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Abstract: Based on the Edwards-Anderson model, this study theoretically explores replica symmetry
breaking in filter bubble phenomena, with a particular focus on the behavior of long-time averages in
the nth-order extrapolation and nth-order interpolation states during zero phenomena. An important
aspect of this study is the correlation analysis of nth-order extrapolation and nth-order interpolation
during zero phenomena using the replica method, and also by introducing their extreme values (
). This will allow us to analyze the effects of information flow and opinion formation on filter
bubble formation in more detail and to theoretically deepen the mechanisms of information bias
and echo chamber effects. However, the stability of the solution can be problematic when replica
symmetry breaking occurs, especially during zero events. This is because the dynamics of the system
is very sensitive and small changes can make a big difference in the results. Particularly during zero
phenomena, the process of taking the limit of the n order extrapolation and the n order interpolation
can lead to non-intuitive results. This is because the limits may not match physical intuition or may
be mathematically unstable, so this paper will go through some computational experiments on some
patterns and organize the issues.
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1. Introduction

Based on the Edwards-Anderson model, this study theoreti-
cally explores the filter bubble phenomenon and replica sym-
metry breaking that occur within social systems. The filter
bubble phenomenon refers to the bias in the flow of informa-
tion due to the emphasis on specific information and opinions,
which has an important impact on the formation of opinions
in society. The filter bubble phenomenon refers to a situation
in which only certain opinions and information are empha-
sized due to information bias and echo chamber effects, and
how this affects information flow and opinion formation is an
extremely important issue in modern society. The purpose of
this study is to address this issue by using the replica method
to analyze correlations between multiple copies (replicas) of
a system and to closely examine the effects of free energy
calculation and replica symmetry breaking. Design of Com-
putational Experiments We will use a Spinglass model that
includes both remote and proximity interactions, focusing in
particular on the behavior of long-time averages in the nth-
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order extrapolation and nth-order interpolation states during
zero phenomena. To do this, we use the replica method to
perform a correlation analysis of these states and consider
their extremes ( ). This allows us to analyze in more detail
the effects of information flow and opinion formation on filter
bubble formation, and to deepen our theoretical understand-
ing of the mechanisms of information bias and echo chamber
effects.

Spin Glass Theory and the Positioning of the
Edwards-Anderson Model

Spin glass theory is a branch of physics that analyzes the be-
havior of disordered magnetic bodies. This theory describes
the interactions between randomly oriented magnetic spins,
providing a deep understanding of many physical phenom-
ena. The Edwards-Anderson model, one of the core models
of spin glass theory, represents the interactions between ran-
domly oriented spins in a simple form. This model captures
the fundamental properties of spin glasses and provides a
basic framework for studying disordered systems.

Theoretical Exploration of the Filter Bubble
Phenomenon

In modern society, the filter bubble phenomenon, caused by
biases in information and echo chamber effects, significantly
impacts opinion formation and information flow. In this study,
we theoretically analyze the breaking of replica symmetry in
this filter bubble phenomenon using the Edwards-Anderson
model. The breaking of replica symmetry, which occurs when
considering the disorder and uncertainty within the system,
is key to understanding the mechanisms of filter bubble for-
mation and dissolution.

Theoretical Exploration of the Filter
Bubble Phenomenon

Definition and Importance of the Filter Bubble
Phenomenon

The filter bubble phenomenon refers to a state where in-
dividuals are exposed to specific information and opinions
due to algorithmic filtering on the Internet and social media.
This phenomenon can lead to biases in personal and societal
opinions, reducing diversity of opinions and strengthening
prejudices.

Analysis of Filter Bubbles in Social Physics

Social physics applies the principles of physics to social in-
teractions and opinion formation processes. In this field, an-
alyzing the filter bubble phenomenon involves understanding
individual and collective behaviors using statistical physics
models.

(1) Agent-Based Modeling: Agent-based models simulate
the behaviors and interactions of individual agents (peo-
ple) to model social dynamics. In filter bubbles, these
models can simulate situations where agents are exposed
only to specific sources of information or opinions and
assess their social impact.

(2) Opinion Dynamics Models: These models describe
how individual opinions change over time. For example,
the Deffuant model and the Hegselmann-Krause model
are used to simulate the convergence and polarization of
opinions. These models can be used to analyze changes
in individual opinions within filter bubbles.

(3) Application of Network Theory: Social network the-
ory is used to analyze how filter bubbles affect individ-
ual relationships and information flow. For instance, the
clustering coefficient and path length of networks can
be investigated to understand their impact on opinion
diversity and information dissemination.

Theoretical Models of Filter Bubbles

Theoretical models of filter bubbles explain mechanisms by
which limiting the type and amount of information received
by individuals leads to convergence of opinions and beliefs.
These models aim to elucidate how selective exposure to
information influences individuals’ cognitive biases and con-
firmation biases.

The theoretical exploration of the filter bubble phe-
nomenon is a critical issue in today’s information society.
Approaches such as agent-based modeling, opinion dynam-
ics models, and the application of network theory in social
physics provide a theoretical foundation for understanding
the impact of filter bubbles on individuals and society and for
devising effective countermeasures. These studies are essen-
tial for protecting opinion diversity, preventing information
bias, and contributing to the development of theories in infor-
mation science, social science, and communication engineer-
ing. They also offer significant insights into the processes
of healthy information circulation and opinion formation in
modern society.

Plan for Computational Experiments

Application of the Replica Method

The replica method is an essential tool for analyzing the av-
erage properties of disordered systems, such as spin glass
models. It considers multiple copies (replicas) of the sys-
tem and uses the correlations between them to capture the
system’s statistical properties. This study aims to apply the
replica method to elucidate the dynamics of information flow
and opinion formation in the filter bubble phenomenon.



Theoretical Supplement to the
Correlation Analysis of Zero
Phenomenon in nth Extrapolation and
nth Interpolation

The correlation analysis of the zero phenomenon in nth ex-
trapolation and nth interpolation is a critical research area
within the framework of statistical physics using the replica
method. This analysis is essential for understanding the ther-
modynamic properties of disordered systems and elucidating
the behavior of complex systems such as spin glass models.

Analysis Methods Other than Green’s Functions

(1) Analysis of Correlation Functions: Correlation func-
tions are used to measure the strength of correlations
between different points in a system. In the zero phe-
nomenon of nth extrapolation and nth interpolation, cor-
relation functions can quantify the statistical dependen-
cies between different replicas. The form of the correla-
tion function is as follows:

C(r) = (SiSivr)(Si){Si+r)

where C(r) is the correlation function at distance r, and
S; represents the state of the spin.

(2) Analysis of Response Functions: Response functions
describe the system’s response to external perturbations.
In the zero phenomenon, the response function is a cru-
cial tool for showing how the system reacts to external
changes. The response function is expressed by the fol-
lowing equation:
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where y(,1’) is the response function at times ¢ and ¢’,
and A(t") is the external field at time ¢’.

Problems in the Zero Phenomenon

The correlation analysis of the zero phenomenon in nth ex-
trapolation and nth interpolation faces several issues. Partic-
ularly in disordered systems, correlation and response func-
tions can become very complex, making their accurate cal-
culation difficult. Additionally, in disordered systems, the
correlation length may become infinite, indicating that the
system is in an extreme state. In such cases, applying stan-
dard statistical physics methods becomes challenging.

The correlation analysis of the zero phenomenon in nth
extrapolation and nth interpolation is an essential method
for understanding complex social phenomena such as filter
bubbles and echo chamber effects. However, this analysis
involves computational difficulties, especially in the analysis
of correlation and response functions in disordered systems.

Based on the Edwards-Anderson model, this paper theo-
retically explores replica symmetry breaking in filter bubble
phenomena, with a particular focus on the behavior of long-
time averages in zero-phenomenon conditions. An important
aspect of this study is the use of the replica method to investi-
gate the nth-order correlation analysis and also by introducing
its extremes ( ). This will allow us to analyze the effects of
information flow and opinion formation on filter bubble for-
mation in more detail and to theoretically deepen the mech-
anisms of information bias and echo chamber effects. We
also explore the effects of replica symmetry breaking through
the calculation of free energies using order parameters that
represent correlations between replicas. This approach pro-
vides a new understanding of information diversity reduction
in the filter bubble phenomenon. This research contributes to
the development of filter bubble theory in the social sciences,
information sciences, and communications engineering, and
provides a detailed scrutiny of complex phenomena in the
modern information society.

