list of the topics of this discussion,
as well as a discussion of the approach. Filter Bubble and
Echo Chamber Effect Filter bubbles are a phenomenon in
which information on the Internet is filtered based on an indi-
vidual’s behavior and preferences, highlighting only certain
viewpoints and information. This creates an "echo cham-
ber effect" in which diverse opinions and information are
restricted and an individual’s existing beliefs and opinions
are reinforced. In this study, we attempt to mathematically
represent and understand such social opinion resonance using
quantum field theory.

1.2 Application of Quantum Field Theory
Quantum field theory is a theory of physics used to describe
the behavior and interaction of particles. The theory uses
the concept of fields of quantum states, such as energy and
momentum, to mathematically describe the interactions be-
tween particles. By applying this theory to the social sciences,
specifically the creation of filter bubbles and their social con-
sequences, this research provides a new perspective on the
evolution of social opinions and group dynamics.

1.3 FP Ghosting and Uncertainty Ghosting Phe-
nomena

FP ghosting phenomena is a concept introduced to describe
non-physical factors such as misinformation and confirma-
tion bias. It is used to represent information distortion or
bias within the framework of quantum field theory. The un-
certainty ghost phenomenon is also a social science concept
analogous to the uncertainty principle in quantum field theory,
capturing the uncertainty of information and the non-linearity
of opinion formation.

1.4 Spin glass phases and memory models
The spin glass phase refers to the physical state exhibited by
a collection of randomly oriented magnetic particles. This
state, combined with the Edwards-Anderson model and the
Hopfield model, is used to mathematically explain the energy
conservation and memorability of opinions in filter bubbles.
This allows for quantitative analysis of complex phenomena
such as social associative memory.

1.5 Replica Method and n Extrapolation
The replica method is a technique used in statistical physics
to calculate the thermodynamic properties of many-body sys-
tems. In this method, multiple copies (replicas) of a system
are considered, each taking on a different state to average the



properties of the entire system. In the replica method, extrap-
olating n to zero is an important step in calculating the free
energy of the system. This allows us to theoretically capture
the selective diffusion of information and opinion formation
process in the filter bubble.

1.6 Hebb Rule and Ising Spin
The Hebb rule is one of the fundamental principles of learn-
ing and memory in neuroscience. According to this principle,
connections between simultaneously active neurons are sup-
posed to be strengthened. The Ising spin model applies this
principle to model memory storage and recall. The Ising spin
takes on the state of +1 or -1 to represent a particular memory
state and to understand how that memory is stored based on
the Hebbian rule.

1.7 Hamiltonians and Minimal Memory
The Hamiltonian is a function of physics that represents the
total energy of a system. In this study, we use the Hopfield
model Hamiltonian to examine how memory is conserved in
terms of energy. If certain memory states (patterns 1, 2, and
p) have a Hamiltonian minimum, then those states are stable
and memory recall is possible.

1.8 The Master Equation and Boltzmann Factor
The master equation is an equation that describes the tempo-
ral evolution of a system. Using this equation, the transition
probabilities to a particular spin state can be calculated to
understand the dynamics of the system. The transition proba-
bilities are weighted by the Boltzmann factor, which captures
how the system reaches thermal equilibrium.

Through these theoretical frameworks, this study exam-
ines in detail the long-term memorability and energy conser-
vation issues related to the spread of fake news in digital and
analog space of filter bubbles. This will allow for a theoret-
ical understanding of how filter bubbles affect the selective
diffusion of information and how this affects social opinion
formation.

1.9 Application of Quantum Field Theory and
Filter Bubble Analysis

The quantum theory of fields enables a new approach to
understanding the resonance of opinions and diffusion pat-
terns of information in filter bubbles through the concepts of
quantum superposition and entanglement. Information and
opinions can be represented as quantum states, and the su-
perposition of different sources and opinions can model the
selective diffusion of information and the dynamic evolution
of confirmation bias within filter bubbles. This approach al-
lows for quantitative analysis of how fake news is reinforced
and preserved over time within specific groups.

Quantitative Analysis of Filter Bubble and Echo Cham-
ber Effects To quantitatively analyze filter bubble and echo
chamber effects, we propose a model that combines social
network theory and quantum field theory. In this model, the
opinions and information states of each individual (agent) are
represented by qubits, and their interactions are defined by
the quantum field theory. In this way, we can analyze how
fake news spreads in social networks and is stored in echo
chambers over time.

1.10 Modeling FP Ghosting and Uncertainty
Ghosting Phenomena

To model FP ghosting and uncertainty ghosting phenomena,
the degree of reliability or certainty of information is ex-
pressed as quantum probability amplitudes. This approach
allows us to quantitatively assess how fake news and misinfor-
mation are perceived and impacted within the filter bubble.
We also apply the uncertainty principle to analyze the impact
of information uncertainty on opinion formation.

1.11 Application of Spin Glass Phase and Mem-
ory Models

By combining the spin glass phase and memory model, we
analyze the long-term memorability of information and opin-
ions in filter bubbles. In this model, different opinions and
information interact like spin glasses, forming fixed patterns
over time. This provides a quantitative understanding of how
fake news and certain opinions are stored for long periods of
time in the filter bubble.

Application of the replica method and extrapolation of n
We apply the replica method to analyze the statistical proper-
ties of information diffusion patterns within the filter bubble.
n extrapolated to zero allows us to theoretically predict how
fake news is selectively diffused and how it affects the so-
cial network. The method also provides deep insight into the
problem of energy conservation in filter bubbles.

1.12 Integration of the Hebb Rule and Ising
The integration of the Hebb rule and the Ising spin model
models the mechanism of storage and conservation of fake
news in the filter bubble. The model can simulate the process
by which the diffusion of fake news affects the orientation
of the Ising spin, resulting in the formation of long-term
memories.

These proposed theoretical frameworks and computa-
tional processes provide a new analytical approach to the
long-term memorability and energy conservation issues re-
lated to fake news diffusion in the digital and analog space
of filter bubbles. This will enable social scientists and policy
makers to better understand the mechanisms of fake news and
biased information diffusion and develop effective strategies
to address them.



1.13 Application of Quantum Field Theory and
Filter Bubble Analysis

The quantum theory of fields enables a new approach to un-
derstanding the resonance of opinions and patterns of infor-
mation diffusion in filter bubbles through the concepts of
quantum superposition and entanglement. Information and
opinions can be represented as quantum states, and the su-
perposition of different sources and opinions can model the
selective diffusion of information and the dynamic evolution
of confirmation bias within filter bubbles. This approach al-
lows for quantitative analysis of how fake news is reinforced
and preserved over time within specific groups.

1.14 Quantitative Analysis of Filter Bubble and
Echo Chamber Effects

To quantitatively analyze filter bubble and echo chamber ef-
fects, we propose a model that combines social network the-
ory and quantum field theory. In this model, the opinions and
information states of each individual (agent) are represented
by qubits, and their interactions are defined by the quantum
field theory. In this way, we can analyze how fake news
spreads in social networks and is stored in echo chambers
over time.

1.15 Modeling FP Ghosting and Uncertainty
Ghosting Phenomena

To model FP ghosting and uncertainty ghosting phenomena,
the degree of reliability or certainty of information is ex-
pressed as quantum probability amplitudes. This approach
allows us to quantitatively assess how fake news and misinfor-
mation are perceived and impacted within the filter bubble.
We also apply the uncertainty principle to analyze the impact
of information uncertainty on opinion formation.

1.16 Application of Spin Glass Phase and Mem-
ory Models

By combining the spin glass phase and memory model, we
analyze the long-term memorability of information and opin-
ions in filter bubbles. In this model, different opinions and
information interact like spin glasses, forming fixed patterns
over time. This provides a quantitative understanding of how
fake news and certain opinions are stored for long periods of
time in the filter bubble.

