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Abstract: This study utilizes the replica method, a sophisticated concept derived from statistical
physics, to simulate the spread of fake news within social networks. By generating multiple replicas
of the social network model, we examine the dynamics of fake news diffusion under a variety of
conditions and parameters. This methodology facilitates the exploration of the effects of average
behavior, variance, and diverse factors on fake news diffusion through extensive computational
experiments. This paper further explores the application of a local potential approximation that
incorporates a mathematical formulation of local potentials based on pair, triplet, and quadriplet
interactions to address both remote and proximity interactions between agents. The impact of
nontrivial loops and replica symmetry breaking on the dynamics of fake news diffusion (approached
via Hebbian learning) is also highlighted, illustrating the theoretical and computational challenges
in accurately modeling such a complex social phenomenon. Visualizations included in this study,
such as correlations between replicas, average energy versus interaction strength, and the effect of
non-trivial loops on local potentials, provide deep insights into the behavior of the model under a
variety of conditions. This comprehensive analysis not only sheds light on the nature of modeling
complex systems such as the spread of fake news in social networks, but also highlights the need for
advanced methods such as the replica approach and in-depth consideration of the interactions and
dynamics in the model. Through this approach, we aim to contribute to a more robust understanding
of the fake news phenomenon and provide important insights for developing strategies to increase
society’s resilience against fake news.
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1. Introduction
The research discusses the application of the replica method,
a concept borrowed from statistical physics, to model the
spread of fake news in social networks. This method involves
creating multiple copies of a social network model, referred
to as "replicas," to analyze the dynamics of fake news dis-
semination under various conditions and parameters.

The approach allows for the examination of average be-
haviors, variances, and the influence of different factors on
the spread of fake news by conducting computational experi-
ments across these replicas.

Key steps in applying the replica method include gener-
ating replicas, setting initial conditions, simulating dynamics
(e.g., using Monte Carlo simulations), conducting statistical
analyses, varying parameters, and interpreting the results.
This method provides insights into the complexity and vari-

Fig. 1: Nash Equilibrium, Trajectory, and Pareto Optimal
Points, Fake News Spreader Strategy
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ability of fake news spread, contributing to a more robust
understanding of the phenomenon.

Additionally, the text explores the use of local potential
approximations in a fake news diffusion model to account for
both remote and proximity interactions among agents. This
part of the discussion involves mathematical formulations for
local potentials and their variations based on pair, triplet, and
quadriplet interactions. The model also considers the impact
of nontrivial loops and replica symmetry breaking on the dy-
namics of fake news spread, highlighting the theoretical and
computational complexity involved in accurately modeling
such social phenomena.

Figures included in the text depict various aspects of the
simulations, such as the correlation between replicas, the
average energy versus interaction strength, and the effects of
non-trivial loops on local potentials. These visualizations
aid in understanding the model’s behavior under different
conditions and the potential for phase transitions, extrema,
and replica symmetry breaking within the system.

Overall, the text underscores the intricate nature of mod-
eling complex systems like fake news dissemination in social
networks, emphasizing the need for sophisticated methods
like the replica approach and careful consideration of inter-
actions and dynamics within the model. The computational
process of the replica method and local potential approxi-
mation in the fake news diffusion model applies techniques
from statistical physics to understand the average behavior
and fluctuations of complex systems. The replica method in-
volves generating multiple copies (replicas) of the system and
analyzing the dynamics that proceed independently in each
replica. This method allows for the assessment of how factors
and parameter changes influence the statistical properties of
the system.

Computational Process of the Replica Method
(1) Generation of Replicas: Create duplicates of the orig-

inal model, each with independent dynamics.

(2) Setting Initial Conditions: Set the initial distribution
of fake news and the initial state of agents in each replica.

(3) Simulation of Dynamics: Use numerical simulation
methods like Monte Carlo simulations to independently
simulate the dynamics of fake news spread in each
replica.

(4) Statistical Analysis: Record the pattern of fake news
spread in each replica over time and statistically analyze
to find the average behavior and variance of fake news
spread.

(5) Parameter Variation: Vary various parameters, such
as the intensity of interaction between agents, initial
distribution of fake news, etc., to evaluate their impact
on each replica.

(6) Interpretation of Results: Compare data obtained
across replicas to identify factors that most influence
the spread of fake news.

Nash Equilibrium in Fake News and Fact-
Checking
When analyzing the dynamics of fake news and fact-checking
within the framework of game theory, the strategic interaction
between agents spreading fake news and those performing
fact-checking is considered. It is assumed that each agent
acts to maximize their own payoff, and this interaction is
modeled using a payoff matrix.

Example of a Payoff Matrix

Fact-Checking Not Fact-Checking
Spread Fake News (0, 1) (2, 3)
Not Spread Fake News (4, 5 ) (6, ⌘)

Here, each tuple represents the payoff for the agent spreading fake news
and the agent performing fact-checking, respectively. For example, (0, 1)
means the payoff is 0 for the agent spreading fake news when encountering
fact-checking, and 1 for the agent performing fact-checking.

Scenario Analysis
Using this payoff matrix, the Nash equilibrium in the interaction between
fake news and fact-checking is determined. A Nash equilibrium is a state
where no player can improve their payoff by changing their strategy. Through
game theory analysis, strategies and policy directions to curb the spread of
fake news and promote truthful information can be explored.

Considering the statistical behaviors and parameter impacts obtained
through the replica method, the elements of the payoff matrix can be set more
realistically, allowing for a deeper understanding of the dynamics between
fake news and fact-checking. This provides important insights when devising
strategies to enhance societal resilience against fake news.

When analyzing the dynamics of fake news and fact-checking using
game theory, it is possible to conduct a more sophisticated scenario analysis
using an iterative optimization algorithm applied with Hebb’s rule, best
response dynamics, and the fixed-point theorem.

Application of Hebb’s Rule
Hebb’s rule, known as "neurons that fire together, wire together" in the
context of learning theory and neural networks, can also be applied in game
theory scenarios to adapt strategies based on the actions of agents and their
outcomes.

Best Response Dynamics
In best response dynamics, each agent selects the strategy (best response)
that maximizes their own payoff, assuming the strategies of other agents.

Utilization of the Fixed-Point Theorem
The Banach fixed-point theorem is particularly useful in designing an iterative
optimization algorithm.

Scenario Analysis of the Payoff Matrix
Based on the payoff matrix, an algorithm is constructed that calculates and
iteratively updates the best response of agents.



Fact-Checking Not Fact-Checking
Spread Fake News (�1, 2) (3, �1)
Not Spread Fake News (0, 0) (1, 1)

Computational Process
(1) Set Initial Strategies: Assign initial strategies to agents based on ran-

domness or assumptions.
(2) Calculate Best Response: For each agent, calculate the best response

under the current strategy profile.
(3) Update Strategy: Update the strategy of agents to their best response.
(4) Check for Convergence: Repeat steps 2 and 3 until the strategy updates

converge or a predefined number of iterations is reached.
(5) Analyze Nash Equilibrium: Analyze the converged strategy profile to

understand the nature of the Nash equilibrium.

2. Discussion:Installation Game Theory
and Nash Equilibrium

A Nash equilibrium refers to a state in game theory where each player
selects their optimal strategy, and no player can improve their own payoff by
unilaterally changing their strategy. This concept, proposed by John Nash,
plays a crucial role in problems involving strategic decision-making.