2. Discussion:Breaking of Replica
Symmetry

In the analysis of filter bubble in the spin glass model, we
can consider the following computational steps to understand
how the concepts of long-range interactions and short-range
interactions affect the breaking of replica symmetry and the
behavior of long-time averages:

The breaking of replica symmetry means that there ex-
ist multiple equivalent solutions within the system. In the
context of filter bubbles, this phenomenon corresponds to the
existence of different “clusters” of information or opinions.

Computational Steps:

(1) Model Definition: In the spin glass model, interac-
tions between agents (or spins) are represented differ-
ently by short-range interactions and long-range inter-
actions. Short-range interactions represent local reso-
nance of opinions, while long-range interactions repre-
sent wide-ranging information flow.

(2) Application of Replica Method: Consider n copies of
the system and define interactions in each replica in the
same way.

(3) Calculation of Free Energy: Calculate the free en-
ergy’s configurational average using the replica method.
When replica symmetry is broken, there are multiple
solutions for the free energy.

(4) Introduction of Order Parameters: Order parameters
represent correlations (clusters of opinions) among dif-
ferent replicas. When long-range interactions are strong,
the order parameter reflects extensive information shar-
ing, while strong short-range interactions indicate ho-
mogenization of local opinions.



2.1 Behavior of Long-Time Averages

Long-time averages represent the average over all states that

the system can take over an extended period. This is related

to the formation and persistence of filter bubbles.
Computational Steps:

(1) Definition of Dynamics: Define how the states of spins
(agents’ opinions) change over time. Model how short-
range and long-range interactions change over time, tak-
ing into account time-dependence.

(2) Calculation of Long-Time Averages: Compute ther-
mal or configurational averages over a long period and
analyze the behavior of the system depending on the
time scale.

(3) Analysis of Filter Bubble Dynamics: Use long-time
averages to analyze how filter bubbles are formed, main-
tained, or collapsed. Strong long-range interactions may
increase the diversity of information and potentially pro-
mote the collapse of filter bubbles, while strong short-
range interactions may increase the persistence of filter
bubbles.

Theoretical Notes

Breaking of Replica Symmetry: When there are nu-
merous local in the system’s state space, replica sym-
metry naturally breaks. This is a fundamental concept
in spin glass theory and also appears as clustering of
opinions in the context of filter bubbles.

Long-Time Averages: Understanding processes where
the system’s state changes over time is crucial, especially
for understanding the dynamics of filter bubble forma-
tion and dissolution. This analysis is carried out through
time-dependent interactions.

2.2 Impact of Long-Term Average Behavior in
n-th Order Extrapolation and Interpolation
States during Zero Phenomenon in the Con-
text of the Filter Bubble Phenomenon

Parameters:

Temperature (7): Approximately 1.62
Short-Range Interaction (Jyear): Approximately -0.42
Long-Range Interaction (Jg,): Approximately -0.42

From Fig.2-3, Based on the time evolution of the Hamil-
tonian shown in the image and the evolution of spin states,
we will proceed with the analysis assuming the information
context related to the filter bubble phenomenon.

The filter bubble phenomenon refers to a state where in-
dividuals are surrounded by information that reflects their ex-
isting opinions and preferences, reducing opportunities to en-
counter different opinions or information. This phenomenon
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becomes more prominent in online information retrieval and
social networks, where algorithms filter information based on
an individual’s past actions.

From the graph of the time evolution of the Hamiltonian,
it can be observed that the energy states of the system fluc-
tuate over time. Lower energy states indicate a more stable
system, while higher states suggest unstable states or phase
transitions. These fluctuations may be related to changes in
individual opinions and beliefs within the information envi-
ronment.

The graph of the evolution of spin states depicts the
changes in spin (opinion) states over a long period. The
non-uniformity of colors, indicating changes in the pattern
of spin states over time, reflects a diversified state of opin-
ions and may suggest an environment less conducive to the
formation of filter bubbles.

Considering the given parameters, the fact that both short-
range interaction Jyear and long-range interaction Jg,, are neg-
ative implies repulsive interactions between spins. This sug-
gests a situation in which different opinions distance them-
selves from each other within a social network. In other
words, individuals tend to avoid interactions with others hold-
ing different opinions and tend to form clusters with like-
minded individuals.

In this context, the behavior of long-term averages con-
sidering n-th order extrapolation and interpolation provides
insights into the formation and maintenance of filter bubbles.
Extrapolation is useful for predicting how information will
flow over a long period and how filter bubbles may be formed
or diminished. It may help understand how specific opinions
or beliefs expand or contract within society.

On the other hand, interpolation helps analyze the flow
of past information and understand how filter bubbles were
formed. It can reveal the events in the past that may have led
to the current distribution of opinions.

Ultimately, such analysis is crucial for understanding the
mechanisms of forming, maintaining, and breaking filter bub-
bles. Particularly, understanding the flow of information and
social dynamics from a long-term perspective can be valu-
able for designing policies and systems that promote diverse
information environments beyond filter bubbles.

2.3 Hamiltonian over Time

The graph shows the Hamiltonian fluctuating over time. If
we consider this system as a metaphor for social dynamics,
the fluctuations might represent changes in the consensus
or collective mood of a group. in the Hamiltonian could
represent stable configurations of opinions, akin to a social
consensus or a prevailing narrative. Maxima, conversely,
might indicate points of instability where shifts in opinion
are more likely—these could be critical moments where filter
bubbles are either strengthened or weakened.

2.4 Spin State Evolution Over Time

The heatmap shows the evolution of spin states over time,
where the color indicates the state of each spin. A consistent
color across a row indicates a stable state for that particular
spin over time. If we interpret this in the context of social
dynamics, areas with consistent colors could represent groups
within a population holding stable opinions, while changes
in color might indicate individuals or groups changing their
stance.

2.5 n-th Order Extrapolation

- Extrapolation here would mean predicting future states
based on the trends observed in the Hamiltonian and spin
state evolution. If the system is seen to be settling into ,
we might predict a future state with less volatility in the
Hamiltonian, suggesting that the social system may reach a
more stable consensus. If the spin state evolution shows large
blocks of consistent colors, it might indicate the persistence
or even strengthening of filter bubbles.

2.6 n-th Order Interpolation

Interpolation involves looking at the current and past states to
understand the dynamics that led to the present configuration.
If the Hamiltonian’s past shows deep , it might suggest that
the system has previously been in stable states, which could
correspond to periods of strong consensus. The spin state
evolution can reveal how individual or group opinions have
shifted over time.

2.7 Filter Bubble Phenomenon

The dynamics of the Hamiltonian and the spin states can be
interpreted to provide insights into the formation and stability
of filter bubbles. If regions of the lattice remain in the same
state, it may indicate the presence of robust filter bubbles. If
the total energy of the system trends towards a minimum, it
might suggest that the filter bubbles are becoming more stable
and entrenched.

In summary, the fluctuations in the Hamiltonian and the
evolution of spin states on the lattice can be seen as a metaphor
for the dynamics within a social system where opinions can
either reach a stable consensus or remain divided. The visu-
alizations can serve as a basis for understanding how opinions
might evolve, how filter bubbles may form, and how informa-
tion might spread and influence these processes. However,
it’s important to remember that these are simplifications and
analogies; real-world social dynamics are far more complex
and influenced by many factors beyond the scope of such
models.



3. Discussion:Modeling Long-Range
Interactions with Replica Method

In the modeling of filter bubbles that take long-range interac-
tions into account, we add a long-range interaction term to the
Hamiltonian of the spin glass model. This model represents
interactions between different layers or distant nodes.

The Hamiltonian H is defined as follows:

H=- Z JnearSiSj Z JfarSiSj
(i,j) near (i,j) far

Here,
(i, ) near denotes interactions between near nodes,
(i, j) far denotes interactions between distant nodes,

Jnear and Jg,r represent the strengths of the near and far
interactions, respectively,

S; represents the spin state of node i (e.g., +1 or -1).