1.17 Application of the replica method and ex-
trapolation of n

We apply the replica method to analyze the statistical proper-
ties of information diffusion patterns within the filter bubble.
n extrapolated to zero allows us to theoretically predict how
fake news is selectively diffused and how it affects the so-

cial network. The method also provides deep insight into the
problem of energy conservation in filter bubbles.

1.18 Integration of the Hebb Rule and Ising Spin
The integration of the Hebb rule and the Ising spin model
models the mechanism of storage and conservation of fake
news in the filter bubble. The model can simulate the process
by which the diffusion of fake news affects the orientation
of the Ising spin, resulting in the formation of long-term
memories.

These proposed theoretical frameworks and computa-
tional processes provide a new analytical approach to the
long-term memorability and energy conservation issues re-
lated to fake news diffusion in the digital and analog space
of filter bubbles. This will enable social scientists and policy
makers to better understand the mechanisms of fake news and
biased information diffusion and develop effective strategies
to address them.

2. Discussion:Spin Glass Phenomenon
In this thesis, we will further develop theoretical consider-
ations while exploring a hypothetical attempt to deepen the
physical interpretation of the filter bubble phenomenon, es-
pecially in the context of opinion polarization and division
phenomena, similar to those discussed in the previous disser-
tation on the spin glass phenomenon.

We will theoretically explain the process where the spin
glass phenomenon occurs, random systems freeze, and asso-
ciative memory is maintained, resulting in a fully ferromag-
netic state being recorded. This process can be explained
based on the Edwards-Anderson model and spin glass theory.

2.1 Edwards-Anderson Model
2.2 Model Setup

𝐸 = −
∑︁
𝑖, 𝑗

(𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗 ) −
∑︁
𝑖

(ℎ𝑖𝑆𝑖)

Where:

𝐸 : Energy of the system
𝐽𝑖 𝑗 : Interaction constants
𝑆𝑖 : Ising spins with values of ± 1
ℎ𝑖 : Randomly placed magnetic fields

2.3 Process Explanation
(1) Random Magnetic Field Configuration: Initially, ran-

dom magnetic fields act on the spin system, represent-
ing interactions with surrounding spins. These magnetic
fields have spatial randomness and remain constant over
time.



(2) Spin Arrangement: Spins are arranged on a lattice and
interact with neighboring spins. The interaction includes
the influence of random magnetic fields.

(3) Energy Landscape: An energy landscape is formed for
the spin system, with different landscapes for different
spin orientations, depending on the randomly placed
magnetic field configuration.

(4) Freezing: When the temperature drops below the tran-
sition point 𝑇𝑔, the spin system freezes into minimum
energy states within the energy landscape, resulting in
the spin glass phenomenon.

(5) Ising Model Establishment: After freezing, the in-
teractions between spins take on the form of a ferro-
magnetic Ising model, resulting in a fully ferromagnetic
state.

2.4 Replica Method for Spin Glass Coordination
Average

2.5 Introduction of Replica Method
The replica method is a technique used to calculate the co-
ordination average by introducing 𝑛 copies (replicas). Each
replica has the same bond distribution 𝐽𝑖 𝑗 .

2.6 Model Setup

𝑍𝑖 (𝑇) =
∑︁
{𝑆𝑖 }

exp(−𝛽𝐸𝑖)

Where:

𝑍𝑖 (𝑇) : Partition function for replica 𝑖
𝛽 : Inverse temperature
𝐸𝑖 : Energy of replica 𝑖

2.7 Calculation Steps
(1) Calculation of Helmholtz Free Energy:

𝐹𝑖 (𝑇) = −𝛽−1 ln(𝑍𝑖 (𝑇))

(2) Calculation of Coordination Average:

𝐹 (𝑇) = 1
𝑛

∑︁
𝑖

𝐹𝑖 (𝑇)

(3) Extrapolation to the Limit:

𝐹 (𝑇) = lim
𝑛→0

𝐹 (𝑇 ; 𝑛)

3. Discussion:Challenges in
Extrapolating 𝑛 to Zero

There are several theoretical challenges when extrapolating 𝑛

to zero for calculating the coordination average of spin glass
systems:

(1) Finite Energy: When 𝑛 approaches zero, there is a pos-
sibility that the energy becomes finite, which contradicts
the requirement for finite energy in physical systems.

(2) Behavior of Entropy: Behavior of entropy may become
inappropriate when 𝑛 approaches zero. The theoretical
rigor of extrapolating entropy is not guaranteed.

(3) Characteristics of Phase Transitions: Complex sys-
tems like spin glasses may exhibit non-analytical behav-
ior associated with phase transitions. Simply extrapolat-
ing 𝑛 to zero is insufficient to reproduce such behavior
accurately.

The Edwards-Anderson Model
The Edwards-Anderson model considers the probability of
preserving a random Ising spin configuration with anisotropic
interactions 𝐽𝑖 𝑗 . According to Hebb’s rule, different spins
have interactions with each other.

Preservation of Associative Memories
In the context of random spin configurations, we aim to pre-
serve a ferromagnetic Ising spin configuration. In this case,
since 𝐽𝑖 𝑗 is set to 1/𝑁 , the interactions between spins are, on
average, uniform.

Initial Condition Dependency
The value obtained by subtracting the number of down spins
may indicate a majority vote state with respect to other spin
states. However, depending on the initial random spin con-
figuration, this majority vote state may depend on different
values. This demonstrates sensitivity to initial conditions.

Orthogonality and Similarity
When spin configurations exhibit orthogonality, the similar-
ity between different patterns may decrease. Orthogonality
means that the inner product of spin configurations is zero,
indicating that different patterns are orthogonal to each other.
As a result, the similarity between spin configurations may
be low, leading to high specificity of stored information.

Coexistence Model of Diversity and Stability
The coexistence model of diversity and stability is an im-
portant concept in fields such as ecology and evolutionary
biology. It suggests that the coexistence of different species



or individual diversity within a population is essential for the
stability of an ecosystem or population.

Introduction of Replica Method
The replica method is a technique used in statistical mechanics
and computer simulations to understand the thermodynamic
behavior of a system.

Computational Process
The computational process in the coexistence model typically
involves the following steps:

(1) Initialization: Set the initial conditions of individuals
within a population with different traits or strategies,
introducing diversity.

(2) Modeling Interactions: Define a model for interactions
among individuals, considering different traits or strate-
gies among replicas.

(3) Replica Generation: Create 𝑛 copies (replicas) of the
same model.

(4) Simulation of Each Replica: Simulate the evolution of
each replica over time, considering interactions among
individuals with different traits or strategies. This may
involve asynchronous or synchronous updates.

(5) Averaging Replicas: Average the results from each
replica to evaluate the behavior of the coexistence model.

(6) Extrapolation to 𝑛 = 0: Extrapolate to the limit as 𝑛 ap-
proaches zero to obtain the correct coordination average.

Interpretation of Results
Analyze the simulation results to understand the conditions
for the coexistence of diversity and stability and how replica
symmetry breaking may influence the system’s behavior.

Orthogonality and Similarity in Information
Storage
Orthogonality refers to the property where different spin pat-
terns are orthogonal to each other, meaning that their inner
product is zero. This implies that different spin configurations
are dissimilar and do not overlap.

Similarity, on the other hand, occurs when spin configu-
rations are not orthogonal and have a non-zero inner product.
A larger inner product indicates higher similarity between
spin configurations.

Pattern Matching for Memory
Pattern matching is the process by which stored spin con-
figurations are compared to an input pattern, and the most
similar stored configuration is retrieved. Memory is said to
be recalled when the energy is minimized.

Energy Minimization
When memory is recalled through pattern matching, the net-
work’s energy is minimized. This occurs because the recalled
pattern aligns with the stored pattern, resulting in the min-
imization of interaction energy and, consequently, the net-
work’s energy.