Theoretical Explanation
In a Nash equilibrium, all players anticipate each other’s strategies and select
their optimal strategies based on those expectations. When the strategies
chosen by each player are best responses to the strategies chosen by the
others, this combination of strategies constitutes a Nash equilibrium.

Let *8 (B8 , B�8 ) be the payoff function for player 8, where B8 represents
player 8’s strategy, and B�8 represents the combination of strategies of the
other players. In a Nash equilibrium, the following condition holds for all
players 8:

*8 (B⇤8 , B⇤�8 ) � *8 (B8 , B⇤�8 )
Here, B⇤8 and B⇤�8 are the strategies for player 8 and the other players in

the Nash equilibrium. This inequality implies that when player 8 is given
the strategies of the other players B⇤�8 , they cannot improve their payoff by
changing their strategy B⇤8 .

Calculation Process
(1) Definition of Payoff Functions: Define the payoff functions

*8 (B8 , B�8 ) for each player.
(2) Computation of Best Responses: Compute the best response

⌫'8 (B�8 ) for each player 8 given the strategies of the other players
B�8 . The best response is the strategy B8 that maximizes *8 (B8 , B�8 )
for the given B�8 .

(3) Search for Nash Equilibrium: Find a combination of strategies
(B⇤1 , B

⇤
2 , . . . , B

⇤
= ) where all players’ best responses are mutually con-

sistent. This combination constitutes a Nash equilibrium.

The search for Nash equilibrium often involves mathematical methods
like the fixed-point theorem or algorithms such as iterative best response
dynamics, depending on the problem at hand. Nash equilibrium refers to a
state in game theory where each player selects their optimal strategy, and no
player can improve their own payoff by unilaterally changing their strategy.
This concept, proposed by John Nash, plays a crucial role in problems
involving strategic decision-making.

In a Nash equilibrium, all players anticipate each other’s strategies and
select their optimal strategies based on those expectations. When the strate-
gies chosen by each player are best responses to the strategies chosen by the
others, this combination of strategies constitutes a Nash equilibrium.

Let *8 (B8 , B�8 ) be the payoff function for player 8, where B8 represents
player 8’s strategy, and B�8 represents the combination of strategies of the
other players. In a Nash equilibrium, the following condition holds for all
players 8:

*8 (B⇤8 , B⇤�8 ) � *8 (B8 , B⇤�8 ) , 8B8 2 (8 , 88
Here,

*8 (B8 , B�8 ) is the payoff function for player 8, which depends on their
strategy B8 and the combination of strategies of the other players B�8 .
(8 is the set of possible strategies that player 8 can choose from.
B⇤�8 is the combination of strategies of all other players in the Nash
equilibrium, except for player 8.

(1) Definition of Payoff Functions: Define the payoff functions
*8 (B8 , B�8 ) for each player. These functions represent how a player’s
payoff depends on their strategy and the strategies of others.

(2) Identification of Strategy Spaces: Determine the set of possible
strategies (8 for each player.

(3) Computation of Best Responses: Calculate the best response B⇤8 for
each player 8 given a particular combination of strategies B�8 of the
other players. The best response is the strategy that maximizes the
player’s payoff, considering the strategies of others.

(4) Search for Nash Equilibrium: Search for a strategy profile B⇤ =
(B⇤1 , B

⇤
2 , . . . , B

⇤
= ) where all players’ best responses are mutually con-

sistent. This profile constitutes a Nash equilibrium.

The search for Nash equilibrium often involves mathematical methods
like the fixed-point theorem or algorithms such as iterative best response
dynamics, depending on the specific game.

Concrete Example
Consider a simple game with two players. Player 1 and Player 2 can each
choose between "Cooperate" or "Betray" as their strategies. The payoff
matrix for this game is as follows:

Cooperate Betray
Cooperate (2, 2) (0, 3)

Betray (3, 0) (1, 1)

In this game, the Nash equilibrium is the strategy profile "Betray" for
both players. This is because neither player has an incentive to unilater-
ally change their strategy, as it would not lead to an improvement in their
payoff. To confirm this equilibrium mathematically, we can apply the Nash
equilibrium definition to show that the chosen strategies indeed satisfy the
condition.

3. Discussion:Nash Equilibrium in the
Context of Fake News and

Fact-Checking
In the context of fake news and fact-checking, when considering Nash equi-
librium, the players are individuals or organizations who disseminate fake
news and fact-checkers who counteract it. The strategies of these players
correspond to the methods of spreading fake news and conducting fact-
checking, respectively. In the process of calculating Nash equilibrium using
fixed-point theorems, you define the payoff functions for each player and
find the points where each player’s strategy is an optimal response to the
opponent’s strategy.



Payoff function for fake news disseminators
*� (B� , B⇠)
Here, B� is the strategy of fake news disseminators, and B⇠ is the strategy of
fact-checkers. This payoff depends on the influence and reach of fake news
and decreases considering the losses due to fact-checking.

Payoff function for fact-checkers *⇠ (B⇠ , B�)
Here, B⇠ is the strategy of fact-checkers, and B� is the strategy of fake
news disseminators. This payoff is determined by the spread of accurate
information and the societal benefit of suppressing fake news.

3.1 Application of Fixed-Point Theorems
Fixed-point theorems, especially Banach’s fixed-point theorem or Brouwer’s
fixed-point theorem, can be used to calculate Nash equilibrium. Here, you
use the optimal response functions of the payoff functions to find the fixed
points, which are the Nash equilibria. Define the optimal response function
for fake news disseminators as '� (B⇠ ) and for fact-checkers as '⇠ (B� ) .
These functions return the optimal strategy for oneself given the opponent’s
strategy.

Calculating Fixed Points
A combination of strategies (B⇤� , B⇤⇠ ) for fake news disseminators and fact-
checkers is a Nash equilibrium fixed point if it satisfies the following condi-
tions:

'� (B⇤⇠ ) = B⇤� , '⇠ (B⇤� ) = B⇤⇠
These conditions indicate that fake news disseminators and fact-checkers
each choose their optimal strategies and respond optimally to the opponent’s
strategy.

In practice, finding these fixed points analytically can be challenging,
so numerical approaches like iterative methods are often used. For example,
you start with initial strategy guesses B (0)� , B (0)⇠ .

Update at iteration : as follows:

B (:+1)
� = '� (B (:)⇠ ) , B (:+1)

⇠ = '⇠ (B (:)� )

Repeat this process until (B (:)� , B (:)⇠ ) converges.
When introducing the concept of Nash equilibrium in the context of a

fake news diffusion model in game theory, we model situations where agents
(e.g., individuals, news sources, fact-checkers, etc.) make choices among
their strategies (e.g., spreading fake news, not spreading it, conducting fact-
checks, etc.). Nash equilibrium refers to a state where, when all agents
have fixed their strategies, there is no incentive for any agent to change their
strategy.

Let the set of agents be denoted as # = {1, 2, . . . , =}, and each agent
8 has a set of strategies (8 . The payoff functions for each agent are defined
as D8 : (1 ⇥ (2 ⇥ . . . ⇥ (= ! R, where (1 ⇥ (2 ⇥ . . . ⇥ (= represents the
set of all possible combinations of strategies for all agents.