3.1 Modeling Short-Range Interactions

Short-range interactions represent interactions between nodes
within the same layer or physically close nodes. The Hamil-
tonian is similar to the one above, but here we focus on the
influence of Jyear.

3.2 Application of Replica Method

When applying the replica method in the analysis of filter
bubbles, consider n copies of the system and calculate the
free energy using the Hamiltonian of each copy. The partition
function Z is expressed as follows:

zr= 3 e B Tea HUS
{si'}
Here,
{S8¢} is the set of spin states for replica a,
B = 1/(kT) is the inverse temperature parameter,
k is the Boltzmann constant,

T is the absolute temperature.

3.3 Calculation of Free Energy

The free energy F is calculated in the limit as n — 0:

1 log[Z"
=L i 108120
18 n—0 n
Here, [Z"],y represents the configurational average of Z"

based on the probability distribution of interactions J;;.

4. Analysis of Replica Symmetry
Breaking and Long-Time Averages

Analysis of Replica Symmetry Breaking: By examin-
ing correlations between replicas, we analyze the break-
ing of replica symmetry in the formation of filter bub-
bles.

Analysis of Long-Time Averages: By studying time-
dependent dynamics, we understand the long-term be-
havior of filter bubble formation and dissolution.

When introducing the Kubo formula and the Matsubara
Green'’s function approach into the analysis of the spin glass
model, we can consider the following potential differences
in observed patterns and insights regarding replica symmetry
breaking and the behavior on long-time averages in the n-th
order extrapolation at zero temperature.

4.1 Introduction of the Kubo Formula

The Kubo formula is used to calculate response functions of a
system as statistical quantities. When applied to the analysis
of filter bubbles, it may provide insights such as:

1. Replica Symmetry Breaking

Using the Kubo formula, one can calculate how external stim-
uli (e.g., new information or opinions) affect the interactions
among agents within the filter bubble. This could be a cause
of breaking replica symmetry, leading to dispersion of opin-
ions and the formation of clusters among different agents.

2. Behavior of Long-Time Averages

Regarding the dynamics of filter bubbles over extended peri-
ods, the Kubo formula can be used to calculate the cumulative
effects of external influences. This can help in understanding
the processes of filter bubble formation and dissolution and
how the diversity of opinions changes over time.

We will consider the impact of the behavior transition of
long-range interaction terms in n-th order extrapolation and
interpolation states during the zero phenomenon, assuming
the information context surrounding the filter bubble phe-
nomenon.

The parameters used are as follows

Temperature (T'): Approximately 0.60 Short-range interac-
tion (Jpear): Approximately 0.52 - Long-range interaction
(Jrar): Approximately 0.67

Based on the heatmap of the time evolution of the Hamil-
tonian shown in the image and the evolution of spin states,
let’s contemplate the influence of the behavior transition of
long-range interaction terms in n-th order extrapolation and
interpolation states during the zero phenomenon. Here, "zero



Hamiltonian over Time
100

o u

-100

—200

Hamiltonian

—300

—400

0 25 50 75 100 125 150
Time Step

Fig. 4: Hamiltonian over Time

Node Index

Fig. 5: Spin-Glass order q(t), Critical Points

200

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

Spin State

phenomenon" is interpreted as a situation with a temperature
close to zero, i.e., an extremely low-temperature condition.

The graph of the Hamiltonian illustrates the changes in
the energy states of the system over time. This allows us to
capture fluctuations in energy related to the formation and
collapse of filter bubbles. Since the long-range interaction
Jrar takes relatively large values, it is presumed that interac-
tions between different groups or individuals far apart have a
significant impact on the system’s dynamics.

The heatmap of the evolution of spin states visually
demonstrates how spins (opinions of agents) within the sys-
tem change over time. Performing n-th order extrapolation
and interpolation during the zero phenomenon is expected to
enable the prediction of the long-term dynamics of opinions.

n-th Order Extrapolation

In long-term extrapolation, we can predict whether the sys-
tem converges to a stable state or exhibits periodic behavior
indicating specific patterns. In the context of the filter bub-
ble, extrapolation can be used to analyze how diversity of
opinions evolves over time or whether specific opinions may
become dominant.

n-th Order Interpolation

Interpolation estimates the current system state based on past
data. In the context of the filter bubble, interpolation can
be used to understand the transitions of past opinions and
analyze how the current bias in opinions has been formed.

These analyses suggest the importance of long-range in-
teractions in exposure to information and the formation of
opinions. For example, when long-range interactions are
strong, the exchange of information between different com-
munities may be facilitated, potentially suppressing the for-
mation of filter bubbles. Conversely, when long-range in-
teractions weaken, homogenization of opinions within filter
bubbles may occur, making it less likely for external new
information or opinions to influence the system.

Such analyses are expected to provide valuable insights
for policy-making and system design to promote access to
diverse opinions and information beyond filter bubbles.

The images presented are the Hamiltonian over time and
the spin state evolution heatmap for a spin glass model.
Let’s analyze these in relation to zero-temperature phenom-
ena, which in physical systems corresponds to a state where
thermal fluctuations are minimized, and consider n-th order
extrapolation and interpolation, as well as the concepts of in
the system’s energy landscape.

Hamiltonian over Time

The Hamiltonian plot exhibits significant fluctuations, sug-
gesting that the system’s energy landscape is complex with



many local . In the context of a social system, this could
be analogous to a community where opinions or states are
changing frequently, influenced by internal and external dy-
namics.

in the Hamiltonian could represent stable configurations
of opinions, where a community might settle into a consen-
sus or a dominant narrative. Maxima could represent unstable
configurations, which might correspond to transitional states
where the community is shifting from one consensus to an-
other.

n-th Order Extrapolation

In extrapolation, we would predict the future state of the
system based on current trends. If the Hamiltonian is trending
downward, it might suggest that the system is moving toward
a more stable state with fewer fluctuations in opinions.If the
spin state heatmap shows large domains of the same spin, this
might suggest that over time, these domains could grow larger,
representing stronger and more entrenched filter bubbles.

n-th Order Interpolation

Interpolation uses the system’s past states to understand how
it reached its current state. A history of deep in the Hamil-
tonian could suggest periods of strong consensus, while the
presence of maxima could indicate times of uncertainty or
change. Detailed look at the spin state heatmap might re-
veal how individual or group opinions have shifted over time,
potentially indicating how information spread and influenced
the formation of filter bubbles.

Spin State Evolution Over Time

The heatmap shows the distribution of spins at different times,
with the color indicating the spin state. Areas of uniform
color indicate domains where spins are aligned, which could
suggest opinion clustering.

Filter Bubble Dynamics: The clusters in the spin state
heatmap could represent filter bubbles, where within each
cluster, the opinions (spins) are aligned. The evolution over
time of these clusters can give insights into the dynamics
of these bubbles, such as whether they are becoming more
pronounced or if there’s a tendency toward diversification and
breakdown of bubbles.

Filter Bubble Phenomenon in Relation to Infor-
mation Dynamics

In an environment where information flows freely and is di-
verse, we might expect to see the breakdown of filter bubbles
over time, which could be represented by the decrease in the
size of aligned domains in the spin state heatmap.Conversely,
in an environment with restricted information flow or echo
chambers, filter bubbles might become more pronounced, as
indicated by the growth of aligned spin domains.

In summary, the Hamiltonian and spin state evolution give
us insights into the energy landscape of the system and the
dynamics of state configurations, which can be metaphori-
cally related to the opinions within a social system and the
formation and dynamics of filter bubbles. However, it is im-
portant to remember that these are simplifications and that
real-world social dynamics are influenced by many complex
factors.

5. Discussion:Formulation If make the
Strong Magnetic Ising Model

In this thesis, when applying the replica method to the analysis
of opinion dynamics using the strong magnetic Ising model,
the specific equations and computational process for the n-th
order extrapolation at zero temperature can be as follows.