Computational Process for Memory Recall
The process involves calculating the inner product between
the stored spin configuration (𝑉mem) and the input pattern
(𝑉input).

The configuration (𝑉mem) with the maximum inner prod-
uct is chosen as the recalled pattern. This selection minimizes
the energy.

When the energy is minimized, the system converges to
the stored pattern that is most similar to the input pattern.

Application to Digital Filter Bubbles
In the context of digital filter bubbles, we can interpret these
theoretical concepts as follows:

(1) Information Configuration in Filter Bubbles: In the digi-
tal environment, user information such as search history,
click patterns, and past browsing history forms their in-
formation configuration. This can be likened to stored
spin configurations.

(2) Input Patterns: User actions and search queries in the
digital environment can be considered as input patterns
that create new information configurations.

(3) Pattern Matching: Within a filter bubble scenario, based
on a user’s past actions and preferences, specific in-
formation configurations are selected, customizing the
displayed information. This can be interpreted as pattern
matching between input patterns and stored information
configurations.

(4) Energy Minimization: When a user’s past actions and
preferences align with specific information configura-
tions, the displayed information is optimized, enhancing
the user experience. This optimization process can be
analogous to energy minimization.

(5) Digital Filter Bubbles: Digital filter bubbles customize
information for users by presenting specific information
or perspectives, making it challenging for users to be
exposed to and access other information. This is akin to
the specificity of stored information in spin glass models.

4. Discussion:Retain Minima Memories
When considering patterns at the Hamiltonian energy min-
ima, specific patterns are recalled, resulting in lower energy
states and the ability to retain minima memories. When



analyzing the equilibrium state, one can confirm the in-
crease in probability 𝑃𝑡 (𝑆) based on the transition probability
𝑊 (𝑆 𝑗 |𝑆 𝑗 ) at the current state (−𝑆 𝑗 → 𝑆 𝑗 ). By applying this to
the master equation, it can be observed that it is proportional
to the Boltzmann factor. During the equilibrium state, 𝑃𝑡

remains constant over time, resulting in the left-hand side be-
ing equal to zero. At this point, the concepts of coordination
average and thermal average are necessary.

In this model, the storage of memories is related to the
energy minima. Below, we provide equations and a computa-
tional process explaining the energy minima associated with
memory retention.

First, the Hamiltonian 𝐻 is defined as follows:

𝐻 = −
∑︁
𝑖

ℎ𝑖𝑆𝑖 −
∑︁
𝑖< 𝑗

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝑆𝑖 represents the state of neuron 𝑖 (+1 or −1), ℎ𝑖
is the bias term for neuron 𝑖, and 𝐽𝑖 𝑗 is the coupling weight.
Minimizing this Hamiltonian leads to states with minimal
energy, which are stored as memories.

The specific calculation process is as follows:
1. To find the energy minima of the Hamiltonian, we take

partial derivatives of the Hamiltonian with respect to each 𝑆𝑖

and set the result to zero.

𝜕𝐻

𝜕𝑆𝑖
= 0

This helps determine the values of each neuron 𝑆𝑖 .
2. Verify whether the obtained energy minima are mem-

ory patterns. Memory patterns must be states where the
given 𝑆𝑖 values minimize the Hamiltonian, confirming that 𝐻
is minimized.

3. Confirm that the energy of memory patterns is minimal.
If the energy at the minima states is lower than that of other
states, those minima states are considered energetically stable
and are stored as memories.

4. When storing multiple memory patterns simultane-
ously, repeat the above steps for each memory pattern. Con-
firm that the memory patterns you wish to store are energeti-
cally minimal.

Therefore, by finding the energy minima of the Hamilto-
nian and confirming that the energy is minimal, it becomes
possible to store memories. This process represents the fun-
damental mechanism of memory storage in Hopfield net-
works.

Additionally, the Edwards-Anderson model, which is a
general model for spin glasses, involves the interaction of
electron spins in a random and heterogeneous magnetic field.
Its behavior is determined by the random arrangement of
spins. When associated with the Ising model of strong mag-
netism, the spin configurations within this model represent
memory patterns, and an understanding of how memories are
stored through the computational process can be achieved.

In summary, memory storage in the context of the
Edwards-Anderson model and Hamiltonian energy minima
relies on finding energy minima and confirming their mini-
mal energy state. This process is fundamental to the storage
of memories in these models.

5. Discussion:In a Digital Environment
and Memory Patterns

In the context of pseudo-thinking about discussions in a digi-
tal environment, we hypothesize that discussions resembling
filter bubbles create long-term effects, leading to a certain
form of temporal and spatial equilibrium. In this case, let’s
consider how the following master equation can be applied
and what calculation process can be envisioned.

When patterns are at the Hamiltonian energy minima,
lower energy states are achieved because specific patterns
are recalled, allowing for the possibility of minimal memory
retention. When considering the equilibrium state, it is pos-
sible to confirm the increase in probability 𝑃𝑡 (𝑆) based on
the transition probability 𝑊 (𝑆 𝑗 → 𝑆 𝑗 ) at the current state
(−𝑆 𝑗 → 𝑆 𝑗 ) through the transition probability 𝑊 (𝑆 𝑗 → 𝑆 𝑗 ).
When applying this to the master equation, it can be verified
that it is proportional to the Boltzmann factor. During the
equilibrium state, 𝑃𝑡 remains constant over time, resulting
in the left-hand side being equal to zero. At this point, the
concepts of coordination average and thermal average need
to be introduced.

To model discussions or the temporal variations of infor-
mation, such as filter bubbles, in a digital environment, one
can use the master equation. Below, we explain the calcu-
lation of memory patterns and energy when patterns are at
the Hamiltonian energy minima, as well as the probability
distribution in the equilibrium state.

The Master Equation
Master Equation Formulation
The master equation is used to describe the time evolution of
probabilistic systems and is expressed as follows:

𝑑𝑃𝑡 (𝑆)
𝑑𝑡

=
∑︁

[𝑊 (𝑆′ → 𝑆)𝑃𝑡 (𝑆′) −𝑊 (𝑆 → 𝑆′)𝑃𝑡 (𝑆)]

Here, 𝑃𝑡 (𝑆) represents the probability distribution of the
system being in state 𝑆, and𝑊 (𝑆′ → 𝑆) denotes the transition
probability from state 𝑆′ to 𝑆. This equation describes the
change in the probability distribution 𝑃𝑡 (𝑆) with respect to
time.

Boltzmann Factor and Equilibrium State
In the equilibrium state, the probability distribution 𝑃𝑡 (𝑆)
remains constant over time, making the left-hand side time
derivative zero. This implies the following equation:



∑︁
[𝑊 (𝑆′ → 𝑆)𝑃𝑡 (𝑆′) −𝑊 (𝑆 → 𝑆′)𝑃𝑡 (𝑆)] = 0

This equation illustrates that in the equilibrium state, the
transition probabilities 𝑊 (𝑆′ → 𝑆) and the probability dis-
tribution 𝑃𝑡 (𝑆) are proportional to the Boltzmann factor.

Calculation of Energy at Hamiltonian Minima
When considering the states at Hamiltonian energy minima,
specific energy values 𝐸𝑖 correspond to spin configurations
𝑆𝑖 . This energy 𝐸𝑖 is calculated from the Hamiltonian as
follows:

𝐸𝑖 =
∑︁
(𝑖, 𝑗 )

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝑆𝑖 and 𝑆 𝑗 represent spin values, and (𝑖, 𝑗) denotes
pairs of spins with interactions. 𝐸𝑖 corresponds to states of
minimum energy, which are stored as memories.

Using Methods like the Metropolis Algorithm
for Calculation
To calculate the probability distribution 𝑃𝑡 (𝑆) and transition
probabilities 𝑊 (𝑆′ → 𝑆) in the equilibrium state, Monte
Carlo methods such as the Metropolis algorithm are com-
monly used. This allows for the determination of probability
distributions and energies in the equilibrium state.

