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Abstract: This study builds on the Edwards-Anderson model to theoretically explore replica sym-
metry breaking in filter bubble phenomena. The purpose of this computational experiment is to
examine how information flow and opinion formation affect the dynamics of a social system from
several computational experiments. Based on the replica method, we consider multiple copies (repli-
cas) of the system and introduce an order parameter representing the correlation between replicas.
Thus, we calculate the free energy in the n → 0 limit and analyze the effect of replica symmetry
breaking on filter bubble formation. This approach provides theoretical insights into the mechanisms
of information bias and echo chamber effects in opinions, as well as insights into the information
diversity reduction caused by replica symmetry breaking in the filter bubble phenomenon. This
research contributes to the development of filter bubble theory in social science, information science,
and communication engineering, and provides new perspectives on important issues in the modern
information society. In this paper, we explore how replica symmetry breaking affects the dynamics of
filter bubble formation and dissolution through computational experiments using the replica method,
with the aim of seeking a balance between information flow, diversity of opinion, and the guarantee
of informational health.
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1. Introduction
This text provides an overview of research aimed at enhancing
our understanding of the filter bubble phenomenon and spin
glass theory based on the Edwards-Anderson model. Specif-
ically, it seeks to investigate the breakdown of replica sym-
metry in filter bubble formation using the replica method and
explore the mechanisms behind information bias and the echo
chamber effect theoretically. This research contributes to the
development of filter bubble theory in social sciences, infor-
mation science, and communication engineering, providing
new perspectives on important issues in today’s information
society.

Spin Glass Theory
In this study, the computational processes in spin glass theory
play a crucial role. Spin glass theory involves calculating the
thermal averages and configurational averages of magnetic
moments, which includes complex computation procedures
considering the characteristics of disordered systems. It de-

fines the Hamiltonian for spin glasses based on the Edwards-
Anderson model and calculates the partition function, free
energy, and magnetization susceptibility. The application of
replica method and computation of long-time averages are
also significant elements.

Characteristic of spin glass phase is that while the direc-
tions of spins randomly fluctuate, an overall frozen state is
maintained. The nonlinear change in magnetization suscep-
tibility at the transition temperature indicates the spin glass
phase transition. Numerical calculations and experiments of-
ten employ methods such as the Monte Carlo method. article
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Introduction
In this research, we theoretically explore the filter bubble phe-
nomenon using spin glass theory and the Edwards-Anderson
model. Below, we provide a more detailed explanation, in-
cluding theoretical aspects and equations.
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Fig. 1: Spin-Glass order q(t), Critical Points

Edwards-Anderson Model and Spin Glass The-
ory
The Edwards-Anderson model is a fundamental model for
describing the state of a spin glass. In this model, a set
of spins has random interactions and is represented by the
following Hamiltonian:

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝑆𝑖 represents the state of the 𝑖-th spin (+1 or -1), 𝐽𝑖 𝑗 de-
notes random interaction strengths, and ⟨𝑖, 𝑗⟩ indicates neigh-
boring spin pairs. This model captures the complex energy
landscape of spin glass states.

Replica Method
The replica method is an important computational technique
in the physics of disordered systems. In this method, multi-
ple copies (replicas) of the system are considered, and their
statistical physics behavior is analyzed. The replica method
involves considering the 𝑛-th power of the partition function
𝑍 and taking the limit as 𝑛 → 0:

[𝑍𝑛]av =

∫ ∏
⟨𝑖, 𝑗 ⟩

𝑑𝐽𝑖 𝑗𝑃(𝐽𝑖 𝑗 )𝑍𝑛 (𝐽𝑖 𝑗 )

In filter bubble research, individual agents (or opinions)
are modeled as spins. The interactions 𝐽𝑖 𝑗 among agents
represent the degree of opinion sharing and information flow.
The system’s Hamiltonian is represented as follows:

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝑆𝑖 represents the "opinion" of the 𝑖-th agent.

Thermal Averages and Configurational Aver-
ages
To analyze the formation of filter bubbles, calculating thermal
averages and configurational averages is essential. Thermal
averages represent the average state of agents under a given
interaction:

⟨𝐴⟩ = 1
𝑍

∑︁
{𝑆𝑖 }

𝐴({𝑆𝑖})𝑒−𝛽𝐻 ({𝑆𝑖 })

Configurational averages represent the expected value of ther-
mal averages over different realizations of interactions 𝐽𝑖 𝑗 :

[⟨𝐴⟩]av =

∫ ∏
⟨𝑖, 𝑗 ⟩

𝑑𝐽𝑖 𝑗𝑃(𝐽𝑖 𝑗 )⟨𝐴⟩(𝐽𝑖 𝑗 )

Breakdown of Replica Symmetry
In the formation of filter bubbles, the breakdown of replica
symmetry may play a crucial role. The breakdown of replica
symmetry implies the emergence of correlations among dif-
ferent replicas. This can lead to information bias and echo
chamber effects.