In the strong magnetic Ising model, spins S; are assigned
to each node (agent), and these spins take values of +1 or -1.
The model’s Hamiltonian is represented as follows:

H=-J) SS;
@)

Here, (i, j) denotes neighboring spin pairs, and J is the
strength of interaction between spins. When J > 0, the
model exhibits ferromagnetic behavior, where neighboring
spins tend to align in the same direction.

5.1 Application of the Replica Method

The replica method considers n copies (replicas) of the sys-
tem. Each replica is assumed to be independent, and the total
free energy is calculated as a limit with respect to the number
of replicas.
The free energy F is represented as follows:
1 InZ"

F=——1lim
ﬂn—>0 n

Here, Z" is the partition function of n replicas.

5.2 Analysis of Replica Symmetry Breaking, Be-
havior of Long-Time Averages

Replica symmetry breaking is a phenomenon where corre-
lations occur between different replicas. It is expressed as
follows:

dab = <S:1Sf)>

Here, a and b represent different replicas, and gq4p is
the order parameter representing correlations between these
replicas.

The behavior of long-time averages indicates how the
system evolves over time. This is modeled through the intro-
duction of time-dependent Hamiltonians or external fields as
time progresses.



6. Discussion: Extrema using the
Matsubara Green’s function

The Matsubara Green’s function approach is used to track the
propagation of energy and the temporal evolution of states.
When applied to the analysis of filter bubbles, it may provide
insights such as:

1. Replica Symmetry Breaking

Using the Matsubara Green’s function approach, one can an-
alyze in detail how interactions among agents evolve over
time. This could lead to a deeper understanding of replica
symmetry breaking within the filter bubble and the processes
of forming different opinion clusters.

2. Behavior of Long-Time Averages

By employing the Matsubara Green’s function, one can cap-
ture the long-term dynamics of filter bubbles, observing in
detail the processes of opinion propagation and homogeniza-
tion over time. This enables an understanding of how diversity
or homogeneity of opinions changes with time.

The introduction of the Kubo formula and the Matsubara
Green’s function can contribute to a deeper understanding of
the filter bubble phenomenon. The Kubo formula captures
the system’s response to external stimuli, while the Matsubara
Green’s function specializes in tracking energy propagation
and temporal evolution. This introduction is expected to shed
light on the dynamics of opinions within the filter bubble,
replica symmetry breaking, and the mechanisms of opinion
cluster formation and dissolution.

6.1 System Model

Consider a set of agents (spins), where each spin §;
represents the opinion of an agent. Spins take values of
+1 (positive opinion) or —1 (negative opinion).

The interactions J;; among agents represent the extent
of opinion exchange and influence.

6.2 Green’s Functions

Matsubara Green’s function G;; (¢, t") describes how the
interaction between agents i and j depends on time ¢ and
tl

This function is derived from the system’s Hamiltonian
H.

6.3 Time-Dependent Correlation Functions

Consider the correlation function among agents
Cij(t,t) = (Si(¢)S;(¢')), where (-) denotes statistical
averaging.

o Correlation Matrix at First Timestep

N Correlation Matrix at Last Timestep

Fig. 6: Correlation Matrix at First-Last Timestep

The correlation function is calculated using Green’s
functions, often employing techniques like path integral
methods or perturbation theory.

6.4 Calculation of Correlation Functions

For instance, using path integral methods, the correlation
function is calculated in the following form:

Cij(t,1) ZID[S] Si(1)S;(t")eSIHI

Here, S[H] is the action functional based on the Hamil-
tonian H.

6.5 Calculation of Free Energy

The system’s free energy F is calculated using the
Hamiltonian H and temperature 7.

F = —kT In Z, where Z is the partition function.

6.6 Derivation of Extrema

The extrema ( or maxima) of the free energy are obtained
from the following equation:

SF _
55 =0

This condition arises from differentiating the free energy
with respect to spin S; and setting its derivative to zero.

This computational process allows for quantitative anal-
ysis of the time-dependent interactions among agents within
filter bubbles, the processes of opinion homogenization or
diversification, and the stability or instability of the system
in the formation and dissolution of filter bubbles. However,
these calculations are complex and require advanced mathe-
matical and physical knowledge.

6.7 Consideration of Filter Bubbles

Fig. 5 represents the correlation matrices of the system’s
initial state and final state during the zero phenomenon. This
can be understood as capturing the time-dependent nature of
opinions among agents when analyzing the phenomenon of
filter bubbles using the Matsubara Green function.



Filter bubbles refer to a phenomenon where individu-
als are surrounded by specific information or opinions, re-
ducing their exposure to diverse opinions and information.
This heatmap suggests that, ultimately, correlations between
agents’ opinions become stronger, indicating a decrease in
opinion diversity. This implies the formation of filter bubbles
and the homogenization of opinions over an extended period.

Through the analysis of n-th order extrapolation and inter-
polation during the zero phenomenon, the Matsubara Green
function has been shown to be an effective tool for under-
standing the processes of filter bubble formation and homog-
enization.

The provided heatmaps depict the initial and final states
of correlation matrices during the zero phenomenon (likely
suggesting extremely low-temperature conditions). These
heatmaps visualize the time-dependent evolution of corre-
lations in opinions among agents and may be useful for un-
derstanding the dynamics of the system. Specifically, they
can capture the propagation and homogenization of agents’
opinions in the context of the filter bubble.

6.8 Correlation Matrix of the Initial State

In the initial heatmap, relatively small correlation values are
distributed randomly across the entire correlation matrix.
This indicates a state where the opinions of agents are not
strongly correlated yet, and agents’ opinions are independent
and diverse.

6.9 Correlation Matrix of the Final State

The final heatmap shows an overall increase in positive corre-
lation values, except for prominent negative correlation values
along the diagonal. This indicates that over time, opinions
among agents have synchronized, and opinion homogeniza-
tion has occurred. It is speculated that filter bubbles have
formed, and agents’ opinions within the groups have become
more consistent.

Characteristics of n-th Order Extrapolation and Interpo-
lation: - n-th Order Extrapolation: This is used to predict the
trends of future opinions and helps in speculating long-term
changes in opinions and the sustainability of filter bubbles.
The degree of homogenization in the final correlation matrix
suggests that filter bubbles are likely to persist stably. - n-th
Order Interpolation: This is used to estimate the current state
from past data and helps reveal the process of how diversity
of opinions evolved toward homogenization.

These observations indicate that, in low-temperature (or
extreme) conditions, opinions among agents synchronize over
time, and correlations become stronger, eventually leading
to opinion homogenization. Ultimately, this means that
within filter bubbles, opinions become more homogenized,
and agents tend to share similar opinions, potentially con-
tributing to the formation of echo chambers of information.

Correlation Matrix Analysis

First Timestep: The initial correlation matrix is relatively
uniform with only minor fluctuations, indicating that at the
outset, the spins (or opinions, if we use a social dynamics
metaphor) are not strongly correlated. This could represent
a diverse system where no single opinion dominates. Last
Timestep: The final correlation matrix shows significantly
increased correlation in certain areas (brighter spots), sug-
gesting that over time, certain opinions have become more
aligned. The dark diagonal line indicates perfect negative
correlation of a spin with itself over time, which is expected
since we are comparing the same agent at different times.

n-th Order Extrapolation

In extrapolation, one might predict the future behavior of the
system based on current trends. The increasing correlation
suggests that over time, the system is likely to develop more
pronounced clusters of alignment, akin to the strengthening
of filter bubbles, where like-minded individuals or agents
become more insulated from differing opinions. The presence
of in the correlation matrix (highly negative values) could
indicate areas of strong disagreement or opposition, which
may persist or even become more pronounced if the current
trend continues.

n-th Order Interpolation

Interpolation would involve analyzing how the system arrived
at its current state from its past states. The transition from a
uniform correlation matrix to one with distinct areas of high
correlation could be interpreted as the formation of strong
opinion clusters or filter bubbles over time.Identifying max-
ima (areas of low negative correlation) can be particularly
interesting as they may indicate transitions between different
states of agreement, possibly showing how certain opinions
spread or retracted over time.