Based on the above calculation process, one can model the
temporal variations of information and discussions in a digital
environment, such as those resembling filter bubbles, and
conduct theoretical discussions about information retention
and fluctuations.

In a spatially random but temporally invariant scenario,
spin patterns emerge. In this situation, the random system
freezes, and beyond the transition point𝑇𝑔, the magnetization
curve begins to bend. It can be confirmed that the interactions
and strengths of bonds between each spin during this time
establish a strongly magnetic Ising model.

To provide a proof for the above, I understand. Below, I
will explain the calculation process with specific equations:

1. Setting the Hamiltonian of Spin Configurations:
The Hamiltonian𝐻 (𝑆) of spin configurations is expressed

as follows:

𝐻 (𝑆) = −
∑︁
𝑖

∑︁
𝑗

𝐽𝑖 𝑗 · 𝑆𝑖 · 𝑆 𝑗

Here, 𝐽𝑖 𝑗 represents the interaction between spin 𝑖 and
spin 𝑗 , assumed to have random values. These 𝐽𝑖 𝑗 values
may exhibit strongly magnetic interactions.

2. Changes in Magnetization beyond the Transition
Point 𝑇𝑔:

When the system is at a higher temperature than the transi-
tion point𝑇𝑔, the magnetization susceptibility 𝜒(𝑇) is usually
expressed as:

𝜒(𝑇) = 𝜕𝑀

𝜕𝐻

Here, 𝑀 represents the magnetization strength, and 𝐻 is
the external magnetic field. To calculate this magnetization,
a distribution function 𝑃(𝑆) concerning spin configurations
is introduced.

3. Introduction of the Distribution Function 𝑃(𝑆):
The distribution function 𝑃(𝑆) represents the probabil-

ity distribution of a particular spin configuration 𝑆 occur-
ring. Based on this probability distribution, the magnetiza-
tion strength 𝑀 is expressed as follows:

𝑀 =
∑︁
𝑆

𝑆 · 𝑃(𝑆)

Here, 𝑆 denotes a spin configuration, and 𝑃(𝑆) indicates
the probability of that spin configuration occurring.

4. Minimum Energy State in the Distribution Func-
tion 𝑃(𝑆):

Since the spin pattern does not change over time, the
system converges to a state of minimum energy. The spin
configuration 𝑆0 associated with this minimum energy state
is found, which corresponds to the minimum value of the
Hamiltonian 𝐻 (𝑆):

𝐻 (𝑆0) = min[𝐻 (𝑆)]

5. Magnetization Strength 𝑀0 at the Minimum En-
ergy State:

The magnetization strength 𝑀0 at the minimum energy
state 𝑆0 is expressed as follows:

𝑀0 =
∑︁
𝑆0

𝑆0 · 𝑃(𝑆0)

Here, 𝑃(𝑆0) represents the probability of the minimum
energy state 𝑆0 occurring.

The above constitutes a series of calculation processes to
compute the magnetization strength at the minimum energy
state based on the Hamiltonian of spin configurations. 𝑀0
at the minimum energy state describes the characteristics of
spin glasses and indicates strongly magnetic properties. In a
way, these conditions can be related to the thermal average
of magnetic moments during the occurrence of filter bubbles,
corresponding to spatial averages in the digital space and
fulfilling the condition 𝑡2 ≪ 𝑡 ≪ 𝑡1.

Let’s explore these conditions in more detail.
Understood. Below, I will provide a more detailed expla-

nation of the calculation process that satisfies the conditions
for the thermal average being related to the distribution of
bond strengths 𝐽𝑖 𝑗 .



1. Setting the Hamiltonian of Spin Configurations:
The Hamiltonian𝐻 (𝑆) of spin configurations is expressed

as follows:

𝐻 (𝑆) = −
∑︁
𝑖

∑︁
𝑗

𝐽𝑖 𝑗 · 𝑆𝑖 · 𝑆 𝑗

Here, 𝐽𝑖 𝑗 represents the interaction between spin 𝑖 and
spin 𝑗 , assumed to have random values. These 𝐽𝑖 𝑗 values are
spatially distributed randomly.

2. Conditions for Calculating the Temporal Average:
To consider the thermal average in relation to the dis-

tribution of bond strengths 𝐽𝑖 𝑗 , we consider the conditions
for calculating the temporal average, 𝑡2 ≪ 𝑡 ≪ 𝑡1. Under
these conditions, we assume that the system converges to the
thermal average after a sufficiently long time 𝑡1.

3. Introduction of the Distribution Function 𝑃(𝑆):
The distribution function 𝑃(𝑆) represents the probability

distribution of a particular spin configuration 𝑆 occurring.
To calculate the thermal average of a physical quantity 𝐴

in accordance with this probability distribution, we have the
following expression:

𝐴 =
∑︁
𝑆

𝐴(𝑆) · 𝑃(𝑆)

Here, 𝐴(𝑆) represents the physical quantity associated
with a spin configuration 𝑆. This equation is used to calculate
the temporal average.

4. Calculation of the Temporal Average:
The temporal average ⟨𝐴(𝑡)⟩ is calculated by averaging

the quantity 𝐴(𝑡) over the time range from 𝑡2 to 𝑡1. Specifi-
cally, it is expressed as follows:

⟨𝐴(𝑡)⟩ = 1
𝑡1 − 𝑡2

∫ 𝑡1

𝑡2

𝐴(𝑡) 𝑑𝑡

This integral range assumes that the system converges to
the thermal average within the time range [𝑡2, 𝑡1].

5. Distribution of Bond Strengths 𝐽𝑖 𝑗 :
The distribution of bond strengths 𝐽𝑖 𝑗 corresponds to the

probability distribution of random values of 𝐽𝑖 𝑗 . This takes
into account the random distribution of interaction strengths
within the Hamiltonian of spin configurations.

6. Relationship between Temporal Average and Dis-
tribution of Bond Strengths:

If the temporal average ⟨𝐴(𝑡)⟩ satisfies the conditions for
considering the distribution of bond strengths 𝐽𝑖 𝑗 , it implies
that the system converges temporally and that the thermal
average converges to the distribution of bond strengths 𝐽𝑖 𝑗 .
To meet this condition, it is crucial that the system converges
to the thermal average within the time range [𝑡2, 𝑡1].

The above elaborates on the calculation process that satis-
fies the conditions for the thermal average being related to the
distribution of bond strengths 𝐽𝑖 𝑗 . Calculating the temporal

average of the physical quantity 𝐴 under these conditions in-
dicates that the system converges temporally, and its thermal
average is associated with the distribution of bond strengths
𝐽𝑖 𝑗 .

6. Discussion:Calculation Process for
Thermal and Configurational
Averages in Spin Glass Phase

In this case, when considering thermal averages in a digi-
tal environment, thermal averages are calculated using 𝐽𝑖 𝑗 ,
while configurational averages are spatially averaged due to
the spatial distribution of 𝐽𝑖 𝑗 varying by location. In other
words, thermal averages can be hypothesized as time averages
of thermal fluctuations that satisfy 𝑡2 << 𝑡 << 𝑡1 over a long
period.

Furthermore, introducing the replica method at this point
as an approach to enhance factors such as impersonation and
filter bubbles, it is believed that one can calculate the config-
urational average of the free energy.

Hamiltonian of the Spin Glass Phase
The Hamiltonian 𝐻 (𝑆) for spin configurations in the spin
glass phase is expressed as follows:

𝐻 (𝑆) = −
∑︁
𝑖

∑︁
𝑗

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝐽𝑖 𝑗 represents random values that denote the inter-
action between spin 𝑖 and spin 𝑗 , and it is assumed to have
varying spatial distributions by location.