Numerical Simulations and Experiments
Based on this theoretical model, numerical simulations and
experiments can be conducted to observe the formation, de-
velopment, and collapse of filter bubbles and validate theoret-
ical predictions. Methods like the Monte Carlo method and
other probabilistic techniques may be used for this purpose.

This research represents a novel attempt to understand
the filter bubble phenomenon by applying statistical physics
methods. By using the replica method and the Edwards-
Anderson model, we can gain a deeper understanding of how
information flow and opinion formation impact the dynamics
of social systems. This provides new perspectives in vari-
ous fields such as social sciences, information science, and
communication engineering.

Filter Bubble Understanding
For understanding the filter bubble phenomenon, applying
concepts of thermal averages, configurational averages, and
long-time averages from spin glass theory is an interesting ap-
proach. Filter bubbles are a phenomenon where information
and opinions circulate within specific groups or individuals,
limiting external perspectives. To model this, it’s necessary
to consider interactions and dynamics among agents.

In constructing this model, agents are represented as
spins, and their interactions are defined. The system’s Hamil-
tonian is defined as the sum of interactions among agents. The
calculation of the partition function involves summing the ex-
ponential of energies for all possible combinations of agent
states. Calculations of thermal averages and configurational
averages are also carried out.

As for the observation of filter bubbles, the model can
be used to observe the occurrence and dynamics of filter
bubbles. At low temperatures, interactions among agents
become stronger, making it easier for opinions to become
homogeneous, potentially indicating the formation of filter
bubbles. At high temperatures, interactions among agents
weaken, and diversity of opinions is expected to increase.



In conclusion, applying statistical physics models opens
up new avenues to gain a deeper understanding of the filter
bubble phenomenon. This approach may provide valuable
insights into research in the fields of social sciences and in-
formation science. A deeper understanding of phenomena
related to filter bubbles is a crucial challenge in today’s infor-
mation society.

1.1 Analysis of Filter Bubbles: Incorporating
Remote and Proximal Interactions

Introducing the concepts of remote interaction and proximal
interaction into the analysis of filter bubbles is highly effec-
tive. These concepts play a crucial role in understanding
how information and opinions circulate and influence within
networks.

1.2 Introduction of Remote Interaction
1.3 Significance

Introducing remote interaction in filter bubbles allows us
to capture the propagation of information and opinions
across extensive social networks. This includes scenar-
ios such as viral information dissemination on social
media and sharing of opinions among large communi-
ties.

1.4 Modeling Approach
In multi-layer network models, remote interaction can
be modeled as interactions between different layers or
nodes that are far apart. This enables the analysis to
include factors that have broad influence, not just local
interactions.

1.5 Introduction of Proximal Interaction
1.6 Significance

Proximal interaction is crucial for understanding the for-
mation of close-knit communication and opinion shap-
ing within filter bubbles. This includes sharing and
influencing of opinions among close friends, family, or
tightly-knit communities.

1.7 Modeling Approach
Proximal interaction can be modeled as interactions be-
tween nodes within the same layer or physically close
nodes. This allows for a detailed analysis of the homog-
enization process of information and opinions within
filter bubbles.

1.8 Applications to Filter Bubble Analysis
By considering both remote and proximal interactions,
a comprehensive understanding of various dynamics re-

lated to the formation and maintenance of filter bubbles
can be achieved. For example, it can analyze how remote
interactions may introduce new information that disrupts
the homogenization within filter bubbles, or how prox-
imal interactions enhance resonance of opinions within
filter bubbles.

Modeling these interactions may also be useful in de-
veloping strategies to control or disrupt filter bubbles.
For instance, promoting remote interaction to increase
diversity of information or adjusting proximal interac-
tion to prevent opinion homogenization are potential ap-
proaches.

In filter bubble analysis, considering remote and proximal
interactions is important for a more detailed understanding
of the processes of information flow and opinion formation.
This can lead to more sophisticated theoretical approaches to
the phenomenon of filter bubbles, potentially leading to new
discoveries in information science and social sciences.

1.9 Significance of Hypotheses Regarding the
Computation Process of Filter Bubbles

1.10 Exploration of Temporal Dependence of In-
teractions

1.10.1 Hypothesis

The formation and dissolution of filter bubbles are sig-
nificantly influenced by the temporal dependence of in-
teractions among agents.

1.10.2 Significance

Incorporating temporal dependence into models can
help understand how the dynamics of filter bubbles re-
spond to changes in real-world social interactions over
time, providing a more realistic portrayal of the temporal
evolution of information flow and opinion formation.

1.11 Analysis of Interactions between Different
Layers in Multi-Layer Networks

1.11.1 Hypothesis

The strength of interactions between different informa-
tion layers affects the characteristics of filter bubbles.