3.2 Nash Equilibrium
A combination of strategies (B⇤1 , B

⇤
2 , . . . , B

⇤
= ) is a Nash equilibrium if, for

every agent 8, the following holds for any alternative strategy B08 :

D8 (B⇤1 , B
⇤
2 , . . . , B

⇤
8 , . . . , B

⇤
= ) � D8 (B⇤1 , B

⇤
2 , . . . , B

0
8 , . . . , B

⇤
= )

In other words, when no other agent changes their strategy, no agent can
increase their payoff by changing their own strategy.

Fig. 2: Payoff Function *⇠ (B� , B⇠ ), *� (B� , B⇠ )Bubble Ef-
fect: = 0.5

Fig. 3: Pareto Optimal StrategiesBubble Effect: = 0.5

Application to Fake News Diffusion Model
In the context of fake news diffusion, agents can be thought of as having
strategies to spread fake news, not spread it, or conduct fact-checks. Agent
payoffs may depend on the following factors:

(1) Value of Accuracy in Information: The extent to which agents value
accurate information.

(2) Social Influence: The social impact or approval gained by spreading
fake news.

(3) Cost and Effectiveness of Fact-Checking: The cost of conducting
fact-checks and the improvement in information accuracy achieved
through them.

To find Nash equilibria, one needs to examine all possible combinations
of strategies for all agents and identify combinations that satisfy the inequality
mentioned above. This can be done either analytically or through numerical
simulations.

Agent-Based Modeling: Simulate agent behaviors and explore Nash
equilibria under different initial conditions and parameter settings.
Evolutionary Game Theory: Model how agents’ strategies evolve
over time and analyze dynamic equilibria.

Payoff Function *⇠ (B� , B⇠), *� (B� , B⇠)Bubble
Effect: = 0.5
Fig.3-4, The gain functions *� (B� , B⇠ ) and *⇠ (B� , B⇠ ) for fake news
spreaders (F) and fact checkers (C), taking into account the effect of the filter
bubble. Each axis represents the strategy B� and B⇠ for players F and C,
respectively, and the Z axis shows the gain. A Pareto-optimal point is a point
where one player’s gain cannot be improved without compromising the gain
of another player. To find a point that satisfies this condition, the values of



Fig. 4: Payoff Function *⇠ (B� , B⇠ ), *� (B� , B⇠ )Bubble Ef-
fect: = 0.9

the gain functions are compared to see if there are any options that can be
improved for each player.

Fig.3-4 depict the payoff functions for two players, F (Fake News Spread-
ers) and C (Fact Checkers), in a strategic setting where they interact under
the influence of a filter bubble effect, with set at 0.5. This parameter likely
represents the strength of the filter bubble effect on the interaction between
the two players.

The first image (which I’ll refer to as Image 1) shows a scatter plot with
two strategies on the x-axis and y-axis, labeled as B� and B⇠ respectively.
The plot points marked in red represent Pareto optimal strategies, where any
movement away from these points would make at least one player worse off,
assuming the other’s payoff remains constant. Pareto optimality is a state
where it is impossible to make any player better off without making at least
one player worse off.

The second image (which I’ll refer to as Image 2) contains two 3D sur-
face plots representing the payoff functions*� (B� , B⇠ ) and*⇠ (B� , B⇠ ) .
The axes represent the strategies B� and B⇠ , and the z-axis represents the
payoff. These plots show how the payoffs change with different combinations
of strategies.

The Pareto optimal points seem to form a curve, indicating that there is
a set of strategy combinations where one player cannot improve their payoff
without reducing the other player’s payoff. The feasible strategies (marked
in grey) are numerous, but only a subset is Pareto optimal. The payoff
functions seem to be linear or near-linear, suggesting that the payoffs change
at a constant rate as strategies change. The surface for *� appears to be
flat, indicating that the payoff for player F might be unaffected by changes in
the strategies, or it has a constant rate of change that does not depend on the
strategies of player C. The surface for *⇠ has a clear slope, implying that
the payoff for player C changes with different strategy combinations.

To determine the Pareto optimal strategies, one would typically: Map
out the payoff for each player for various strategy combinations. Identify
points where the payoff for one player can’t be increased without decreasing
the payoff for the other player.

The Pareto optimal strategies in Image 1 are likely found by examining
the combination of strategies from both players that are on the red curve.
These combinations represent situations where one player’s strategy is the
best response to the other player’s strategy, given the condition of Pareto
optimality.

Overall, the analysis suggests that under the influence of the filter bubble
effect with = 0.5, there are specific strategy combinations that are Pareto
optimal, and these are the points at which neither player can unilaterally
improve their payoff without negatively affecting the other player.

Payoff Function *⇠ (B� , B⇠), *� (B� , B⇠)Bubble
Effect: = 0.9
Fig.5-6 show a similar setup as the previous ones, but with a key difference
in the value of the filter bubble effect parameter U, which is now set to 0.9
instead of 0.5. This change suggests a stronger influence of the filter bubble

Fig. 5: Pareto Optimal StrategiesBubble Effect: = 0.9

effect on the players’ interactions. Let’s analyze these new images with this
change in mind.

In this scatter plot, the x-axis and y-axis represent the strategies B�
and B⇠ respectively, just like in the previous set. The red points indicating
Pareto optimal strategies are found along the corners of the strategy space,
specifically at the maximum values of B� and B⇠ . This pattern suggests
that under a stronger filter bubble effect, the most advantageous strategies
for both players are those where they either fully commit to a strategy or do
not engage in it at all. This could imply that moderate strategies become less
effective as the filter bubble effect increases.

These 3D surface plots illustrate the payoff functions *� (B� , B⇠ ) and
*⇠ (B� , B⇠ ) , just like the previous set. With U = 0.9, it seems that the
payoff functions may have become more sensitive to changes in strategies
since the filter bubble effect is stronger.

For Player F, The surface plot appears to show a linear relationship
between the strategies and the payoff, similar to the previous case. This
might indicate that the fake news spreader’s payoff is either not affected by
the fact-checker’s strategy or changes at a constant rate regardless of it.

For Player C, The plot appears to show a clear slope, indicating that
the payoff for the fact-checker changes with different strategy combinations.
Given the higher value of U, this might suggest that the fact-checker’s strate-
gies are more crucial under strong filter bubble effects.

To explore Pareto optimal combinations, the same approach as before
would be used: Mapping out the payoff for each player for a variety of
strategy combinations. - Identifying the combinations where improving one
player’s payoff would result in a decrease for the other player.

The presence of Pareto optimal strategies at the extreme ends of the
strategy spectrum in Fig.5-6 might suggest that, as the filter bubble effect
becomes more pronounced, the players are driven to more extreme strategies.
This could reflect a real-world scenario where strong filter bubbles lead to
more polarized behavior.

In summary, these graphs suggest that with a stronger filter bubble effect
(U = 0.9), the range of strategies that lead to Pareto optimality becomes more
extreme. This could have significant implications for the dynamics between
fake news spreaders and fact-checkers in a highly polarized information
ecosystem.

Payoff Function *⇠ (B� , B⇠), *� (B� , B⇠)Bubble
Effect: = 0.01
Figure 7-8 shows the gain functions for fake news spreaders (F) and fact
checkers (C), taking into account the effect of filter bubbles.