Introduction of Thermal Averages and Config-
urational Averages
To introduce thermal averages and configurational averages
and to consider time averages, the following conditions are
considered:

Thermal Average: Considered as the time average of
thermal fluctuations that satisfy 𝑡2 << 𝑡 << 𝑡1. In this
case, the time average of a physical quantity 𝐴 is denoted
as ⟨𝐴(𝑡)⟩.
Configurational Average: Since 𝐽𝑖 𝑗 has varying spa-
tial distributions by location, configurational averaging
involves taking into account different distributions of 𝐽𝑖 𝑗 .

Introduction of the Replica Method
Introduce the replica method to calculate the configurational
average of the free energy. The replica method involves con-
sidering 𝑛 copies of the same system, each with different
distributions of 𝐽𝑖 𝑗 , and calculating the configurational aver-
age of the free energy.



The free energy 𝐹 is expressed as follows:

𝐹 = −𝑘𝑇 ln(𝑍𝑛)

Here, 𝑘 is the Boltzmann constant, 𝑇 is the absolute tem-
perature, and 𝑍𝑛 is the partition function for 𝑛 copies.

Calculation of Configurational Averages
Configurational averaging involves calculating the average of
the free energy over different distributions of 𝐽𝑖 𝑗 . This is
achieved by taking the average of the free energies of each
copy.

⟨𝐹⟩ = 1
𝑛

∑︁
𝑖

𝐹𝑖

Here, 𝐹𝑖 represents the free energy of each copy.

Master Equation
Using the free energy calculated based on the replica method,
calculate the time average of a physical quantity 𝐴 denoted
as ⟨𝐴(𝑡)⟩. The specific calculation process follows statistical
mechanics using the free energy.

This provides a scenario for considering thermal averages
and configurational averages in the spin glass phase, and it
elaborates on the detailed calculation process using the replica
method.

Additionally, by introducing factors such as imperson-
ation and filter bubble diffusion using the replica method,
one can calculate the configurational average of the free en-
ergy by taking the average over 𝑛 copies with the same bond
distribution 𝐽𝑖 𝑗 and extrapolating to the limit as 𝑛 approaches
0. This scenario offers a theoretical approach to understand-
ing the diffusion of influencers and filter bubbles.

7. Discussion:Field Quantum Field
Memory: Spin Glass Memory

Patterns
Let’s establish specific equations regarding the comparison
of the minimal energy points.

Idea:
Comparing minimal energy points typically focuses on the
consistency of energy values and spin configurations. Using
the following equations, comparisons can be made:

1. Comparison of Energy:

Compare the energies of minimal energy points 𝐸1 and 𝐸2.
Check if the energies are equal.

𝐸1 = −
∑︁
𝑖, 𝑗

𝐽𝑖 𝑗𝑆1𝑖𝑆1 𝑗

𝐸2 = −
∑︁
𝑖, 𝑗

𝐽𝑖 𝑗𝑆2𝑖𝑆2 𝑗

If 𝐸1 and 𝐸2 are equal, they represent the same minimal
energy point in terms of energy.

2. Comparison of Spin Configurations:

Also, check if the spin configurations match. Verify if 𝑆1𝑖
and 𝑆2𝑖 are identical.

𝑆1𝑖 = 𝑆2𝑖

If 𝑆1𝑖 matches 𝑆2𝑖 for all 𝑖, the spin configurations are
consistent.

3. Consistency Determination:

If the energies are equal, and the spin configurations match,
minimal energy points 𝐸1 and 𝐸2 represent the same pattern.

In numerical calculations, such comparisons allow for the
identification of minimal energy points and the comparison of
patterns. Particularly, the consistency of spin configurations
is a crucial element.

Furthermore, when considering the Hopfield model to
evaluate memory pattern characteristics, the following ap-
proach can be considered:

In the Hopfield model, memory patterns are represented
as energy minima. To evaluate memory pattern characteris-
tics, the following equations are utilized:

1. Energy Function (Hamiltonian):

The energy function 𝐻 of the Hopfield model is represented
as follows:

𝐻 (S) = −1
2

∑︁
𝑖, 𝑗

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗 −
∑︁
𝑖

𝜃𝑖𝑆𝑖

Here, 𝑆𝑖 represents the state of the spins (+1 or -1), 𝐽𝑖 𝑗 is
the strength of interactions, and 𝜃𝑖 is the threshold.

2. Energy Minima:

Memory patterns are characterized as energy minima. In
other words, for the memory pattern S∗, the following condi-
tion holds:

∇𝐻 (S∗) = 0

Spin configurations that satisfy this condition are memory
patterns.



3. Stability of Energy Minima:

For memory patterns to be stable, energy minima must be
local minima. This means that all eigenvalues of the Hessian
matrix should be positive. The Hessian matrix is represented
as follows:

𝐻𝑖 𝑗 = −𝐽𝑖 𝑗 − 𝜃𝑖𝛿𝑖 𝑗

When all eigenvalues of this matrix are positive, memory
patterns are stable.

4. Energy Difference:

Calculate the energy difference between memory patterns
and other spin configurations. A smaller energy difference
indicates greater stability of the memory pattern concerning
other spin configurations.

𝐸diff = 𝐻 (S∗) − 𝐻 (S)

Using these equations, memory pattern characteristics can
be evaluated, and aspects like stability and energy properties
can be understood. Especially, the stability as an energy
minimum is crucial for memory retention.

8. Discussion:Edwards-Anderson Model
and Hopfield Model: A Spin Glass

Perspective
In this discussion, we theoretically examine the Edwards-
Anderson model and the Hopfield model in combination to
address the issues of spin glass phenomena and associative
memory. Although these two models have different back-
grounds, they are both essential for understanding spin sys-
tems, so let’s clarify their roles.

8.1 Energy Function and Associative Memory
The Hopfield model is a model of neural networks that ad-
dresses the problem of associative memory. In this model,
an energy function 𝐸 (𝑆) is defined, and the energy for a spin
configuration 𝑆 (used here to simulate neuron states) is calcu-
lated. This energy function is designed to ensure that specific
spin configurations (or memory patterns) are the most stable
(i.e., have the lowest energy) for the system.

8.2 Spin Glass Freezing
Spin glass phenomena involve the freezing of randomly ori-
ented spins at low temperatures. The Edwards-Anderson
model is used to handle this phenomenon by incorporating
random interactions between spins. In this model, it is as-
sumed that spins take on random but fixed patterns at temper-
atures below a certain threshold.

8.3 Establishing the Strongly Magnetic Ising
Model

The Ising model is a fundamental model of spin systems,
characterized by spins having two possible states (usually +1
or -1). In the strongly magnetic Ising model, all interactions
𝐽𝑖 𝑗 between spins are positive, indicating a tendency for spins
to align in the same direction. By using this model to repre-
sent the freezing state of spin glasses, we can understand how
energy minima are realized.

8.4 Associative Memory and Random Spin Con-
figurations

In the Hopfield model, neuron states (represented here as
spins) can be used to represent stored patterns. In the context
of spin glass phenomena, the goal is to recall specific patterns
from among random spin configurations. In this process, one
searches for spin configurations 𝑆 that minimize the energy
function 𝐸 (𝑆) to reconstruct complete memories based on
partial information, emulating the process of recalling full
memories based on partial cues.

8.5 Energy Minimization and Associative Mem-
ory

In the Hopfield model, the stored patterns 𝜉𝑖 correspond to
energy minima. This means that these patterns are stable
states in the network, and 𝜉𝑖 is likely to be chosen for any 𝑆

such that 𝐸 (𝜉𝑖) < 𝐸 (𝑆).

9. Calculation Procedure
9.1 Setting the Coupling Matrix 𝐽𝑖 𝑗

Calculate the coupling matrix 𝐽𝑖 𝑗 from the random spin
configuration of the spin glass. This matrix represents the
strength of interactions between spins and is used to intro-
duce randomness into the Hopfield model.