1.11.2 Significance

Recognizing that filter bubbles are formed not only
within single layers (e.g., specific social media plat-
forms) but also through interactions between different
information layers can lead to a deeper understanding
of the complex structure of filter bubbles and reveal dy-
namics between different information sources.



1.12 Impact of Breaking Replica Symmetry
1.12.1 Hypothesis

The introduction of the concept of breaking replica sym-
metry in filter bubble research contributes to a better un-
derstanding of bias in information and the amplification
of echo chamber effects.

1.12.2 Significance

Exploring how breaking replica symmetry affects in-
formation diversity can provide insights into the inter-
nal dynamics of filter bubbles, offering a foundation for
strategies aimed at promoting information diversity and
mitigating homogenization of opinions.

In conclusion, this research introduces new perspectives
to existing social science theories and methodologies, making
significant contributions to the understanding and mitigation
of filter bubble phenomena.

2. Discussion:Detailed Analysis of the
Spin Glass Model and the Replica
Method in the Context of Filter

Bubbles
When introducing the replica method, it becomes possible to
calculate the configurational average of the free energy. By
considering 𝑛 copies of the system with the same bond distri-
bution 𝐽𝑖 𝑗 and extrapolating to the limit as 𝑛 approaches zero,
the correct configurational average can be obtained using the
replica method. This method is applied to calculate config-
urational averages, thermal averages, and bond distributions
when analyzing the transition and phase transition points of
filter bubbles. Let’s consider the computational process in-
volved in applying the theory of spin glasses to the states of
filter bubble occurrence.

To construct a statistical physics model for applying spin
glass theory to filter bubble occurrence, several important
steps are necessary. Filter bubbles refer to the phenomenon
of information bias and the reinforcement of individual opin-
ions. To model this, it is essential to define interactions
between agents appropriately and analyze their dynamic be-
havior statistically.

Model Construction
(1) Definition of Agents: Represent each agent (individual)

by variables like spins, which can take values such as +1
(agree) or -1 (disagree).

(2) Definition of Interactions: Interactions between agents
represent the exchange of opinions or sharing of infor-
mation. These interactions can have random strengths or

signs (positive or negative) and are defined based on the
strength of relationships or influence in social networks.

(3) Definition of the Hamiltonian: The Hamiltonian of the
system of agents is expressed as the sum of interaction
energies between agents.

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝑆𝑖 is the state (opinion) of the 𝑖-th agent, and 𝐽𝑖 𝑗

represents the interaction between agents.

Computational Process
(1) Calculation of the Partition Function: The partition

function 𝑍 is the sum over all possible states of the
system of the exponential of the energy.

𝑍 =
∑︁
{𝑆𝑖 }

𝑒−𝛽𝐻 ({𝑆𝑖 })

Here, 𝛽 is the inverse temperature parameter, which can
represent the system’s ’sensitivity to information’.

Details and Computation Process Using the
Replica Method
In the Edwards-Anderson model with the replica method, the
computational process is elaborated with formulas as follows.

Edwards-Anderson Model
In the Edwards-Anderson model, the spin glass Hamiltonian
is given by

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Here, 𝑆𝑖 is the spin of the 𝑖-th element (with values ±1),
and 𝐽𝑖 𝑗 is a random variable representing the interaction be-
tween spins.

The Replica Method
In the replica method, to calculate the configurational average
of the free energy, we consider 𝑛 copies (replicas) of the
system. The average of the 𝑛-th power of the partition function
𝑍 is taken as follows:

[𝑍𝑛]av =

∫ ∏
⟨𝑖, 𝑗 ⟩

𝑑𝐽𝑖 𝑗𝑃(𝐽𝑖 𝑗 )𝑍𝑛 (𝐽𝑖 𝑗 )

Here, 𝑃(𝐽𝑖 𝑗 ) is the probability distribution of 𝐽𝑖 𝑗 , and
𝑍𝑛 (𝐽𝑖 𝑗 ) is the partition function of 𝑛 replicas given 𝐽𝑖 𝑗 .



Breaking of Replica Symmetry
When replica symmetry is broken, different replicas can take
different states. This is mathematically handled by introduc-
ing the concept of replica symmetry breaking (RSB).

Computational Process
(1) Replica Trick: Calculate the configurational average of

the free energy as 𝐹 = − 1
𝛽

lim𝑛→0
[𝑍𝑛 ]av1

𝑛
.

(2) Mean Field Equations: Apply the mean field approx-
imation to calculate 𝑍𝑛. This simplifies the complex
interactions, making them computationally manageable.

(3) Expansion of the Partition Function: Expand 𝑍𝑛 over
different spin configurations. This requires considering
correlations between spins across different replicas.