The gain function of the fake news spreader depends on the amount of
fake news spread (strategy B� ) and the amount of verification activity of
the fact checker (strategy B⇠ ). Taking into account the effect of the filter
bubble, the gain of the fake news spreader is maximized when the fake news
is not verified. Therefore, it is expected that fake news spreaders will adopt



Fig. 6: Payoff Function *⇠ (B� , B⇠ ), *� (B� , B⇠ )Bubble Ef-
fect: = 0.01

Fig. 7: Pareto Optimal StrategiesBubble Effect: = 0.01

a strategy of increasing the amount of fake news spread in order to suppress
the verification activities of fact checkers.

The fact checker’s gain function is determined by the amount of fake
news spread (strategy B� ) and the amount of fact checker verification activity
(strategy B⇠ ). Taking into account the effect of the filter bubble, the fact
checker’s gain is maximized when fake news is verified. Therefore, it is
expected that the fact checker will use a strategy that increases the verification
activity of the fact checker in order to control the spread of fake news.

A Pareto-optimal combination is a combination that does not improve
the gains of one player without compromising the gains of another. To find
combinations that satisfy this condition, the values of the gain functions must
be compared to see if there are any options that can be improved for each
player.

In the above graph, the Pareto-optimal combination is the combination
of a strategy where the fake news spreader does not spread fake news B� = 0
and a strategy where the fact checker maximizes the fact checker’s verification
activity B⇠ = 1. In this combination, the fake news spreader has a gain of 0
and the fact checker has a gain of 1.

The above graph shows that there is no optimal combination of the gains
of the fake news spreader and the fact checker for both of them when the
effect of the filter bubble is taken into account. Fake news spreaders can
maximize their gains by increasing the amount of fake news spread, but this
reduces the gains of fact checkers. Fact checkers, on the other hand, can
maximize their gains by increasing the verification activity of fact checkers,
which decreases the gains of the fake news spreaders.

This suggests that it is important to seek solutions that are desirable
for both the fake news spreader and the fact checker in order to limit the
effects of the filter bubble. For example, measures could include introducing
regulations to curb the spread of fake news and supporting the activities of
fact-checkers. The gain for the fake news spreader and the fact checker,
taking into account the effect of the filter bubble, is that there is no optimal
combination for both.

Fake news spreaders can maximize their gains by increasing the amount
of fake news spread, but this reduces the gains of fact checkers. Fact checkers,
on the other hand, can maximize their gains by increasing the verification
activity of fact checkers, which decreases the gains of the fake news spreaders.

The filter bubble effect size U is set to 0.01. This value means that
the gain of the fake news spreader is slightly larger than the gain of the fact
checker. The larger the effect of the filter bubble, the larger the gain of the
fake news spreader relative to the gain of the fact checker, and the less likely
there will be an optimal combination for both.

4. Discussion:Nash Equilibrium and
Pareto Optimality in the Context of

Fake News and Fact-Checking
In the context of game theory, considering Nash equilibrium and Pareto
optimality in the context of fake news and fact-checking, the Best Response
Dynamics illustrates the process in which each player selects a strategy to
maximize their own payoff. In Nash equilibrium, each player’s strategy is
optimal given the opponent’s strategy, while Pareto optimality refers to a
state where the payoffs of all players cannot be simultaneously improved.

Player 1 (Fake News Disseminator) and Player 2 (Fact-Checker).
B� represents the strategy set for the Fake News Disseminator, and B⇠
represents the strategy set for the Fact-Checker.
*� (B� , B⇠ ) is the payoff function for the Fake News Disseminator,
and *⇠ (B� , B⇠ ) is the payoff function for the Fact-Checker.

4.1 Best Response Dynamics
4.2 Definition of Best Response Functions

⌫'� (B⇠ ) = arg max
B�

*� (B� , B⇠ )

⌫'⇠ (B� ) = arg max
B⇠

*⇠ (B� , B⇠ )

4.3 Iteration of Dynamics
Start from any initial strategies B (0)� and B (0)⇠ , and update strategies using the
best response functions.

B (:+1)
� = ⌫'� (B (:)⇠ )

B (:+1)
⇠ = ⌫'⇠ (B (:)� )

4.4 Exploration of Nash Equilibrium
When strategies no longer change, i.e., B (:+1)

� = B (:)� and B (:+1)
⇠ = B (:)⇠ , it

can be said that Nash equilibrium has been reached.

4.5 Examination of Pareto Optimality
Pareto optimality is a combination of strategies where improving one player’s
payoff cannot be achieved without decreasing the payoff of another player.
Nash equilibrium is not necessarily Pareto optimal, and there may be cases
where Pareto improvement (improvement of payoffs for all players simulta-
neously) is possible.

To determine Pareto optimality, evaluate the payoff functions for all
possible combinations of strategies and consider whether a particular com-
bination of strategies is Pareto dominant over all other combinations.

(1) Enumeration of All Strategies: Enumerate all possible combinations
of strategies for the Fake News Disseminator and the Fact-Checker.

(2) Comparison of Payoffs: For each combination of strategies, compare
it to all other combinations and examine whether the payoffs of both
players can be simultaneously improved.



Fig. 8: Best Response Dynamics in Fake News Spread and
Fact-Checking

Fig. 9: Payoff Function for Fake News Spreader, for Fact
Checker

(3) Identification of Pareto Optimal: Identify the combination of strategies
where no player’s payoff can be improved without worsening others’
payoffs as Pareto optimal.

Best Response Dynamics in Fake News Spread
and Fact-Checking
From Fig.9, Payoff functions, Defining functions that represent the bene-
fits/costs for both the fake news spreader and fact-checker based on their
chosen strategies. Best response dynamics, Iteratively updating the strate-
gies of both players based on their best responses to the opponent’s current
strategy.Nash equilibrium: Identifying the point where neither player can
improve their payoff by unilaterally changing their strategy.Pareto optimal-
ity, Finding strategy combinations where no player’s payoff can be improved
without worsening the other’s payoff (mutually beneficial outcomes).

The simulation iterates through best response dynamics until reaching
a Nash equilibrium.The results are visualized to show how strategies evolve
over iterations. A note highlights the need for comprehensive analysis,
considering all possible strategy combinations to identify Pareto optimal
points. This can be computationally expensive for continuous strategy sets
and might require additional optimization techniques or simplifications.

This approach seems like a valuable way to analyze the complex in-
terplay between fake news spreaders and fact-checkers. By modeling their
payoff functions and simulating their strategic interactions, we can gain in-
sights into.

How different factors (e.g., filter bubble strength) influence their be-
havior.The conditions under which fake news thrives or fact-checking is
effective. The potential existence of mutually beneficial strategies (Pareto
optimality).

Fig. 10: Nash Equilibria and Pareto Optimal Points

Fig.10-11, Heatmaps Analysis, Payoff Function
for Fake News Spreader
The heatmap indicates that the spreader’s payoff increases as their strategy
becomes more aggressive (moving right along the x-axis) and as the fact-
checker’s strategy becomes less aggressive (moving down along the y-axis).
This suggests that the spreader benefits from spreading more fake news es-
pecially when the fact-checker does not check aggressively. Payoff Function
for Fact Checker The fact-checker’s payoff is highest when their own strategy
is aggressive (y-axis approaches 1.0) and the spreader’s strategy is less ag-
gressive (x-axis approaches 0.0). This indicates that the fact-checker benefits
from checking more thoroughly when the spreader is less aggressive.