Filter Bubble Dynamics

The initial lack of strong correlations could suggest a starting
state with diverse opinions and a lack of filter bubbles. Over
time, as stronger correlations develop, this could represent
the formation of filter bubbles. The final state with its distinct
clusters indicates that filter bubbles have likely formed, with
certain groups becoming isolated in their shared opinions,
reducing the influence of outside or opposing views.

In summary, the transition from the first to the last corre-
lation matrix reflects a trend towards increased correlation (or
agreement) among certain agents, potentially indicating the
formation and strengthening of filter bubbles. This analysis,
while simplistic, can offer a lens through which to view how
opinions might polarize over time in a social system, leading
to echo chambers where diversity of thought is diminished.



7. Discussion: Extrema using Kubo
Formula and Green’s Functions

Kubo formula plays a significant role in linear response the-
ory. Green’s functions G(t,t") based on Kubo formula de-
scribe how the state of the system at time ¢ is influenced by
the state at time #'.

7.1 Derivation of Green’s Functions

Consider the system’s Hamiltonian H and derive Green’s
functions based on Kubo formula. Generally, this is
expressed as G(t,t') = —i{T[S(¢)S(¢')]), where T rep-
resents time-ordered products, and S() is an operator
representing the system’s state at time ¢.

7.2 Calculation of Correlation Functions

Calculate the correlation function C(z,1") = (S(¢)S(t’))
using Green’s functions. This correlation function in-
dicates the correlation between the system’s states at
different times.

7.3 Derivation of Free Energy

Derive the system’s free energy F using the Hamiltonian
and Green’s functions. Typically, ' = —kT In Z, where
Z is the partition function.

7.4 Calculation of Extrema

To find the extrema ( or maxima) of the free energy, cal-
culate the variation of free energy 6 F. Specifically, find
conditions where % = 0. This allows the identification
of stable and unstable maxima in the system.

This computational process provides valuable insights
into understanding the dynamics of complex systems like
filter bubbles. However, it requires advanced knowledge
of theoretical physics and statistical mechanics. The spe-
cific calculations can vary depending on the characteristics
of the system, making generalization difficult. Performing
such calculations necessitates expertise in both theoretical
background and computational techniques.

Fig.6-7 represent the state of the influence and correla-
tion matrices of the system over time; in the context of the
Kubo-Green function and its application to understanding
phenomena such as filter bubbles, the evolution of the behav-
ior of these matrices and how they relate to the theoretical
framework provided Discussion.

Transitions in influence matrices: The initial and final
states of an influence matrix show a distribution of values with
a clear diagonal line, which usually represents a normalized
state where each element is self-affected or affected only by
itself. In the initial state, there are a few off-diagonal bright
spots indicating stronger influence and more variability. In

Initial Correlation Matrix Final Correlation Matrix

e

Fig. 7: Correlation Matrix at First-Last Timestep

Initial State of Influence Matrix Final State of Influence Matrix

Fig. 8: Influence Matrix at First-Last Timestep

the final state, the influence seems to be more uniform, and
there are fewer clear spots of high influence.

Transitions in the correlation matrix: the initial state of
the correlation matrix is uniform. This may suggest that in
the initial state, all elements are perfectly correlated with
each other or that there is no variation to measure the corre-
lation. The final state shows a variety of correlations, both
positive and negative, suggesting the emergence of a distinct
correlation pattern in the system over time.

Theoretical Considerations

Given the context of zero-phenomenon time (-order extrapo-
lation and -order interpolation), we are most likely discussing
a system in which Kubo-Green functions are used to extrap-
olate (extrapolate) and interpolate (interpolate) data outside
(extrapolate) and inside (interpolate) the observation range,
respectively. This is relevant to the filter bubble because such
social phenomena involve the influence of individual infor-
mation exposure and the evolution of correlations over time.

1. Kubo formula and Green’s function

Kubo’s formula provides a way to quantify how current con-
ditions are influenced by past conditions. In the context of
filter bubbles, this helps model how current information expo-
sure is affected by past interactions and content consumption.
Deriving the Green’s function from the Hamiltonian of the
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system requires consideration of specific operators that repre-
sent information flows and interaction states within the filter
bubble.

2. Correlation function

Using the Green’s function to compute the correlation func-
tion provides insight into how states (opinions, information
exposure, etc.) at different times within the filter bubble are
correlated with each other.

3. Free Energy and Limits

Derivation of free energy using Hamiltonians and Green’s
functions requires an understanding of the energy landscape
of the filter bubble, with representing stable states (strong
filter bubbles) representing potential change or instability
points. Identifying the conditions for maxima is akin to find-
ing the point at which the filter bubble may remain stable or
break.

Considering the information and visuals provided, the
transition of the influence matrix may indicate a change from
a heterogeneous state with a particular strong influence to a
more homogeneous state.

The transition of the correlation matrix from homoge-
neous to diverse states suggests that as the system evolves, in-
dividual differences emerge, and the system displays a more
complex web of correlations. This may be due to external
influences, changes in communication patterns, or the intro-
duction of new information. The changes in the influence
and correlation matrices can be interpreted as the evolution
of a filter bubble. On the other hand, the evolution of di-
verse correlations may represent complex interactions within
these silos, as individuals react differently to the information
they receive. Applying the Kubo-Green function and linear
response theory allows us to understand these dynamics in
detail, but actual computations require additional data and
situation-specific modeling.

Initial and Final Correlation Matrices

The initial correlation matrix is predominantly uniform, sug-
gesting little to no initial correlation between the states of
different nodes. This could imply a starting point in a social
system where individuals or agents have not yet been sig-
nificantly influenced by one another. The final correlation
matrix displays a mix of positive and negative correlations,
indicating that as the system evolved, nodes began to influ-
ence each other, both positively and negatively. In the context
of filter bubbles, this could mean that over time, individuals
or agents have formed opinions influenced by interactions
with others, leading to a complex network of agreements and
disagreements.

Initial and Final States of Influence Matrix

The initial state of the influence matrix shows some nodes
with higher influence (indicated by the yellow spots), while
most interactions are relatively neutral (green background).
The final state of the influence matrix doesn’t appear to have
dramatically changed from the initial state, suggesting that
while there may have been fluctuations in influence over time,
the overall pattern of influence among the nodes has remained
stable.

Extrapolation and Interpolation

Extrapolation: Predicting future behavior based on the cur-
rent trend, we might expect that the system will continue to
develop in complexity, with nodes increasingly influencing
each other. For filter bubbles, this could mean that they may
become more pronounced as individuals align more closely
with those they interact with most. Interpolation: Looking
at the system’s evolution from the initial to the final state, we
might infer the dynamics of influence and opinion formation.
The relatively stable pattern of influence suggests that while
individuals’ opinions may have evolved, the core structure
of who influences whom has not significantly changed. In
a social system, might represent widely accepted norms or
common opinions that have become stable over time. These
could signify entrenched filter bubbles where there is a strong
consensus.

Maxima

Maxima could represent points of contention or divisive is-
sues where there is a significant split in opinion. These could
be areas where filter bubbles are weak or where there is po-
tential for new bubbles to form as opinions diverge.

Filter Bubble Dynamics

The transition from the initial to the final correlation matrix,
with the development of both positive and negative corre-
lations, might reflect the formation of filter bubbles where
certain opinions become reinforced over time while others
become marginalized. The influence matrix suggests that
certain key nodes or individuals may play a significant role
in shaping the opinions within their respective filter bubbles.

Overall, the analysis of these matrices can provide insight
into the dynamics of opinion formation and the influence of
individuals within a social network. It indicates how fil-
ter bubbles may form and evolve, and how the structure of
influence among individuals can contribute to this process.
However, interpreting these matrices requires careful consid-
eration of the underlying dynamics and assumptions of the
model used to generate them.



8. Discussion:Long-range and
short-range interactions

Introducing long-range and short-range interactions in the
analysis of spin glasses can provide deep insights into the
system’s temporal evolution and dynamics. Applying this to
the analysis of filter bubble phenomena has both theoretical
merits and demerits. Let’s organize them.