(4) Calculation of Free Energy: Obtain the free energy
by taking the logarithm of the partition function and
considering the limit as 𝑛 → 0.

Challenges with the Replica Method
The replica method has several theoretical challenges:

(1) Non-physical Replica Numbers: The replica method
makes sense for integer values of 𝑛, but requires tak-
ing the limit as 𝑛 → 0, which is difficult to interpret
physically.

(2) Breaking of Replica Symmetry: Breaking replica sym-
metry complicates the calculations significantly. The
correct order of symmetry breaking (RSB order) is hard
to determine.

(3) Mathematical Rigor: The mathematical rigor of the
replica trick (taking the limit as 𝑛 → 0) is questionable.
Although it works well in specific cases, its general va-
lidity is not established.

(4) Complex Interpretation: Solutions obtained via the
replica method often differ from physical intuition and
can be challenging to interpret, especially when consid-
ering higher-order RSB.

Despite these challenges, the replica method has brought
significant advancements in spin glass theory. It remains a
powerful tool for solving statistical physics problems in disor-
dered systems, but its application requires careful mathemat-
ical and physical consideration. The non-physical concept of
extrapolating the replica number 𝑛 to a real number or near-
zero limit, the treatment of replica symmetry breaking, and
the resulting complex mathematical structure deviate from
physical intuition and the general framework of statistical
physics.

Hypothesis-Based Experimental Design for Fil-
ter Bubble Modeling
When extrapolating 𝑛 to zero states in the replica method,
the typical approach for computational experiments, espe-
cially for modeling phenomena like filter bubbles in statistical
physics, involves the following steps:

Steps in the Computational Process
(1) Model Definition: Model agents (individuals) as spins,

representing opinions with spin states 𝑆𝑖 (+1 for agree-
ment, -1 for disagreement, etc.). Define interactions 𝐽𝑖 𝑗
and external influences ℎ𝑖 between agents.

(2) Setting the Hamiltonian:

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

∑︁
𝑖

ℎ𝑖𝑆𝑖

Here, ⟨𝑖, 𝑗⟩ represents pairs of interacting agents.

(3) Calculation of the Partition Function:

𝑍 =
∑︁
{𝑆𝑖 }

𝑒−𝛽𝐻 ({𝑆𝑖 })

Here, 𝛽 = 1/𝑘𝑇 corresponds to a parameter similar to
temperature (in social science models, this might repre-
sent ’noise’ or ’uncertainty’).

(4) Application of the Replica Method: Consider 𝑛 copies
(replicas) of the system and calculate the 𝑛-th power of
the partition function 𝑍 . Perform calculations for integer
values of 𝑛 and then take

3. Discussion:The Limit as 𝑛 → 0

Calculation of Configurational Average:

[𝑍𝑛]av =

∫ ∏
⟨𝑖, 𝑗 ⟩

𝑑𝐽𝑖 𝑗𝑃(𝐽𝑖 𝑗 )
©«
∑︁
{𝑆𝑖 }

𝑒−𝛽𝐻 ({𝑆𝑖 },𝐽𝑖 𝑗 )ª®¬
𝑛

Here, 𝑃(𝐽𝑖 𝑗 ) is the probability distribution of 𝐽𝑖 𝑗 .
Limit of 𝑛 → 0:

– The configurational average of the free energy
is calculated as:

𝐹 = − 1
𝛽

lim
𝑛→0

[𝑍𝑛]av 1
𝑛

– This involves expanding the expression for
[𝑍𝑛]av for integer values of 𝑛 and then an-
alytically continuing to 𝑛.



3.1 Ideas for Computational Experiments

Numerical Simulations: Due to the complexity
of these theoretical calculations, it is often appro-
priate to investigate actual behavior through nu-
merical simulations. Techniques like the Monte
Carlo method or molecular dynamics can be used
to simulate the behavior of the system for different
realizations of 𝐽𝑖 𝑗 or temperatures 𝑇 .
Variation of Replica Number: Perform calcula-
tions for different integer values of 𝑛 and observe
how the behavior changes as 𝑛 → 0. This can as-
sess the effectiveness and limitations of the replica
trick.
Variation of External Influences: Investigate the
role of external influences ℎ𝑖 in the formation and
dissolution of filter bubbles. This can model the
impact of media or advertising in real-world social
phenomena.
Effect of Network Structure: Analyze how the
dynamics of filter bubbles are influenced by chang-
ing the network connectivity structure between
agents, such as random networks, scale-free net-
works, or small-world networks.

(a) Setting Parameters: Set parameters such as 𝐽𝑖 𝑗 ,
ℎ𝑖 , 𝑇 .

(b) Running Simulations: Conduct multiple simula-
tions for each set of parameters and gather statisti-
cal results.

(c) Data Analysis: Analyze data obtained from sim-
ulations to gain insights into the formation of filter
bubbles and their characteristics.