9.2 Calculating the Energy of Memory Patterns
𝜉𝑖

Compute the energy 𝐸 (𝜉𝑖) for memory patterns 𝜉𝑖 by sub-
stituting them into the energy function 𝐸 (𝑆). This sets the
energy states for memory patterns that serve as criteria for
associative memory.

9.3 Exploring Recall Patterns 𝜉∗
𝑖

To find the memory pattern 𝜉∗
𝑖

that should be recalled from
the given partial information 𝑆′, apply the dynamics of the
Hopfield model. In this process, use asynchronous or syn-
chronous update rules to search for spin configurations 𝑆 that
minimize the energy function 𝐸 (𝑆). This emulates the pro-
cess where a neural network recalls the appropriate memory
pattern based on given input.



9.4 Confirming Memory Recall
Verify whether the recall process was successful. If success-
ful, the system converges to a specific memory pattern 𝜉∗

𝑖
.

This indicates that the network accurately recalled the de-
sired memory. However, if it fails, the system may converge
to local minima, signifying erroneous or incomplete memory
recall.

Theoretically Explaining the
Relationship between Spin Glass

Phenomena and Associative Memory
Through the interaction between spin glass phenomena and
associative memory, provide a theoretical explanation for the
dynamics between random spin configurations in spin glasses
and memory recall in the Hopfield model. Show how the
interaction between random spin configurations and memory
patterns plays a crucial role in physical phenomena (e.g., spin
glass freezing) and information processing problems (e.g.,
filter bubbles).

This approach demonstrates that the combination of the
Edwards-Anderson model and the Hopfield model can be use-
ful for theoretically explaining complex phenomena such as
spin glass phenomena and associative memory. The dynam-
ics between random spin configurations and memory patterns
offer valuable insights into the understanding of physical and
information processing systems.

9.5 Time-Dependent Ising Model
Introducing time variation 𝑡 and considering external opin-
ion influences, calculations using causal Green functions,
advanced Green functions, and retarded Green functions are
suitable for understanding the dynamic dynamics of the dis-
course space. Below, we propose equations and a calculation
process based on this approach.

Hamiltonian of Time-Dependent Ising Model
The time-dependent Ising model is expressed as follows:

𝐻 (𝑡) = −𝐽
∑︁
⟨𝑖, 𝑗 ⟩

𝑆𝑖 (𝑡)𝑆 𝑗 (𝑡) − 𝐻 (𝑡)
∑︁
𝑖

𝑆𝑖 (𝑡) (1)

Here, 𝑆𝑖 (𝑡) represents the state of spins at time 𝑡, and 𝐻 (𝑡)
represents the external opinion influence that changes over
time.

Definition of Green Functions
9.6 Causal Green Function
Define the causal Green function 𝐺𝑐

𝑖 𝑗
(𝑡, 𝑡′) as follows:

𝐺𝑐
𝑖 𝑗 (𝑡, 𝑡′) = −𝑖⟨𝑇 [𝑆𝑖 (𝑡)𝑆 𝑗 (𝑡′)]⟩ (2)

Here, ⟨·⟩ represents the statistical ensemble average, and 𝑇 is
the time-ordering operator.

9.7 Advanced and Retarded Green Functions
Define the advanced Green function 𝐺𝑎

𝑖 𝑗
(𝑡, 𝑡′) and the re-

tarded Green function 𝐺𝑟
𝑖 𝑗
(𝑡, 𝑡′) as follows:

𝐺𝑎
𝑖 𝑗 (𝑡, 𝑡′) = 𝑖𝜃 (𝑡′ − 𝑡)⟨[𝑆𝑖 (𝑡), 𝑆 𝑗 (𝑡′)]⟩ (3)

𝐺𝑟
𝑖 𝑗 (𝑡, 𝑡′) = −𝑖𝜃 (𝑡 − 𝑡′)⟨[𝑆𝑖 (𝑡), 𝑆 𝑗 (𝑡′)]⟩ (4)

Here, 𝜃 (𝑡) is the Heaviside function, and [𝐴, 𝐵] represents
the commutator.

9.8 Calculation of Green Functions
Using the Hamiltonian 𝐻 (𝑡), calculate the Green functions.
This calculation is typically performed using perturbation
theory or numerical simulations.

9.9 Analysis of External Opinion Influence
To analyze how external opinion influence 𝐻 (𝑡) affects the
discourse space over time, calculate the response of the dis-
course space using Green functions. This response is repre-
sented by the opinion response function 𝜒𝑖 𝑗 (𝑡, 𝑡′), showing
how the discourse space reacts to external opinion influence:

𝜒𝑖 𝑗 (𝑡, 𝑡′) =
𝛿⟨𝑆𝑖 (𝑡)⟩
𝛿𝐻 𝑗 (𝑡′)

(5)

Here, 𝜒𝑖 𝑗 (𝑡, 𝑡′) represents the time-dependent magnetization
(or opinion response function), indicating how the discourse
space responds to external opinion influence.

10. Consideration of Delayed Effects
Using the retarded Green function 𝐺𝑟

𝑖 𝑗
(𝑡, 𝑡′), calculate the

delayed effects of external opinion influence on the discourse
space. These delayed effects indicate that changes in opinion
are not immediately reflected and appear with a temporal
delay.

11. Calculation of Time-Dependent
Correlation Functions

Using the causal Green function 𝐺𝑐
𝑖 𝑗
(𝑡, 𝑡′), calculate the cor-

relation of opinions at different times. This allows for an
understanding of how opinions change and interact over time.

This theoretical framework allows us to understand the dy-
namic effects of external opinion influence on the discourse
space. It is particularly useful for assessing the significance of
external influences on the formation of filter bubbles and po-
larization of opinions. By using Green functions, it becomes
possible to analyze in greater detail the temporal behavior of
the discourse space and its response to external influences.



12. Conclusion:Associative Memory and
Energy in Digital Environments

Applying the Hopfield model pseudo-digitally in a digital
environment and considering phenomena like filter bubbles
leads to interesting theoretical approaches related to associa-
tive memory of information and energy. Below, we present
an examination of filter bubbles using this model.

Energy Function and Digital Information
The Hopfield model’s energy function, 𝐸 (𝑆), is associated
with the states of digital information. In a digital environment,
information has specific states, and corresponding energies
are calculated. The energy function can be interpreted as an
indicator of information relevance and co-occurrence.

Associative Memory of Digital Information
The Hopfield model can be applied to associative memory of
digital information. For example, specific patterns of digital
content or information (articles, photos, videos, etc.) are
treated as memory patterns 𝜉1, 𝜉2, 𝜉𝑝 . These patterns are
defined as energy minima, where the energy function 𝐸 (𝜉𝑖)
has its minimum value.

Filter Bubbles and Information Retrieval
In phenomena like filter bubbles, users tend to receive infor-
mation biased towards specific viewpoints or topics. Using
the Hopfield model, users attempt to recall the most relevant
information 𝜉∗

𝑖
from the given information 𝑆′. This can be

perceived as a process of finding information patterns 𝑆 that
minimize the energy function 𝐸 (𝑆).

Energy Minimization and Filter Bubbles
When filter bubbles are formed, users may converge on spe-
cific information patterns. In terms of the Hopfield model,
this suggests that users are attracted to information patterns
with the lowest energy, exposing them to such information
continuously.

Competing Information Patterns
In a digital environment, various information patterns may
compete. The Hopfield model can be used to select the
information pattern with the lowest energy from among com-
peting patterns, determining the information provided to the
user. Minimizing the energy function may assist in resolving
competition.

In summary, the scenario of 𝑛 extrapolating to 0 provides
theoretical insights into associative memory of information
and energy concerning phenomena like filter bubbles in dig-
ital environments. Theoretical considerations of information
retrieval processes and competition resolution through energy

function minimization may contribute to a deeper understand-
ing of the mechanisms behind filter bubbles.