8.1 Theoretical Merits

1. Closer-to-Reality Modeling: Incorporating long-range
and short-range interactions allows for a more accurate
representation of information flow and opinion forma-
tion processes in real-world networks. This enables a
more detailed understanding of the mechanisms behind
filter bubble formation and maintenance.

2. Capturing Complex Dynamics: Including these inter-
actions in the model allows capturing the complex re-
lationships between individual agents and the evolving
dynamics of the system over time.

3. Analysis at Different Scales: Considering both long-
range and short-range interactions separately enables the
analysis of the system at both macro and micro levels,
understanding the propagation and influence of opinions
at different scales.

1. Complexity of Computations: Simultaneously consider-
ing long-range and short-range interactions complicates
model computations. This may result in significant re-
source requirements and challenges in interpreting the
model.

2. Overfitting of the Model: Overly complex models may
overfit the data, reducing the generalizability of the
model and potentially compromising predictive accu-
racy in different scenarios.

3. Data Availability and Quality Issues: Accurately mod-
eling long-range and short-range interactions requires
high-quality and comprehensive data. Data scarcity or
inaccuracies can undermine the reliability of the model.

8.2 Similar Approaches

1. Agent-Based Modeling: Modeling individual agents (in-
dividuals or opinions) and simulating system dynamics
through their interactions.

2. Application of Network Theory: Analyzing relation-
ships between nodes and information flow within net-
works using social network analysis.

3. Mean-Field Approximation: Focusing on the average
behavior of the system and ignoring detailed dynamics
of individual agents.

Long-range and short-range interactions contributes to a more
nuanced understanding of filter bubbles. However, its appli-
cation comes with challenges such as computational com-
plexity and data requirements that need to be considered for
practicality and generalizability of the model.

9. Discussion:Determining the long-time
average behavior of states during
zero-temperature (n-th order)

We will outline the computational process for determining the
long-time average behavior of states during zero-temperature
(n-th order) extrapolation and interpolation in the presence
of long-range and short-range interactions introduced in the
spin glass model. This calculation is conducted within the
framework of statistical physics and involves the application
of replica method and Green’s functions.

9.1 Definition of the Hamiltonian

1. Definition of the Spin Glass Model Hamiltonian: Define
the Hamiltonian of the spin glass model with long-range
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9.2 Partition Function and Free Energy

1. Application of the Replica Method: Using the replica
method, calculate the partition function Z" and the free
energy I

z"= ) exp (—ﬁZn:H({SE‘}))
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9.3 Calculation of Long-Time Averages

The behavior of long-time averages is computed using time-
dependent Green’s functions, involving the application of the
replica method.

9.4 Introduction of Green’s Functions

Introduce Green’s functions G;;(z,t") to calculate how the
state S;(¢) at time ¢ influences the state at time .



9.5 Calculation of Long-Time Averages

Long-time averages are computed using the following expres-
sion:

(500 = [ dr' Y Giyta. (550
J

9.6 Specific Calculation Procedure

1. Calculation of Green’s Functions: Calculate Green’s
functions by deriving the dynamics from the Hamil-
tonian H.

2. Execution of Time Integrals: Perform time integrals re-
quired for the calculation of long-time averages. This
may involve numerical integration or approximate ana-
lytical techniques.

3. Derivation of Long-Time Averages: Use the obtained
Green’s functions to compute the behavior of long-time
averages, allowing for tracking the dynamics related to
the formation and dissolution of filter bubbles.

Such calculations are crucial for understanding the long-
time average behavior in complex systems like the spin glass
model but often require advanced techniques and reliance
on numerical analysis. This approach may provide valuable
insights when applied to social science problems such as filter
bubble phenomena.

9.7 Replica Symmetry Breaking

Replica symmetry breaking is a concept from statistical
physics, particularly from the study of spin glasses, which
refers to a state where a system no longer has a simple, uni-
form solution but instead fractures into many different states
or 'replicas’. In the context of social dynamics and filter bub-
bles, it can be metaphorically applied to describe a situation
where a homogeneous social group (initially sharing simi-
lar opinions) diversifies into multiple subgroups with varying
opinions.

9.8 Correlation Matrix Analysis

Initial State: The uniform color suggests a highly symmetric
state with either no or uniform interactions between all pairs
of nodes. This could imply that, initially, either everyone is in-
fluenced by everyone else to the same degree or that there’s no
interaction at all — a perfectly symmetrical scenario without
any filter bubbles. Final State: The diverse colors indicate
that symmetry has broken down; different nodes now have
varying degrees of correlation. This heterogeneity in the cor-
relation matrix could be indicative of the formation of filter
bubbles, where certain groups become more closely aligned
internally while becoming less correlated with other groups.

9.9 Influence Matrix Analysis

Initial State: The presence of some bright spots amid a mostly
uniform field suggests that there are specific nodes with a
stronger influence on the system. However, the overall pattern
is still relatively uniform, suggesting that the influence is
not widespread and replica symmetry may still be intact.
Final State: If the final state shows that these spots have
become more pronounced or numerous, it would indicate that
certain nodes have become significant influencers, potentially
leading to the formation of opinion leaders or echo chambers
— a sign of replica symmetry breaking.

9.10 From Long-Range and Short-Range Inter-
actions Perspective

Long-Range Interactions: In a social network model, long-
range interactions could represent the influence of mass media
or social media algorithms that can affect individuals regard-
less of their immediate social circle. If the final correlation
or influence matrix shows that distant nodes (not neighbors
in the network) have strong correlations, this might suggest
that long-range interactions are significant in shaping opin-
ion dynamics, potentially contributing to the formation of
widespread, but possibly fragmented, filter bubbles. Short-
Range Interactions: These represent local interactions, such
as peer influence or close community ties. If the final matrices
show that correlations or influences are strong only in local-
ized clusters, it would suggest that short-range interactions
are dominant, potentially leading to smaller, more isolated
filter bubbles.

The transition from the initial to final states in the matrices
suggests that the system undergoes significant changes, possi-
bly from a state of replica symmetry to one where symmetry
is broken, reflected in the diversification of correlations and
influences. This breaking of symmetry, influenced by both
long-range and short-range interactions, could be representa-
tive of the complex dynamics involved in the formation and
evolution of filter bubbles in social networks.

In this thesis, when applying the replica method to the
analysis of opinion dynamics using the strong magnetic Ising
model, the specific equations and computational process for
the n-th order extrapolation at zero temperature can be as
follows.

Hamiltonian over Time

The Hamiltonian’s time evolution is characterized by fluctu-
ations, suggesting a dynamic system with frequent changes
in energy states. This could be due to the system exploring
various configurations, seeking lower energy states () which
are typically more stable. Maxima, representing less sta-
ble points, are where the system’s configuration is higher in
energy and more susceptible to transitions to other states.



Hamiltonian over Time
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In the context of social dynamics and filter bubbles: could
represent stable states of consensus or widespread agreement
within a social group. Maxima could correspond to states
of contention or heated debate, where no single opinion or
viewpoint dominates.

Green’s Function Heatmap

The heatmap provides a visual representation of the correla-
tions between different spins (or agents) in the system at dif-
ferent times. The diagonal line shows strong self-correlation
as expected, while the off-diagonal elements indicate how
different parts of the system influence each other over time.

Considering filter bubbles

If the off-diagonal correlations are weak (as indicated by the
mostly dark colors), this may suggest that different agents or
groups are not strongly influencing each other, which could
imply a lack of filter bubbles. If certain regions start to show
stronger correlations over time (appearing as lighter spots
away from the diagonal), this could indicate the formation of
echo chambers where certain opinions are being reinforced
through repeated interactions.

Extrapolation and Interpolation

Extrapolation from the Hamiltonian might suggest that the
system will continue to fluctuate and explore various config-
urations. If trends towards lower energy states are observed,
it may suggest a move toward consensus or uniformity in the
long term. Interpolation from the Green’s function heatmap
could indicate that while individual agents may have had
strong self-correlation, the overall influence on each other
has not led to strong consensus or uniformity across the sys-
tem.