Nash Equilibria and Pareto Optimal Points
The red dot represents a Nash Equilibrium, where neither player can improve
their payoff by changing their strategy unilaterally. It’s a stable state of the
game where each player’s strategy is a best response to the other. The blue
crosses represent Pareto optimal points. These points are states of the game
where it’s impossible to make one player better off without making the other
player worse off. There can be multiple Pareto optimal points in a game,
reflecting different compromises between players’ payoffs.

Summary of the Game Dynamics
Nash Equilibrium, From the scatter plot, there is one clear Nash Equilibrium.
At this point, both players have chosen a strategy such that neither of them
can benefit by changing their strategy while the other player keeps theirs
constant. Pareto Optimality, There is a range of Pareto optimal strategies
along the edge of the strategy space. This means there are multiple situations
where one player cannot increase their payoff without decreasing the other’s
payoff.

The fact that there is only one Nash Equilibrium suggests that there is
a single stable strategy for both the spreader and checker in the context of
this simulation. The Pareto optimal points suggest trade-offs between the
players’ strategies. The spreader can choose a strategy less aggressive than
the Nash Equilibrium to improve the fact-checker’s payoff without losing
their own, up to a certain point.



Technical Notes
The payoff functions likely depend on the combination of strategies, where
the spreader’s benefit is inversely related to the checker’s efforts, and vice
versa. The simulation assumes rational behavior and perfect knowledge of
payoffs, which may not reflect real-world scenarios perfectly. Identifying
the Nash Equilibrium and Pareto optimal points requires comparing payoffs
across all strategy combinations, which can be complex.

Considerations
This analysis assumes that the axes represent continuous strategies ranging
from 0 to 1, where 0 might represent no effort and 1 represents full effort.
The colors on the heatmaps correlate with the payoff levels (e.g., dark blue
is low payoff, yellow is high payoff).

For further analysis, it would be helpful to know the exact payoff func-
tions and to consider the assumptions of the simulation, such as whether the
game is zero-sum (one player’s gain is another’s loss) or if there’s a poten-
tial for mutual benefit. Additionally, real-world constraints and externalities
could significantly affect the strategies and payoffs.

5. Discussion:Game Theory Nash
Equilibrium and Pareto Optimality
in the Context of Fake News and

Fact-Checking
In the context of game theory concerning Nash equilibrium and Pareto opti-
mality in the context of fake news and fact-checking, we can utilize Banach’s
fixed-point theorem to discover fixed points (Nash equilibria) within the
strategy space and examine whether these fixed points are Pareto optimal.
Banach’s fixed-point theorem states that for a contraction mapping satisfying
certain conditions, there always exists a unique fixed point within the strategy
space.

Players and Strategies
Consider the presence of a Fake News Disseminator (Player F) and a Fact-
Checker (Player C).

B� is the strategy set for Player F.
B⇠ is the strategy set for Player C.

Payoff Functions
*� (B� , B⇠ ) and *⇠ (B� , B⇠ ) are the payoff functions for Player F and
Player C, respectively.

Application of Banach’s Fixed-Point Theorem
We consider a mapping ) : ( ! ( (where ( is the strategy space for all
players) that updates the players’ strategies based on the current strategy
profile.

For ) to be a contraction mapping, there must exist a constant 0 
: < 1 such that 3 () (B) , ) (B0 ) )  : · 3 (B, B0 ) holds for all B, B0 2 (
(where 3 is a distance function).

If ) is a contraction mapping, Banach’s fixed-point theorem guarantees
the existence of a unique fixed point B⇤ within the strategy space (, satisfying
) (B⇤ ) = B⇤. This B⇤ corresponds to a Nash equilibrium.

Examination of Pareto Optimality
To determine whether the Nash equilibrium B⇤ is Pareto optimal, we evaluate
the payoff functions *� and *⇠ to check if a particular strategy profile can
simultaneously improve the players’ payoffs compared to all other strategy

Fig. 11: Fake News Spreader Strategy, sF=0.5, sC=0.1

Fig. 12: Fake News Spreader Strategy, sF=0.1, sC=0.1

profiles. The condition for Nash equilibrium B⇤ to be Pareto optimal is that,
for all B 2 (,

*� (B⇤, B⇠ ) � *� (B, B⇠ ) ,
*⇠ (B� , B⇤ ) � *⇠ (B� , B)

However, equality holds only when B = B⇤.

Construction of Strategy Update Function
Construct a contraction mapping ) based on the best response functions for
each player.

Iteratively apply the contraction mapping ) to search for fixed points
B⇤. Specifically, start from an initial strategy and continue applying ) until
the strategies converge.

Once a fixed point B⇤ is found, verify whether the resulting strategy
profile is Pareto optimal.

Fake News Spreader Strategy
Fig12-13, depicting the strategy trajectories over a series of iterations for
both the fake news spreader and the fact-checker, converging to a Nash
equilibrium. These graphs illustrate how the strategies of each player evolve
as they respond to each other according to the simulation.

Initial Params: sF=0.5, sC=0.1
Fake News Spreader Strategy (Blue Line), The spreader starts with an initial
strategy of 0.5 and gradually adjusts it downward over iterations. The strategy
seems to stabilize at around 0.4, suggesting that the spreader finds it optimal
to reduce the intensity of spreading fake news slightly from the initial strategy.



Fig. 13: Fake News Spreader Strategy, sF=0.5, sC=0.5

Fig. 14: Fake News Spreader Strategy, sF=0.5, sC=0.9

Fig. 15: Payoff Matrix for Fake News Spreader, for Fact
Checker

Fact Checker Strategy (Orange Line), The checker starts with an initial
strategy of 0.1 and quickly adjusts it downward, converging towards zero.
This indicates that, in response to the spreader’s strategy, the checker finds
it optimal to eventually not invest in fact-checking, which could suggest that
the cost of checking outweighs the benefits given the spreader’s strategy.

Initial Params: sF=0.1, sC=0.1
Fake News Spreader Strategy (Blue Line) Starting at 0.1, the spreader’s
strategy decreases slightly and then stabilizes very close to the initial value.
This could imply that starting at a lower level of fake news spreading does
not require significant adjustment to reach an equilibrium.

Fact Checker Strategy (Orange Line), The fact checker, starting also at
0.1, drastically reduces their strategy to zero within the first few iterations.
This suggests an even stronger outcome in favor of not engaging in fact-
checking, which may indicate either the effectiveness of low levels of fake
news spreading or a high cost of fact-checking relative to its effectiveness.
The Nash equilibrium is reached when neither player can improve their pay-
off by changing their strategy, given the strategy of the other player. The
trajectories show how the players adjust their strategies over time to reach
this equilibrium. The trajectory towards the Nash equilibrium appears to be
different depending on the initial parameters. This implies that the starting
point can influence the dynamics of the strategy adjustments. The stabiliza-
tion of strategies at or near zero for the fact-checker in both graphs suggests
that in the model, the cost of fact-checking might be too high relative to the
spread of fake news, making it an unattractive option for the checker. Con-
traction Mapping, The use of a contraction mapping with an alpha parameter
to update strategies ensures convergence to a fixed point, as guaranteed by the
Banach fixed-point theorem. This method is suitable for simulations where
strategies are adjusted incrementally. Pareto Optimality, This concept was
not directly shown in the trajectory graphs, but it is an important considera-
tion in game theory, indicating states where no player can be made better off
without making another player worse off. Simplified Model, The model uses
linear payoff functions and a discrete strategy space. Real-world scenarios
are likely to involve more complex and nonlinear payoffs, and continuous
strategy spaces.