(d) Theoretical Reflection: Reflect on the theoretical
implications of the results, especially in the context
of statistical physics models of social phenomena.

4. Discussion:Extrapolating to Zero
State in the Replica Method

This computational experiment using the replica method
is central to analyzing the average behavior of physical
systems, particularly in disordered systems or complex
models like spin glasses. The typical approach in these
computational experiments involves the following steps:

4.1 Overview of the Computational Process

(a) Definition of the Partition Function:

𝑍 =
∑︁
{𝑆𝑖 }

𝑒−𝛽𝐻 ({𝑆𝑖 })

Here, {𝑆𝑖} represents all possible configurations of
spins, 𝐻 ({𝑆𝑖}) is the Hamiltonian, and 𝛽 = 1/𝑘𝑇 .

(b) Applying the Replica Trick:

[𝑍𝑛]av =

∫ ∏
⟨𝑖, 𝑗 ⟩

𝑑𝐽𝑖 𝑗𝑃(𝐽𝑖 𝑗 )𝑍𝑛 (𝐽𝑖 𝑗 )

Here, 𝑛 is the number of replicas, and 𝑃(𝐽𝑖 𝑗 ) is the
probability distribution of interactions 𝐽𝑖 𝑗 .

(c) Limit of 𝑛 → 0: Calculate the free energy 𝐹 by
considering the limit of 𝑛 → 0.

𝐹 = − 1
𝛽

lim
𝑛→0

[𝑍𝑛]av 1
𝑛

4.2 Ideas for Computational Experiments

(a) Choice of Model: First, select the physical system
to analyze (e.g., spin glass model for filter bubbles).

(b) Definition of Hamiltonian: Define a suitable
Hamiltonian for the system. For filter bubbles, a
Hamiltonian that accounts for interactions between
agents and external influences is appropriate.

(c) Introduction of Replicas: In practice, calcula-
tions are first performed for a fixed number of
replicas 𝑛 and then the limit 𝑛 → 0 is taken. This
step is one of the most challenging aspects of the
computational experiment.

(d) Use of Numerical Methods: In problems of sta-
tistical physics, it’s often difficult to solve analyt-
ically, hence numerical methods like the Monte
Carlo method or molecular dynamics are utilized.

(e) Exploration of Parameters: To understand the
behavior of the system, calculations are performed
while varying parameters such as temperature or
external magnetic fields, interaction strengths, etc.

4.3 Details of the Computational Formulas

In practice, the following steps are typically taken:

(a) Calculation of the Partition Function: First, cal-
culate the partition function 𝑍𝑛 for a fixed number
of replicas 𝑛. This is based on the sum of the
Hamiltonians of all replicas.

(b) Calculation of Free Energy: Compute the free
energy 𝐹 in the limit of 𝑛 → 0. This involves
taking the logarithm of 𝑍𝑛 and then evaluating the
derivative with respect to 𝑛 at 𝑛 = 0.

(c) Evaluation of the Configurational Average: Use
Monte Carlo simulations or other numerical meth-
ods to evaluate [𝑍𝑛]av over different realizations
of 𝐽𝑖 𝑗 .



These calculations, especially the process of taking the
limit as 𝑛 approaches zero, demand highly sophisticated
mathematical and computational techniques. Addition-
ally, the physical interpretation of the results is of utmost
importance. In practical computational experiments, the
following points need to be considered:

(5) Method of Taking the Limit: The limit of 𝑛 → 0
involves subtle mathematical issues. Care must be taken
in how this limit is approached and how the results are
interpreted.

(6) Numerical Stability: When using numerical meth-
ods, stability and accuracy are important. Especially
in Monte Carlo simulations, choosing a sufficient sam-
ple size and appropriate randomization techniques is
crucial.

(7) Existence of Multiple Solutions: In disordered sys-
tems like spin glasses, multiple stable states often exist.
The existence of different solutions and their physical
significance need to be considered.

(8) Treatment of Replica Symmetry Breaking: In actual
systems, replica symmetry breaking may occur. Accu-
rately handling this breaking is necessary.

5. Conclusion:Replica Symmetry
Breaking in Computational

Experiments

In computational experiments using the replica method
that consider replica symmetry breaking, we investigate
how the disorder in the system induces replica symme-
try breaking and how this affects physical quantities.
This type of calculation is particularly important in dis-
ordered systems like spin glasses. Here is a theoretical
explanation of the computational process.

Replica Symmetry Breaking in the
Replica Method

(a) Introduction of Replicas: Consider 𝑛 copies
(replicas) of the system. In the replica method,
these replicas are assumed to be independent.

(b) Calculation of the Partition Function: Calculate
the partition function 𝑍𝑛 for 𝑛 replicas.