The images and their interpretation provide a framework
for understanding the evolution of a system where opinions or
states can change over time, leading to the formation or dis-
solution of filter bubbles. These concepts, while abstracted
from the study of physical spin systems, can provide use-
ful metaphors for understanding complex social phenomena.
However, real-world applications are often more complex,
with many more variables affecting the dynamics of opinion
formation and the creation of filter bubbles.

Hamiltonian over Time

Fig.8-9 show the Hamiltonian of a spin system over time and
the Green’s function heatmap representing the state correla-
tions within the system. We’ll interpret these results in the
context of the zero-phenomenon extrapolation and interpo-
lation with a focus on the formation and dynamics of filter
bubbles.



The Hamiltonian graph shows significant fluctuations,
which might indicate the system’s responses to internal and
external changes. The presence of sharp spikes could rep-
resent moments where the system’s configuration changes
abruptly, possibly due to shifts in the dominant opinion or the
influence of an external stimulus. In a filter bubble context,
these spikes could represent the introduction of new, influen-
tial information that temporarily disrupts the existing opinion
structure.

Green’s Function Heatmap

The heatmap shows the correlations between the states of
agents in the system. The bright diagonal line indicates strong
self-correlation, as expected since each agent is perfectly cor-
related with itself. The off-diagonal elements show smaller
correlations, suggesting less significant interactions between
different agents.

In terms of the n-th order extrapolation and
interpolation

Extrapolation refers to predicting the future state of the sys-
tem based on the current trend. The behavior of the Green’s
function and the Hamiltonian over time can be used to predict
how the system might evolve. If we consider the Hamilto-
nian’s trend and the correlation pattern, we might infer that
the system is likely to continue experiencing fluctuations,
with occasional disruptions likely causing shifts in the over-
all opinion landscape. Interpolation involves understanding
the present state by looking at past data. Here, the Green’s
function can help us understand how past states influence the
current configuration, providing insights into the historical
dynamics that led to the current filter bubble.

Considering Extrema

in the context of free energy could correspond to stable con-
figurations of opinions where the system is likely to settle. If
we were to calculate the variation of free energy, conditions
where 6 F/6G = 0 could indicate a stable filter bubble where
opinions are unlikely to change without significant external
influence. Maxima, on the other hand, would represent unsta-
ble points where the system is in a transitional state, possibly
between different opinion configurations. This could be a
phase where filter bubbles are either forming or dissolving.

Filter Bubble Dynamics

The images can be interpreted as showing a system where:
Initially, opinions are diverse and not strongly correlated, as
indicated by the random distribution of correlations in the
early Green’s function heatmap. Over time, certain opinions
may become more dominant, leading to more pronounced
correlations as agents align their states, which could be the

beginning of a filter bubble. The Hamiltonian’s fluctuations
might suggest that the system is constantly being influenced
by new information, but the persistence of strong correlations
implies that while opinions may temporarily shift, they tend
to return to the dominant state, which could be seen as the
resilience of the filter bubble.

These interpretations, of course, rely on a metaphori-
cal application of physical concepts to social dynamics and
should be further investigated with more context-specific
models and data.

9.11 Formulation of the Strong Magnetic Ising
Model

In the strong magnetic Ising model, spins S; are assigned to
each node (agent), and these spins take values of +1 or -1.
The model’s Hamiltonian is represented as follows:

Here, (i, j) denotes neighboring spin pairs, and J is the
strength of interaction between spins. When J > 0, the
model exhibits ferromagnetic behavior, where neighboring
spins tend to align in the same direction.

9.12 Application of the Replica Method

The replica method considers n copies (replicas) of the sys-
tem. Each replica is assumed to be independent, and the total
free energy is calculated as a limit with respect to the number
of replicas.
The free energy F is represented as follows:
1 InZ"

F=——1im
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Here, Z" is the partition function of n replicas.

9.13 Analysis of Replica Symmetry Breaking

Replica symmetry breaking is a phenomenon where corre-
lations occur between different replicas. It is expressed as
follows:

Gab = (SES?)

Here, a and b represent different replicas, and q,p is
the order parameter representing correlations between these
replicas.

To examine the phenomena surrounding filter bubbles
and the potential breaking of replica symmetry from a theo-
retical physics perspective, we interpret the provided graphs
of Hamiltonian over time and the Green’s function heatmap
within the context of a spin glass model.

In the Hamiltonian over time graph, the energy of the
system fluctuates, indicating the state changes of agents (or



spins) in the model. The sharp peaks and troughs could
represent moments where the collective opinion of the agents
is shifting rapidly, potentially indicating the breaking and
forming of consensus within the network. Over long time
steps, if these fluctuations do not settle into a stable pattern, it
could suggest a dynamic system where opinions continually
evolve and change, preventing the formation of a static filter
bubble.

The Green’s function heatmap illustrates the interaction
strengths between agents at different points in time. The
strong diagonal line indicates that the spins’ states are strongly
correlated with themselves over time, which is expected. The
off-diagonal elements indicate interactions between different
agents. Initially, the interactions are more uniform, as seen
in the first heatmap, but they evolve over time, becoming
less uniform in the final state. This change in the pattern of
interactions could be related to the development of clusters of
agents with similar spins or opinions, potentially representing
the formation of filter bubbles.

Regarding Long-Range and Short-Range Inter-
actions

Long-Range Interactions

These would be responsible for the overall shape of the Hamil-
tonian graph. If the long-range interactions dominate, the
system may not settle into a stable state, indicating a diverse
opinion landscape where new trends and ideas can spread
rapidly across the entire network.

Short-Range Interactions

These interactions are likely responsible for the localized clus-
ters we might observe in the Green’s function heatmap. If
short-range interactions are strong, they can lead to the for-
mation of tightly knit groups that share similar opinions, re-
inforcing the filter bubble effect.

Replica Symmetry Breaking

In the context of filter bubbles, the breaking of replica symme-
try could be thought of as the divergence of opinion clusters
from a homogeneous state to a more diversified one. The
heatmaps could be revealing this phenomenon. Initially, the
agents may be in a similar state (replica symmetry), but as
time progresses, they diverge into different states (replica
symmetry breaking). The final correlation matrix’s more
chaotic pattern compared to the initial state suggests that a
complex system of interactions and opinions has developed
over time.

It is important to note that these interpretations are based
on a theoretical model and real-world social dynamics are far
more complex. Factors such as external information sources,
individual biases, and network structure can all influence the
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formation and persistence of filter bubbles in ways that are
not captured by this simple model.

9.14 Analysis of Behavior of Long-Time Aver-
ages

The behavior of long-time averages indicates how the system

evolves over time. This is modeled through the introduction

of time-dependent Hamiltonians or external fields as time

progresses.



Final state of the lattice, Total magnetization
over time

Figs. 10-11 show the final state of the lattice, which may
simulate a spin system, and the total magnetization and total
energy over time. Let’s discuss the implications of these
diagrams in the context of zero-phenomenon time (absolute
zero or near absolute zero), paying particular attention to
extrapolation and interpolation of the behavior of the system,
and consider the formation of a filter bubble.

The lattice shows distinct regions of positive (yellow) and
negative (purple) spin, suggesting that clusters of aligned
spins have formed. This may indicate ferromagnetic domains
where the spins align with each other due to local interac-
tions. In the context of filter bubbles, these clusters may
represent groups of individuals in agreement, reinforcing the
concept of echo chambers where like opinions are amplified
and opposing opinions are minimized.

Total magnetization fluctuates over time and tends down-
ward. This trend suggests that the system may have reached
a negative spin dominant state or, if this trend continues, may
be approaching a more balanced state. From an extrapolation
perspective, assuming this trend continues, the system may
reach a state of 1 magnetization, which suggests a balanced
opinion state in the social system. For the sake of extrap-
olation, the historical data shows periods of time when one
opinion (spin direction) was dominant, but eventually moves
to a more balanced state.

Total energy over time

Total energy also fluctuates, showing a slight downward trend.
In general, the lower the energy, the more stable the state in
the physical system. The system may be settling into a lower
energy configuration where large changes in opinion are less
likely to occur.