Overall, these simulations show the interplay between strategies of a
fake news spreader and a fact checker, and how they adjust their strategies
in response to one another to reach a state where neither has an incentive to
change unilaterally. It also demonstrates the importance of initial conditions
in the evolution of strategies within the modeled scenario.

Payoff Matrix for Fake News Spreader
Fig16-17, show the payoff matrices for a fake news spreader and a fact
checker, and a plot of Nash equilibrium, trajectory, and Pareto optimal points
in a game-theoretic simulation.

This matrix has a gradient that indicates the spreader’s payoff increases
as their strategy becomes more aggressive (moving right along the x-axis)



Fig. 16: Nash Equilibrium, Trajectory, and Pareto Optimal
Points, Fake News Spreader Strategy

and as the fact checker’s strategy becomes less aggressive (moving down
along the y-axis). The highest payoff for the spreader occurs when the
spreader is fully aggressive, and the checker is not checking at all.

Payoff Matrix for Fact Checker
The payoff for the checker increases with the checker’s own strategy being
more aggressive (moving up along the y-axis) and the spreader’s strategy
being less aggressive (moving left along the x-axis). The fact checker’s
payoff is highest when they are fully aggressive against a non-aggressive
spreader.

These matrices suggest a dynamic where the spreader’s best payoff
comes from being unopposed, while the fact checker’s payoff is maximized
when they are fully checking against minimal spreading.

Nash Equilibrium, Trajectory, and Pareto Opti-
mal Points Analysis
Trajectory to Nash Equilibrium (Blue Line), This line shows the path taken
by the strategies of the fake news spreader and the fact checker as they
adjust towards the Nash equilibrium. It appears that as the game progresses,
the checker increases their checking strategy in response to the spreader’s
strategy, leading to the Nash equilibrium.

Nash Equilibrium (Blue Dot), This point represents the combination of
strategies where neither player has an incentive to unilaterally change their
strategy. Based on the trajectory, it seems the equilibrium is reached when
the checker has a high strategy value, while the spreader has a strategy value
that elicits this response from the checker.

Pareto Optimal Points (Red Dots), The Pareto optimal points are spread
along the x-axis at the bottom of the graph. This indicates combinations
of strategies where improving one player’s payoff would worsen the other’s.
It’s interesting to note that all Pareto optimal points lie along the checker
strategy of zero, which implies that any level of spreading, if unchecked,
cannot be improved upon from the spreader’s perspective without harming
the checker’s payoff.

Interplay Between Strategies
The trajectory to the Nash equilibrium shows that the checker’s strategy
is reactive to the spreader’s actions. The checker seems to increase their
effort only in response to the spreader’s strategy, indicating a dynamic where
the fact checker’s strategy is contingent on the level of fake news being
spread. The linear payoff functions used in this simulation provide clear
visualizations of strategy adaptations and outcomes. However, real-world
scenarios would likely involve more complex payoff functions and dynamics.

Fixed-Point Convergence
The application of the Banach fixed-point theorem ensures convergence to
the Nash equilibrium through the contraction mapping. This is a common
method in game theory to find equilibria in simulations.

The model assumes that players have full knowledge of each other’s
payoff functions and that they can adjust their strategies accordingly. This
is a simplification and may not reflect the uncertainty present in real-world
decision-making. The Pareto optimal points along the x-axis suggest that
there are many strategies for the spreader that cannot be improved upon with-
out the checker engaging in checking, which indicates a potential imbalance
in the payoff structure or the cost of actions for the checker.

6. Discussion:Applying the Concept of
Nash Equilibrium in a Fake News
Diffusion Model with Honeycomb
Lattice and Majorana Operators

Honeycomb Lattice and Majorana Operators
Place Majorana operators W8 at each vertex of the honeycomb lattice. These
operators represent the states of agents and are assumed to have binary
states indicating whether they spread fake news or not. - The interaction
between Majorana operators is described by the following Hamiltonian: � =
8
Õ

h8, 9i �8 9W8W 9 , where �8 9 represents the strength of interaction between
agents 8 and 9, and h8, 9 i denotes pairs of neighboring agents.

Definition of A and B Phases
A and B phases are distinguished based on the topological properties of the
system. In the A phase, fake news spreads easily, while in the B phase,
diffusion is suppressed.

Application of Game Theory
The set of strategies for agents is ( = {Spread, Not Spread, Fact-Check}.
Agent payoffs depend on the chosen strategy and the strategies of other
agents.

Calculation of Nash Equilibrium
Define the payoff functions for agents as D8 ((8 , (�8 ) , where (8 represents
the strategy of agent 8 and (�8 represents the combination of strategies of all
other agents. Nash equilibrium is a strategy combination ((⇤

8 , (
⇤
�8 ) for all

agents 8 such that D8 ((⇤
8 , (

⇤
�8 ) � D8 ((8 , (⇤

�8 ) for all (8 .

Calculation of Local Potentials
Calculate the local potential +local taking into account interactions within
the local region. This potential is based on combinations of agent states and
is related to error ranges.



Fig. 17: Phase A, B PayoffsEquilibrium

Updating Interactions via Hebbian Rule
Set the update rule for interaction strengths between agents using the Hebbian
rule: �8 9 (C + 1) = �8 9 (C ) +��8 9 (B8 , B 9 ) , where ��8 9 is the update based on
the states B8 , B 9 of agents 8 and 9.

The process of calculating strategy combinations reaching Nash equi-
librium in both A and B phases will be explained in detail, along with more
specific formulas. In this process, it is assumed that agents (Majorana oper-
ators) can have three strategies in the fake news diffusion model: Spread (S),
Not Spread (N), and Fact-Check (F).

First, define the payoff functions for agents. Payoffs depend on the
strategies chosen by agents and the strategies of other agents. In the A phase
(high diffusion state) and the B phase (diffusion-suppressed state), the payoff
functions take different forms. For example, denote the payoff functions in
the A phase as *� and in the B phase as *⌫.

The payoff function for agent 8 is represented as follows:
A Phase Payoff Function: *� (8, (8 , (�8 ) B Phase Payoff Function:

*⌫ (8, (8 , (�8 )
Here, (8 is the strategy of agent 8, and (�8 is the strategy set of all other

agents.
Model the interactions between Majorana operators as strategic interac-

tions between agents. The interaction Hamiltonian � is defined as follows:

� = 8
’
h8, 9i

�8 9 ((8 , ( 9 )W8W 9

Here, �8 9 ((8 , ( 9 ) represents the interaction strength between agents 8
and 9, and this strength depends on the strategies (8 and ( 9 .

Calculation of Nash Equilibrium
Nash equilibrium is a state where all agents maximize their payoffs. To find
Nash equilibrium, for each agent 8, there are conditions for both the A and B
phases, which are as follows:

A Phase: *� (8, (⇤
8 , (

⇤
�8 ) � *� (8, (8 , (⇤

�8 ) for all (8 B Phase:
*⌫ (8, (⇤

8 , (
⇤
�8 ) � *⌫ (8, (8 , (⇤

�8 ) for all (8
Here, (⇤

8 represents the strategy in Nash equilibrium for agent 8, and
(⇤
�8 is the strategy set in Nash equilibrium for all other agents.