We will discuss the utility and drawbacks of the 𝑛 extrap-
olation scenario in the context of filter bubbles in digital and
analog spaces and the long-term memory and heat preserva-
tion discussions related to fake news diffusion.

13. Conclusion:Utility and Drawbacks
of 𝑛 Extrapolation Scenario

Utility
(1) Theoretical Modeling: The scenario of 𝑛 extrapolating

to 0 is useful for theoretical modeling of filter bubbles
and information diffusion. It provides a detailed under-
standing of selective diffusion of information and the
selection process.

(2) Gaining Insights: This approach allows for gaining
deep insights into how specific information is chosen
and diffused. It aids in understanding the mechanisms
and impacts of filter bubbles.

(3) Proposing Countermeasures: Based on computational
results, countermeasures against filter bubbles or meth-
ods to control selective information diffusion can be
proposed, potentially mitigating biased information dif-
fusion.

Drawbacks
(1) Simplification: The scenario of 𝑛 extrapolating to 0

simplifies the complexity of real-world filter bubbles.
Real-world information diffusion is influenced by many
factors, and simple models may not account for all of
them.

(2) Difficulty in Empirical Validation: Empirical data and
evidence are required for 𝑛 extrapolation to 0. However,
real-world information about filter bubbles is limited,
making model validation challenging.

(3) Excessive Assumptions: This scenario incorporates
many assumptions, and they may not align with the ac-
tual situation. Results can be significantly affected by
these assumptions.

In conclusion, the 𝑛 extrapolation scenario provides the-
oretical insights but may oversimplify the complexity of real-
world filter bubbles. Recognizing the limitations of the model
and integrating it with real data is crucial for comprehensive
discussions.

Analyzing the Phase Transition of the
Strong Magnetic Ising Model

Let’s consider ideas for analyzing the phase transition of the
Ising model for strong magnetic materials. The strong mag-



netic Ising model is a simple model with spins having two
states, +1 or −1, but it exhibits interesting properties related
to phase transitions.

Ideas
(1) Hamiltonian of the Ising Model:

The Hamiltonian of the strong magnetic Ising model is
defined as follows:

𝐻 = −𝐽
∑︁
⟨𝑖, 𝑗 ⟩

𝑆𝑖𝑆 𝑗 − 𝐻
∑︁
𝑖

𝑆𝑖

Here, 𝑆𝑖 represents the spin values (+1 or −1), ⟨𝑖, 𝑗⟩
denotes pairs of adjacent spins, 𝐽 is the exchange inter-
action constant, and 𝐻 is the external magnetic field.

(2) Characteristics of Phase Transition:

The strong magnetic Ising model exhibits a phase tran-
sition at the critical temperature 𝑇𝑐. At this transition
point, physical quantities such as magnetization and sus-
ceptibility undergo rapid changes. Exponents called crit-
ical exponents describe the characteristics of this change.

(3) Analysis of the Transition Point:

To analyze the phase transition point 𝑇𝑐, the following
steps are performed:

Numerical simulations (e.g., Monte Carlo meth-
ods) are used to find the critical temperature 𝑇𝑐.
Physical quantities like magnetization and suscep-
tibility are calculated in the vicinity of 𝑇𝑐 to deter-
mine the critical exponents. The critical exponents
are expressed as follows:

𝑀 ∝ (𝑇 − 𝑇𝑐)𝛽 , 𝜒 ∝ |𝑇 − 𝑇𝑐 |−𝛾

Here, 𝑀 is magnetization, 𝜒 is susceptibility, and
𝛽 and 𝛾 are critical exponents.
Size scaling methods are used to consider finite size
effects and obtain the values of critical exponents.

(4) Evaluation of Analytical Results:

The calculated critical temperature and critical expo-
nents are compared with experimental results and other
theories to assess the validity of the model. It is verified
whether theoretical results match experimental observa-
tions.

The phase transition of the strong magnetic Ising model
is a classic topic in statistical mechanics, and various analysis
methods are available. By performing numerical simulations
and using size scaling techniques, critical temperature and
critical exponents can be calculated, providing insights into
the phase transition of matter.

14. Conclusion
Calculation of Coordination Average in

Spin Glass
In the context of spin glass, the calculation of the coordination
average plays a crucial role in understanding its properties.
This average involves considering thermal fluctuations and
spatial distributions of bond interactions 𝐽𝑖 𝑗 .

In the spin glass phase, the thermal average is obtained
from 𝐽𝑖 𝑗 , while the coordination average involves averaging
over different spatial distributions of 𝐽𝑖 𝑗 . The thermal average
corresponds to a time average over a long time between 𝑡2
and 𝑡1, where 𝑡2 ≪ 𝑡 ≪ 𝑡1. This distinction is important for
characterizing spin glass behavior.

Introduction to the Replica Method
The replica method is a powerful technique for calculating
the coordination average in spin glass systems. It involves
introducing 𝑛 identical copies or replicas, each with the same
joint distribution 𝐽𝑖 𝑗 .

Setting Up the Partition Function
For each replica 𝑖 (𝑖 = 1, 2, . . . , 𝑛), we define a partition func-
tion 𝑍𝑖 (𝑇), where 𝑇 represents temperature. The partition
function is given by:

𝑍𝑖 (𝑇) =
∑︁
{𝑆𝑖 }

exp(−𝛽𝐸𝑖)

Here, 𝛽 is the inverse temperature (1/𝑇), and 𝐸𝑖 represents
the energy of the 𝑖-th replica.

Calculation of Helmholtz Free Energy
The Helmholtz free energy 𝐹𝑖 (𝑇) for each replica is calculated
based on the partition function:

𝐹𝑖 (𝑇) = −𝛽−1 ln(𝑍𝑖 (𝑇))

Calculation of the Coordination Average
A crucial step in the replica method is to average the free
energies of the 𝑛 replicas to obtain the adjusted mean, denoted
as 𝐹 (𝑇):

𝐹 (𝑇) = 1
𝑛

𝑛∑︁
𝑖=1

𝐹𝑖 (𝑇)

Extrapolation to the Limit
To obtain an accurate coordination average, it is necessary to
extrapolate the value of 𝑛 to zero:

𝐹 (𝑇) = lim
𝑛→0

𝐹 (𝑇 ; 𝑛)



Challenges in Extrapolating 𝑛 to Zero
While the replica method is a valuable tool for calculating
coordination averages, there are theoretical challenges asso-
ciated with extrapolating 𝑛 to zero in spin glass systems.

Finite Energy
As 𝑛 approaches zero, there is a concern that the energy
may become finite. This violates the fundamental physical
requirement that energy should remain finite in a physical
system, posing a problem.

Entropy Behavior
Entropy is another critical factor in coordination average cal-
culations. However, as 𝑛 approaches zero, the behavior of
entropy may become inappropriate. Ensuring the theoretical
rigor of extrapolating entropy becomes challenging.

Characteristics of Phase Transitions
Systems like spin glasses may exhibit non-analytic behavior
associated with phase transitions. Simply extrapolating 𝑛 to
zero may not accurately reproduce this behavior at phase tran-
sition points, necessitating additional methods and numerical
approaches.

Given these theoretical challenges, accurately extrapolat-
ing 𝑛 to zero is problematic, particularly for complex systems
like spin glasses. It requires careful consideration and po-
tential modifications to ensure accurate coordination average
calculations.

Challenges in Understanding Filter
Bubbles

Filter bubbles, which occur in digital environments, present
several challenges in their understanding and analysis. These
challenges include:

Algorithmic Opacity

One significant challenge is the algorithmic opacity of content
recommendation systems. The algorithms used by platforms
to personalize content often lack transparency, making it dif-
ficult to discern the criteria used for content selection. This
opacity hinders a clear understanding of why certain infor-
mation is presented to users while other content is filtered
out.