(c) Introduction of Replica Symmetry Breaking: In
spin glass models, it is common for replica symme-
try to be broken. This means that correlations arise
between different replicas. To handle this mathe-
matically, parameters representing correlations be-
tween replicas (order parameters) are introduced.

(d) Calculation of Free Energy: Free energy 𝐹 is
calculated in the limit as 𝑛 → 0. In the replica
method, the free energy is expanded in terms of 𝑛
and considered at lower orders.

𝐹 = − 1
𝛽

lim
𝑛→0

[𝑍𝑛]av 1
𝑛

(e) Analysis of the Effects of Replica Symmetry
Breaking: When replica symmetry breaking is
introduced, new terms that affect the free energy
appear. Analyzing these terms allows us to investi-
gate the influence of replica symmetry breaking on
phase transitions and other thermodynamic prop-
erties of the system.

Hypothesis-Based Experimental
Design

Hypothesis: The breaking of replica symmetry funda-
mentally changes the nature of phase transitions in the
spin glass model. It is hypothesized that this has a signif-
icant impact, particularly on the behavior of the system
at low temperatures.

Computational Experiments: Perform calculations
based on the replica method with replica symmetry
breaking and compute free energy and other physical
quantities at different temperatures. Analyze the effects
of replica symmetry breaking on phase transitions and
the thermodynamic properties of the system.

Implications of the Experiment

These computational experiments allow for a deeper un-
derstanding of the nature of phase transitions in spin
glass models and the role of replica symmetry breaking.
Particularly, they provide insights into the characteris-
tics of the spin glass state at low temperatures, offering
theoretical insights into the system’s behavior.

Implementation and Analysis of
Experimental Design

Implementing the experimental design requires appro-
priate numerical computation techniques and compu-
tational resources. Analysis of the results demands a
thorough understanding of the theoretical framework
and knowledge in statistical physics. Careful considera-
tion is needed in interpreting the complex mathematical
structures that emerge, especially when dealing with the
breaking of replica symmetry.



The replica method plays a crucial role in advancing
our understanding of spin glass theory and disordered
systems. Despite its challenges, particularly in the non-
physical extrapolation of replica number 𝑛 and the treat-
ment of replica symmetry breaking, it has led to signif-
icant progress in the field. These challenges, alongside
the potential for new discoveries, continue to make re-
search in this area highly relevant and impactful.

6. Conclusion

Future Directions and Challenges in Replica
Method Research

(a) Exploring Advanced Mathematical Techniques:
Future research in the replica method may involve
advanced mathematical techniques to address the
non-physical nature of taking the 𝑛 → 0 limit and
to better handle the complexity of replica symme-
try breaking.

(b) Developing More Accurate Computational
Models: There is a continuous need for devel-
oping more accurate and efficient computational
models to simulate and understand the behavior of
spin glasses and related disordered systems.

(c) Addressing Unresolved Questions: Several unre-
solved questions remain in the field, particularly re-
garding the physical interpretation of replica sym-
metry breaking and the general applicability of the
replica method in different contexts.

Interdisciplinary Impact of Spin Glass Re-
search

Influence on Other Fields: The principles and
findings in spin glass theory and the replica
method have implications beyond physics, influ-
encing fields such as computational neuroscience,
complex systems, and optimization problems in
computer science.
Potential for Cross-Disciplinary Collabora-
tions: The challenges and complexities of spin
glass theory provide fertile ground for cross-
disciplinary collaborations, potentially leading to
novel approaches and solutions in various scientific
and technological domains.

Educational and Societal Relevance

Incorporating Spin Glass Theory into Educa-
tion: Introducing the concepts of spin glass theory
and the replica method in educational curricula can

enhance students’ understanding of complex sys-
tems and disordered phenomena, enriching their
analytical and problem-solving skills.
Raising Public Awareness: Communicating the
significance of spin glass research to the public
can foster a greater appreciation of the complex-
ities in natural and social systems, and the role
of advanced scientific research in unraveling these
complexities.

7. Conclusion:Understanding Spin
Glass Theory and Its Applications

In spin glass theory, the process of calculating the ther-
mal and coordination averages of magnetic moments
involves a complex computational procedure that takes
into account the properties of disordered systems. This
section explains the theoretical calculation process in
detail.

Concepts of Thermal and Coordination Av-
erages

Thermal averaging: Thermal average is the time
average of a physical quantity at a given tempera-
ture. It is defined using the partition function 𝑍 .

⟨𝐴⟩ = 1
𝑍

∑︁
{𝑆𝑖 }

𝐴({𝑆𝑖})𝑒−𝛽𝐻 ({𝑆𝑖 })

where 𝐴 is the physical quantity, {𝑆𝑖} is the spin
configuration, 𝐻 ({𝑆𝑖}) is the Hamiltonian, and 𝛽 =
1
𝑘𝑇

is the inverse temperature.
Coordination Average: The coordination average
is the average over different realizations of the in-
teraction 𝐽𝑖 𝑗 in spin glasses.