To find the strategy set (⇤ that satisfies the Nash equilibrium condi-
tions, numerical analysis methods are used. Typically, this process involves
iterative optimization algorithms (e.g., best response dynamics, successive
approximation).

Phase A and B Payoffs Line Graphs
Fig18-19, In the images provided, we have visual representations of payoff
structures and outcomes for two different phases of a strategic interaction
between a fake news spreader (Player F) and a fact-checker (Player C).

Nash Equilibrium (Red Dot), For both Phase A and Phase B, the Nash
Equilibrium is indicated at the strategy profile (1.0, 0.0), meaning that the

Fig. 18: Payoff Function for Phase A, B, Fake News Spreader
Strategy, Fact Checker Strategy

spreader fully commits to spreading fake news, and the checker does not
invest in fact-checking at all.

Spreader Payoff (Blue Line), This line shows a positive slope, indicating
that the spreader’s payoff increases with their level of spreading fake news.
In both phases, the spreader’s payoff is maximized when they adopt a full
spreading strategy.

Checker Payoff (Orange Line), This line has a negative slope, which
shows that the checker’s payoff decreases as the spreader’s strategy becomes
more aggressive. The checker’s payoff is maximized when the spreader does
not spread fake news.

Payoff Function Heatmaps for Phase A and B
Payoff Function for Phase A and B, These heatmaps show the payoff for each
player at different strategy combinations. The color gradient represents the
level of payoff, with red indicating higher payoffs and blue indicating lower
payoffs. For both phases, there is a clear diagonal gradient, suggesting that
the payoffs for both players are directly affected by the strategies of the other.
As the spreader’s strategy increases, their payoff increases (moving from left
to right), while the checker’s payoff decreases (moving from top to bottom).

Interpretation and Insights
Nash Equilibrium, The Nash Equilibrium at (1.0, 0.0) indicates a situation
where the spreader always opts to spread fake news fully, and the checker
opts out of checking entirely. This can suggest a game dynamic where the
cost or impact of fact-checking is not sufficient to deter the spreader, or the
spreader’s benefits from spreading fake news are too great to be countered
effectively by the checker.

Differences Between Phases, Although the Nash Equilibrium is the same
for both phases, the payoff gradients differ slightly, indicating that the specific
payoffs for any given strategy profile vary between Phase A and Phase B. This
could be due to different payoff structures or external conditions affecting
each phase. Pareto Optimality, The red dots at the bottom of the payoff
line graphs could indicate the Pareto optimal points where any change in
strategy would make at least one player worse off. In this case, it appears
that the Pareto optimal outcomes are heavily skewed towards the spreader,
potentially indicating an imbalance in the effectiveness or cost of strategies
between the two players.

Contraction Mapping
The consistent Nash Equilibrium suggests that the contraction mapping used
in the simulation effectively converges to a fixed point, as dictated by the Ba-
nach fixed-point theorem. Pareto Optimality Verification, The analysis does
not show the computational verification of Pareto optimality. To do this, one
would have to ensure that there are no other strategy profiles that would make
both players better off than at the Nash Equilibrium. Model Simplifications,



While these visuals provide a clear representation of the strategic interac-
tion, they are part of a simplified model. Real-world scenarios would likely
involve additional factors that could shift payoffs and optimal strategies.

The simulation illustrates a scenario where the spreader has a dominant
strategy to spread fake news fully, and the checker’s optimal response is
not to engage in fact-checking at all, at least within the payoff structures
defined for Phases A and B. The Pareto optimal points suggest that the payoff
structure heavily favors the spreader, which may reflect the challenges faced
in combatting fake news in various real-world contexts.

7. Consideration of
Methodology:Exploring Nash
Equilibrium in Local Potential
Approximations Based on Pair,

Triplet, and Quadruplet Scenarios
Exploring Nash Equilibrium in Local Potential Approximations Based on
Pair, Triplet, and Quadruplet Scenarios is an application of game theory to
analyze strategic interactions in complex multi-agent systems. Here, we will
explain in detail the theoretical approach to finding Nash equilibria in the
context of fake news diffusion.

Agent Strategies
Each agent chooses whether to spread fake news (strategy (1), not to spread
(strategy (2), or to perform fact-checking (strategy (3).

Interactions and Local Potentials
Interactions between agents are defined by a local potential + and consider
scenarios involving pairs (+pair), triplets (+triplet), and quadruplets (+quad).

Local Potentials Calculation

Pair Local Potential +pair = ��pair
Õ

h8, 9 i B8B 9
Triplet Local Potential +triplet = ��triplet

Õ
h8, 9 ,:i B8B 9 B:

Quadruplet Local Potential +quad = ��quad
Õ

h8, 9 ,:,;i B8B 9 B:B;

Table. 1: Local Potential Calculation

Here, �pair, �triplet, �quad are the strengths of pair, triplet, and quadruplet
interactions, and B8 represents the strategy state of agent 8.

Payoff Functions
The payoff function*8 for each agent is defined based on the local potential
and the agent’s strategy.

Nash Equilibrium Search
Nash equilibrium is a combination of strategies where no agent can unilater-
ally change their strategy to increase their payoff. This condition is expressed
for each agent 8.

Nash Equilibrium Conditions

*8 ((⇤
1 , (

⇤
�8 ) � *8 ((1, (

⇤
�8 )

*8 ((⇤
2 , (

⇤
�8 ) � *8 ((2, (

⇤
�8 )

*8 ((⇤
3 , (

⇤
�8 ) � *8 ((3, (

⇤
�8 )

Here, (⇤
8 represents the Nash equilibrium strategy for agent 8, and (⇤

�8
is the Nash equilibrium strategy set for all other agents.

Numerical methods and game theory algorithms are used to search for
Nash equilibrium strategy combinations that satisfy the Nash equilibrium
conditions. During the simulation and optimization stage, the dynamics of
the system are modeled, and numerical methods or game theory algorithms
are employed to evolve the system such that each agent chooses the optimal
strategy.

Analysis of Dynamics via Simulation
In simulations, the system is initiated from an initial state, and the optimiza-
tion process described above is carried out over time.

At each time step, the following information is calculated and recorded:

Fake news diffusion rate: d(C ) = 1
#

Õ
8 B8 (C )

Error range: Average size of clusters of consecutive fake news diffusion
agents.

Simulations are executed for different scenarios (pair, triplet, quadru-
plet), and the diffusion patterns of fake news and changes in error ranges are
compared and analyzed.

8. Discussion:Exploring Nash
Equilibrium in Scenarios

Scenario 1
Expressing the changes in the payoff matrix when one of the players continues
to spread fake news excessively and fact-checking is conducted against it
using a general formula.

Let Player 1 (Information Provider) have a probability of spreading
fake news excessively as ?1 (C ) , and Player 2 (Information Receiver) have a
probability of conducting fact-checks as ?2 (C ) . The general elements of the
payoff matrix are denoted as *1(?1 (C ) , ?2 (C ) ) and *2(?1 (C ) , ?2 (C ) ) .

In this case, when the probability of spreading fake news excessively
increases over time C , it can be expressed in a generalized formula as follows:

?1 (C ) = 5 (C ) · ?10

Here, ?10 is the initial probability of spreading fake news, and 5 (C ) is
a function that varies over time. 5 (C ) represents the occurrence of excessive
fake news and has a specific functional form with respect to C .