Extrapolation and interpolation

- Extrapolation suggests that both magnetization and energy
are moving to more stable and balanced configurations over
time. If this trend continues, it would indicate a natural ten-
dency of the system to move away from extreme polarization,
potentially reducing the effects of the filter bubble. - Inter-
polation uses historical trends to infer the current state of
the system. The data suggest that the system has undergone
significant changes and is now stabilizing.

Extrema analysis

Minimum: a point of minimum energy may represent a stable
configuration, and in a social context may indicate a stable
opinion state that is less susceptible to change. This may
correspond to the formation of a strong filter bubble in which
opinions are deeply entrenched. - Maximum: the point of

maximum energy may represent an unstable construct and,
in a social context, may correspond to a transitional period
where opinions are more fluid and changeable.

Filter bubble phenomenon

In social dynamics, the formation of filter bubbles can lead
to polarization of opinion. The final state of the lattice shows
evidence of such polarization with distinct opinion clusters.
The energy and magnetization trends suggest that while the
system experiences fluctuations, there may be a natural pro-
gression toward stability and balance, and that local interac-
tions and external influences may strengthen or weaken the
filter bubble.

These interpretations are based on similarities between
physical spin systems and social dynamics. It remains to
be seen how, in real applications, the dynamics are much
more complex and influenced by many factors that cannot be
explained by simple spin models.

Final State of the Lattice

The lattice displays regions of positive (yellow) and negative
(purple) spin alignment, suggesting areas of local agreement
or disagreement, akin to clusters of shared opinion or dissen-
sion. In terms of filter bubbles, these regions could represent
groups where a certain opinion is prevalent.

Total Magnetization over Time

This graph shows the sum of all spins within the system
over time. The trend of total magnetization indicates the
dominant direction of spin alignment, which can oscillate
as spins flip. In a social analogy, this might represent the
prevailing public opinion or social mood, with upward trends
indicating a general agreement or consensus, while downward
trends may imply a prevailing dissent or a shift in the opposite
direction.

Total Energy over Time

The energy graph reflects the system’s stability, with lower en-
ergies generally indicating more stable configurations. Sharp
changes could represent external influences or internal shifts
that disrupt the current state of consensus.

Extrapolation and Interpolation in the Context of Filter
Bubbles: - Extrapolation would involve predicting the future
configuration of the lattice based on the observed trends in
magnetization and energy. A continuing decrease in energy
might suggest the system is moving towards a more stable,
aligned state, potentially indicating stronger and more uni-
form filter bubbles. Conversely, if the energy levels off or
increases, it could indicate disruption of current filter bubbles
or the formation of new ones. - Interpolation involves under-
standing the current state by considering historical trends. If



the system showed a decrease in energy over time but main-
tained fluctuations in magnetization, it might suggest that
while overall opinions have become more stable, there is still
contention and the potential for change.

Extrema Analysis

Minima in energy could indicate stable social configurations,
where filter bubbles are well-formed and resistant to change.
These points might correspond to entrenched social norms
or dominant narratives. Maxima could signify unstable con-
figurations or periods of social change where existing filter
bubbles are challenged or new ones emerge.

The analysis of these images in the context of filter bub-
bles suggests that social systems, like physical systems, can
experience phases of stability and change. The formation of
filter bubbles, similar to regions of aligned spins, can be influ-
enced by both internal dynamics and external perturbations,
leading to complex patterns of social behavior.

In examining the final state of this lattice for signs of
replica symmetry breaking within filter bubbles, here’s what
we can infer:

1. Clustering and Domains:Fig.11

Fig.11 shows clear domains of like-spinned agents, indicated
by contiguous areas of the same color. These domains suggest
that clusters of agents with similar opinions have formed. In
the social context, this can be interpreted as groups of individ-
uals with aligned views or interests, which is a fundamental
characteristic of filter bubbles.

2. Long-Range and Short-Range Interactions

Long-Range Interactions

If we consider long-range interactions, which impact agents
that are not immediate neighbors, we can infer that their influ-
ence has led to the formation of these larger domains where a
single opinion dominates. This effect can be thought of as the
spread of information or influence through a social network
that doesn’t rely on direct contact, such as viral information
on social media.

Short-Range Interactions

These are represented by the smaller clusters or individual
agents with differing spins surrounded by those of opposite
spins. In a social network, these would be akin to individuals
or small groups resistant to the prevailing opinion in their
immediate community.

3. Replica Symmetry Breaking

The varied and non-uniform pattern across Fig.11 suggests
that symmetry has been broken. There isn’t a uniform dis-
tribution of spin states, indicating that the system does not

return to a state of equilibrium where all opinions are equally
represented. Instead, certain opinions (spins) dominate, il-
lustrating the phenomenon where the filter bubble effect leads
to the prevalence of particular viewpoints. This lack of sym-
metry is indicative of a dynamic system with multiple stable
and unstable states.

4. Information Environment Implications

If this model reflects the dynamics of information spread in
a filter bubble, the final lattice state with its clusters indi-
cates that while some opinions may dominate, others persist,
leading to a diverse yet divided information environment. It
suggests that while filter bubbles can create echo chambers,
they are not entirely impermeable and are subject to change
and disruption over time.

This interpretation is based on the assumption that the
Fig.11 model accurately reflects social dynamics and that
each spin’s state correlates to an individual’s opinion within
the filter bubble framework. It should be noted that real-world
social systems are influenced by many additional factors not
represented in this simplified model.

Total Magnetization over Time

The total magnetization fluctuates over time, indicating
changes in the alignment of spins within the system. In
the context of filter bubbles, this could symbolize shifts in
collective opinion or general sentiment within a social group.
Initially, the magnetization shows large fluctuations, suggest-
ing a period of instability or rapid changes in opinions. As
time progresses, while still fluctuating, the changes in total
magnetization seem less drastic, possibly indicating that the
system is reaching some form of dynamic equilibrium. - The
non-zero magnetization could be indicative of a bias in the
overall opinion, where one type of spin (opinion) is more
prevalent than the other.

Total Energy over Time

The total energy also fluctuates but shows a general down-
ward trend. In physical systems, lower energy typically corre-
sponds to more stable configurations. The downward trend in
energy might suggest that the system is settling into a lower
energy state, which could indicate that the social group is
forming a consensus or that the influence of external fields
(external information or propaganda) is leading the system
to a more stable state. - The sharp spikes in energy could
represent external influences or shocks to the system, causing
temporary disruptions in the stability of the system.
Considerations of Long-Range and Short-Range Interac-
tions: - Long-Range Interactions: The presence of long-range
interactions could explain the large-scale patterns observed
in total magnetization. Such interactions can facilitate the



spread of information or influence across the entire network,
not just among immediate neighbors. This can lead to signifi-
cant shifts in opinion or sentiment even without direct contact.
- Short-Range Interactions: The short-range interactions are
more likely to be responsible for the local fluctuations in mag-
netization and energy. They represent the day-to-day changes
in opinion based on direct interactions between individuals.

Replica Symmetry Breaking

The variations in magnetization and energy over time could
be a sign of replica symmetry breaking, where the system
does not return to an original or symmetric state but instead
finds itself in a new configuration with a different distribution
of opinions. The non-equilibrium dynamics, indicated by the
changes in magnetization and energy, suggest that the sys-
tem is continually evolving, which is characteristic of replica
symmetry breaking.

Implications for Filter Bubbles

The graphs suggest a dynamic social system where opinions
(spins) are influenced both by close contacts (short-range
interactions) and by the broader social network (long-range
interactions). The patterns of change in magnetization and
energy over time indicate that the filter bubble is not static
but changes as individuals within it are influenced by internal
and external factors. - The overall downward trend in energy
could imply that while the opinions within the filter bubble
may not be uniform, they tend to become more stable over
time, which could potentially lead to polarization if the system
tends to favor one state (opinion) over another.

In summary, these observations suggest a complex, dy-
namic system where opinions are influenced by both immedi-
ate and distant connections, leading to an ever-changing land-
scape of agreement and dissent that evolves over time. The
notion of replica symmetry breaking in this context would
point to the idea that once a certain opinion or set of opin-
ions becomes dominant within a filter bubble, it could lead
to a new state of equilibrium that is significantly different
from the initial state, potentially becoming more extreme and
polarized over time.
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