[⟨𝐴⟩]av =

∫ ∏
⟨𝑖, 𝑗 ⟩

𝑑𝐽𝑖 𝑗𝑃(𝐽𝑖 𝑗 )⟨𝐴⟩(𝐽𝑖 𝑗 )

where 𝑃(𝐽𝑖 𝑗 ) is the probability distribution of 𝐽𝑖 𝑗 .

Computational processes in the spin glass
phase

(a) Definition of the Hamiltonian: The spin glass
Hamiltonian is usually based on the Edwards-
Anderson model.

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

where ⟨𝑖, 𝑗⟩ indicates adjacent spin pairs and 𝐽𝑖 𝑗 is
the random interaction strength.



(b) Calculation of the partition function: Calculate
the partition function 𝑍 of the system, which is the
sum over all possible spin configurations.

𝑍 =
∑︁
{𝑆𝑖 }

𝑒−𝛽𝐻 ({𝑆𝑖 })

(c) Thermal average of magnetic moments: The
thermal average of the magnetic moment is cal-
culated using the partition function.

⟨𝑀⟩ = 1
𝑍

∑︁
{𝑆𝑖 }

(∑︁
𝑖

𝑆𝑖

)
𝑒−𝛽𝐻 ({𝑆𝑖 })

(d) Calculation of the coordination mean: The coor-
dination mean is the expected value of the thermal
mean of the magnetic moment over different real-
izations of 𝐽𝑖 𝑗 .

[⟨𝑀⟩]av =

∫ ∏
⟨𝑖, 𝑗 ⟩

𝑑𝐽𝑖 𝑗𝑃(𝐽𝑖 𝑗 )⟨𝑀⟩(𝐽𝑖 𝑗 )

(e) Application of the replica method: The replica
method is used to calculate the coordination av-
erage, employing the replica trick to compute the
average of the partition function 𝑍𝑛 over 𝑛 copies
of the system, and then taking the limit as 𝑛 → 0.

(f) Long-time average: The thermal average is in-
terpreted as the average over a long time period 𝑡,
capturing the average over all the states that the sys-
tem can take under the conditions of 𝑡2 ≪ 𝑡 ≪ 𝑡1,
where 𝑡1 and 𝑡2 are system-specific time scales.

Properties in the Spin glass phase

In the spin glass phase, the orientation of each spin
fluctuates randomly due to thermal fluctuations, but the
overall state remains frozen, forming a time-invariant
pattern of spins. The magnetic susceptibility of the
system changes nonlinearly at the transition temperature
𝑇𝑔, marking the spin glass phase transition.

Numerical Calculations and Experiments

Numerical simulations, such as Monte Carlo methods,
are widely used to calculate thermal and coordination
averages for different configurations of 𝐽𝑖 𝑗 . These calcu-
lations often require extensive computational resources
and careful interpretation.

Definition of the Edwards-Anderson model

In the Edwards-Anderson model, spins are arranged on
a lattice and each spin interacts with its neighbors with
random strength. The

Hamiltonian is expressed as

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

Hamiltonian is given by

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

where ⟨𝑖, 𝑗⟩ denotes pairs of adjacent spins, 𝐽𝑖 𝑗 repre-
sents the strength of the interaction between spins, and
𝑆𝑖 indicates the state of the 𝑖-th spin.

Computational Process

(a) Calculating the partition function: The partition
function 𝑍 is the sum over all possible states of the
system.

𝑍 =
∑︁
{𝑆𝑖 }

𝑒−𝛽𝐻 ({𝑆𝑖 })

where 𝛽 = 1
𝑘𝑇

is the inverse temperature.
(b) Calculation of free energy: The free energy 𝐹 is

derived from the partition function.

𝐹 = −𝑘𝑇 ln 𝑍

(c) Calculation of magnetic susceptibility: The
magnetic susceptibility 𝜒 is calculated from the
free energy.

𝜒 =
𝜕2𝐹

𝜕𝐻2

(d) Identification of phase transitions: The spin
glass phase transition is identified by observing
the nonlinear change in magnetic susceptibility at
the transition temperature 𝑇𝑔.

Application of the Replica Method

The replica method, used in spin glass problems, in-
volves considering multiple copies of a system to analyze
average behavior. This method computes the coordina-
tion average by taking the limit as the number of replicas
𝑛 approaches zero.

Notes

Spin glass theory is complex, and approximations and
numerical methods are often used in actual calculations.
The validity of the replica method is debated, as it can
lead to results that contradict physical intuition.

Model Building for Understanding the Filter
Bubble Phenomenon

Applying concepts from spin glass theory, we can build
a model to understand the filter bubble phenomenon.