Confirmation Bias

Filter bubbles can reinforce users’ existing beliefs and pref-
erences, leading to confirmation bias. Users may be exposed
primarily to content that aligns with their views, limiting their

exposure to diverse perspectives. This bias can be challenging
to quantify and analyze effectively.

Echo Chambers

Filter bubbles can create echo chambers where users interact
primarily with like-minded individuals and content. This seg-
regation of information and opinions can hinder constructive
dialogue and compromise, making it challenging to identify
the extent of echo chamber effects in digital spaces.

Limited User Awareness

Many users are unaware of the existence of filter bubbles or
the extent to which their online experiences are personalized.
This lack of awareness can make it difficult to gauge the im-
pact of filter bubbles on individual behavior and perceptions.

Benefits of Understanding Filter Bubbles
Despite these challenges, gaining a deeper understanding of
filter bubbles in digital environments offers several valuable
insights and benefits:

Improved Personalization

Understanding the mechanisms of filter bubbles can lead to
improved content personalization. By identifying and ad-
dressing biases in recommendation algorithms, platforms can
provide users with a more diverse range of information and
perspectives, enhancing the quality of user experiences.

Mitigating Polarization

Insights into filter bubbles can help mitigate polarization by
introducing mechanisms that expose users to alternative view-
points. This can contribute to a more balanced information
ecosystem and reduce extreme ideological divisions.

Media Literacy Enhancement

Awareness of filter bubbles can encourage media literacy
efforts. Educating users about the presence and potential
effects of personalized content can empower them to critically
evaluate information sources and make informed decisions.

Policy Development

A nuanced understanding of filter bubbles is essential for pol-
icymakers. It can inform the development of regulations and
guidelines aimed at promoting transparency and fairness in
content recommendation systems, thereby protecting demo-
cratic values and diverse discourse.

In conclusion, while the challenges in understanding fil-
ter bubbles are substantial, the potential benefits of gaining
deeper insights into their dynamics are equally significant. By



addressing these challenges and leveraging the knowledge ob-
tained, we can work towards a more informed, balanced, and
inclusive digital information landscape.

15. Summary
The context in which the scenario of extrapolating 𝑛 to 0 to
obtain accurate results is considered involves the introduction
of the replica method to model phenomena related to selective
diffusion of information, such as filter bubbles and the spread
of misinformation. In this scenario, the replica method is
used to theoretically investigate the diffusion of information
and the process of selection.

Hamiltonian Definition
(1) To model the selective diffusion of information, a Hamil-

tonian is defined. This Hamiltonian represents interac-
tions between different pieces of information or users.
The general form of the Hamiltonian is as follows:

𝐻 =
∑︁∑︁

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝐽𝑖 𝑗 represents the interaction between information
elements 𝑖 and 𝑗 , and 𝑆𝑖 and 𝑆 𝑗 represent the states of
information elements 𝑖 and 𝑗 .

Application of the Replica Method
(1) The replica method involves considering 𝑛 copies with

different patterns of information access to calculate the
coordination average of the free energy. Each copy has
a different pattern of information access but shares the
same Hamiltonian.

Calculation of Free Energy
(1) The free energy 𝐹𝑛 for each copy is calculated. The free

energy is expressed as follows:

𝐹 = −𝑘𝑇 ln(𝑍𝑛)

Here, 𝑘 is the Boltzmann constant, 𝑇 is the temperature,
and 𝑍𝑛 is the partition function for 𝑛 copies.

Calculation of Coordination Averages
(1) Coordination averages are obtained by taking the average

of the free energies among different copies.

< 𝐹 >=
1
𝑛

∑︁
𝐹𝑛

Here, 𝐹𝑛 represents the free energy of each copy.

Extrapolation to 𝑛 = 0
(1) Finally, accurate coordination averages are obtained by

extrapolating 𝑛 to 0. This extrapolation is a method to
obtain the average energy related to different patterns of
information access.

Addressing Equilibrium Concerns
(1) Addressing the point about breaking the equilibrium

state is important. To handle the scenario where 𝑛 ex-
trapolates to 0 properly, it provides theoretical supple-
ments on maintaining equilibrium and its countermea-
sures.

Maintaining Equilibrium
(1) In the replica method, when 𝑛 extrapolates to 0, there

is a potential risk of breaking the equilibrium state of
the system. To address this issue, methods to maintain
a pseudo-equilibrium state are needed.

(2) Common strategies include the application of numerical
computation methods such as Monte Carlo methods or
molecular dynamics methods to prevent the system from
deviating from equilibrium. These methods adjust the
calculations to bring the system closer to equilibrium.

Verification of Equilibrium
(1) In the replica method, it is crucial to confirm whether

the equilibrium state is maintained when 𝑛 extrapolates
to 0. This can be achieved by using physical indicators
such as ergodicity and time-reversal symmetry to verify
the equilibrium state.

Proposal of Calculation Process and General
Formula
(1) Specific calculation processes and general formulas for

maintaining equilibrium depend on the nature of the sys-
tem or problem in question. Depending on the properties
of the system or model, appropriate calculation methods
should be chosen to prevent the disruption of equilibrium
and construct the corresponding general formulas.

(2) Common precautions include verifying the conserva-
tion of energy during the calculation process and select-
ing appropriate sampling methods. Also, constraints on
transition probabilities and time scales can be introduced
to maintain equilibrium.

Relevance to Fact-Checking
(1) Measures to maintain equilibrium are also relevant to

fact-checking. Fact-checking aims to provide accurate
information by preventing the disruption of equilibrium.



Therefore, strategies for maintaining equilibrium can
enhance the reliability of the fact-checking process.

Advantages and Disadvantages of
Information Hygiene Scenario

The scenario mentioned above - how does it benefit the hy-
giene of the information space? Please also provide disadvan-
tages. The scenario of extrapolating 𝑛 to 0 to obtain accurate
results has theoretical disadvantages as well.

Advantages:
1. Improved Reliability: In fact-checking and informa-

tion verification, the ability to obtain accurate results
enhances reliability. It serves as an effective means to
prevent the spread of false or misleading information.

2. Enhanced Data Quality: Gathering and analyzing data
based on accurate information improves data quality.
This allows for more informed decision-making and pol-
icy formulation.

3. Information Discrimination: Utilizing methods to ac-
quire information without disrupting the equilibrium
state enhances the ability to distinguish useful informa-
tion from less reliable sources. This enables efficient
information filtering.

Disadvantages:
1. Computational Costs: There is a potential increase in

computational costs to maintain the equilibrium state.
It may require advanced computational resources and
time.

2. Information Delay: Maintaining the equilibrium state
might introduce delays in information provision or ac-
cess. Urgent information may be constrained.

3. Limitations on Information: Constraints imposed to
maintain the equilibrium state may lead to bias or lim-
itations in accessing specific information. It could be
challenging to comprehensively gather a wide range of
information.

4. Limited Applicability: It may not be applicable to all
information environments or contexts. It could be re-
stricted to specific problems or information sources.

Disadvantages of Extrapolating 𝑛 to 0 for Accu-
rate Results:

1. Breakdown of Equilibrium: If it’s difficult to maintain
the equilibrium state, there’s a risk of the system deviat-
ing from equilibrium. In such cases, there are concerns
about the reliability of the computed results.

2. Scope of Applicability: The difficulty in maintaining
the equilibrium state might limit its applicability to cer-
tain problems or systems. Therefore, this approach may
not be suitable for all information.

3. Resource Requirements: Additional computational re-
sources and time may be required to maintain the equi-
librium state, potentially increasing operational costs.

4. Access Constraints: Access constraints to maintain the
equilibrium state could lead to an inability to access
some information.

In summary, the advantages and disadvantages of main-
taining accurate information and equilibrium state interact
with each other. When aiming to improve information qual-
ity and reliability, it’s essential to consider the merits of
collecting and verifying information without disrupting the
equilibrium state and carefully assess factors like cost and
applicability.
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