Modeling of Agents

Agents are represented as spins, with spin states
indicating opinions or inclinations.
Interactions 𝐽𝑖 𝑗 between agents represent commu-
nication strength or shared opinions.

Hamiltonian and Partition Function

The system’s Hamiltonian is defined as the sum of
interactions between agents.

𝐻 = −
∑︁
⟨𝑖, 𝑗 ⟩

𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗

The partition function 𝑍 is computed for all possi-
ble agent state combinations.

𝑍 =
∑︁
{𝑆𝑖 }

𝑒−𝛽𝐻 ({𝑆𝑖 })

Thermal and Coordination Averages

The thermal average is the average state of an agent
under a given interaction.
The coordination mean is the expected value of the
thermal mean over different interactions.

Observing the Filter Bubble

The model can be used to observe the formation and
dynamics of filter bubbles, influenced by varying the
system’s "temperature."

Numerical Simulation and Visualization

Implementing the model numerically allows for simu-
lation and visualization of the formation process and
characteristics of filter bubbles.

The application of statistical physical models provides
a new perspective for understanding complex phenom-
ena like the filter bubble. This approach is valuable in
research across social and information sciences.

8. Conclusion:Long-term Dynamics
and Phase Transitions

Detailed understanding of phase transitions is
gained by performing calculations under different
temperatures and external magnetic field condi-
tions.

The robustness of the model is verified by exper-
imenting with different interaction intensities and
distributions.
The effects of heterogeneous interactions, such as
mixing ferromagnetic and antiferromagnetic inter-
actions, are analyzed.
The time dependence and aging phenomena of the
spin glass system are studied by conducting simu-
lations over different time scales.

Computational Experiments and
Theoretical Model Extensions

Computational experiments under varying con-
ditions can reveal new physical phenomena and
phase transitions, especially in unexplored param-
eter regions.
These experiments evaluate the effectiveness of ex-
isting theoretical models and suggest directions for
model improvement and extension.

Experimental Design and
Implementation

Numerical stability and computational resource
constraints are critical considerations in compu-
tational experiments.
Experiments must be designed with clear objec-
tives and hypotheses, selecting parameters that
align with these objectives.

Replica Method in Computational
Experiments

The replica method is a crucial tool in understanding
spin glass theory. It is used to investigate the behav-
ior of the system under different conditions, especially
considering the limit as 𝑛 approaches zero.

Application in Multilayer Network
Models

The replica method is applied to multilayer net-
work models to understand how interactions be-
tween different layers affect the system’s dynam-
ics.
This approach is significant in fields such as neu-
roscience, social sciences, and physics.



Hypothesis-based Computational
Experiments

Hypotheses about the dynamics of systems, such as
filter bubbles, are tested using the replica method.
The impact of replica symmetry breaking and its
effect on information flow and opinion formation
are explored.

The use of the replica method and spin glass theory
in computational experiments offers deep insights into
complex systems. These experiments not only enhance
our understanding of spin glass theory but also con-
tribute to a broader range of scientific disciplines.

Exploring Time Scales in Spin Glass Sys-
tems

Computational experiments are designed to ana-
lyze the dynamics of spin glass systems over vari-
ous time scales.
These experiments can provide insights into the
aging phenomena and the time-dependent behavior
of the system.

Studying Replica Symmetry Breaking

The impact of replica symmetry breaking on the
behavior of spin glass systems is a key area of
study.
Experiments focus on how this symmetry break-
ing varies under different conditions and its im-
plications for the theoretical understanding of spin
glasses.

Computational Methods and Challenges

The complexity of calculations in spin glass theory
often necessitates the use of sophisticated numeri-
cal methods and high computational resources.
Challenges include ensuring numerical stability
and accuracy, as well as interpreting results in the
context of physical phenomena.

Aknowlegement

The author is grateful for discussion with Prof. Serge
Galam and Prof.Akira Ishii.

References
zh

[Ishii and Kawahata(2018)] Ishii, A.; Kawahata, Y. So-
ciophysics analysis of the dynamics of peoples’
interests in society. Front. Phys. 2018. https:
//doi.org/10.3389/fphy.2018.00089.

[Yasuko(2023)] Yasuko, K. "Transitioning To The Dig-
ital Generation Case Studies (Previous Digital
Point Studies In Japan Cases: 1993-2023)." arXiv
preprint arXiv:2309.13081, 2023.

[Galam et al.(1982)] Galam, S., Gefen (Feigenblat), Y.,
& Shapir, Y. Sociophysics: A new approach
of sociological collective behaviour: I. Mean-
behaviour description of a strike. Journal of
Mathematical Sociology 1982, 9(1), pp. 1–13.

[Rumelhart et al.(1986)] Rumelhart, D., Hinton, G.
& Williams, R. Learning representations by
back-propagating errors. Nature 1986, 323, pp.
533–536.