On the other hand, the probability of conducting fact-checks, ?2 (C ) ,
may also vary over time. The generalized formula for this is as follows:

?2 (C ) = 6 (C ) · ?20

Here, ?20 is the initial probability of fact-checking, and 6 (C ) is a func-
tion that changes over time. 6 (C ) represents the increase or decrease in
fact-checking and has a specific functional form with respect to C .

And, when expressing the elements of the payoff matrix in a general
manner, it becomes as follows:

*1(?1 (C ) , ?2 (C ) ) =*10 + ⌘ (C )
*2(?1 (C ) , ?2 (C ) ) =*20 + 8 (C )

Here, *10 and *20 represent the initial payoffs, and ⌘ (C ) and 8 (C ) are
functions that change over time. These functions reflect how they change
over time due to the players’ strategies.

Fig.20-21, scenario described, we can analyze the changes in payoffs
over time for two players involved in a situation where one spreads fake news
and the other conducts fact-checking.



Fig. 19: Filter Bubble Scenario 1, Game Theory Applications

Fig. 20: Filter Bubble Scenario 1, Game Theory Applications

Fig.20 (Initial Parameters: p10 = 0.2, ?20 =
0.8,*10 = 1.0,*20 = 1.0)
The graph shows a linear relationship between the payoffs of the two players
over time.Player 1’s payoff (Information Provider) increases linearly with
time, while Player 2’s payoff (Information Receiver) decreases linearly. The
crossing point suggests a moment in time where both players have the same
payoff before their payoffs diverge.

Fig.21 (Initial Parameters: p10 = 0.1, ?20 =
0.8,*10 = 10.0,*20 = 1.0)
This graph presents a different scenario where Player 1 starts with a signif-
icantly higher payoff than in the first graph, while Player 2’s payoff remains
the same as before. The payoffs for both players remain constant over time,
indicating that the functions 5 (C ) and 6 (C ) may be constant (i.e., 5 (C ) = 1
and 6 (C ) = 1), and the changes in strategies do not impact their payoffs.

Interpretation of the Scenario
The first graph represents a dynamic system where the strategies and payoffs
change over time. The linear increase and decrease in payoffs suggest that
the functions ⌘ (C ) and 8 (C ) may be linear with respect to time, implying that
the consequences of the strategies linearly affect the players’ payoffs. The
second graph indicates a scenario where, despite the presence of fake news
and fact-checking, the payoffs of the players do not change over time, which
might suggest that the strategies of spreading fake news or fact-checking are
ineffective, or that the initial advantage of Player 1 is so significant that it
remains unchallenged over the observed period.

Implications for the Payoff Matrix
The general formulas provided define how the players’ strategies evolve
over time and how these strategies affect their payoffs. In both cases, the
payoff for the information provider (Player 1) is tied to the function ⌘ (C ) ,
which might represent the benefits of spreading fake news, while the payoff
for the information receiver (Player 2) is tied to the function 8 (C ) , which
might represent the costs or effects of fact-checking. If ⌘ (C ) increases and
8 (C ) decreases over time, it indicates that the act of spreading fake news
becomes more profitable while fact-checking becomes less effective or more
costly. Fig.20 suggests a competitive scenario where the strategies of the
two players have inverse effects on their payoffs over time. Fig.21 implies a
static situation where the initial conditions dictate the outcomes, and there
is no change in payoffs over time.The differences in the initial parameters
significantly impact the dynamics between the players. Player 1’s high initial
payoff in the second graph suggests that they are in a dominant position that
is not affected by the passage of time or the actions of Player 2.

Scenario 2
In Scenario 2, if both players continue to excessively spread fake news and
no fact-checking is conducted, there is a possibility that their payoff matrices
will be evenly balanced. To express this general trend, the following general
formula is provided.

Let Player 1 (Information Provider) have a probability of excessively
spreading fake news as ?1 (C ) , and Player 2 (Information Receiver) also have
a probability of believing in fake news excessively as ?2 (C ) . Additionally, in
the case where no fact-checking is conducted, the probability of fact-checking
is assumed to be zero.

If the strategy probabilities for Player 1 and Player 2 do not change over
time, that is, if ?1 (C ) = ?10 and ?2 (C ) = ?20 hold, the general formula for
the payoff matrices is as follows:

*1(?1 (C ) , ?2 (C ) ) =*10

*2(?1 (C ) , ?2 (C ) ) =*20



Fig. 21: Filter Bubble Scenario 2, Game Theory Applications

Fig. 22: Filter Bubble Scenario 2, Game Theory Applications

Here,*10 and*20 represent the initial payoffs, and it indicates that the
payoffs do not change over time. In other words, as long as both continue
to excessively spread fake news, and the probability of accepting it remains
unchanged, the payoffs do not change.

However, this situation is unrealistic, and typically, the payoff matrix
would change due to information receivers, external factors (e.g., strengthen-
ing fact-checking, introducing regulations, changes in information providers,
etc.).

Fig.22-24, depicting the payoff evolution over time for two players under
different initial conditions. In these scenarios, the players’ strategies involve
spreading and receiving fake news, with no fact-checking conducted.

Graphs with Static Payoffs (Fig.22-23)
These graphs illustrate scenarios where the payoffs for both players do not
change over time, suggesting that the probabilities ?1 (C ) and ?2 (C ) remain
constant. Player 1 (Information Provider) has a significantly higher constant
payoff compared to Player 2 (Information Receiver). This may reflect the
benefit that Player 1 gains from spreading fake news without the presence
of fact-checking. The constant payoff for Player 2 suggests that the impact
of believing in fake news does not change their payoff over time in these
scenarios.

Graph with Dynamic Payoffs (Fig24)
This graph shows a scenario where the payoffs change over time, indicating
that ?1 (C ) and ?2 (C ) may be dynamic, or other factors are at play which

Fig. 23: Filter Bubble Scenario 2, Game Theory Applications

influence the payoffs. The payoff for Player 1 increases over time while
the payoff for Player 2 decreases, implying a shift in the benefits and costs
associated with the strategies of spreading and receiving fake news, respec-
tively. The trends suggest a competitive interaction where the gain for Player
1 comes at the expense of Player 2.

Interpretation of the Scenarios
In the static payoff scenarios, the unchanging payoffs may reflect a situation
where both players are locked into their strategies, and the spreading and
receiving of fake news have become normalized without any intervention or
changes in behavior. The dynamic payoff scenario implies a system where
consequences evolve over time. For Player 1, this could mean increasing
benefits from spreading fake news, possibly due to a growing audience
or more sophisticated tactics. For Player 2, the decreasing payoff could
represent the cumulative cost of believing in fake news, such as loss of
credibility or other long-term detriments.

Implications for the Payoff Matrix
The constant payoffs in the first two graphs suggest that the system is in
a state of equilibrium where the strategies of both players are stable and
unresponsive to each other’s actions. The changing payoffs in the third graph
suggest that the equilibrium is either not reached or is being disrupted by
external factors or evolving strategies. When no fact-checking is conducted,
and both players continue to engage with fake news, the payoff matrix initially
remains static, suggesting a stalemate or an accepted status quo. Over time,
external influences or intrinsic changes in the system may alter this balance,
leading to a dynamic situation where the payoffs for spreading and receiving
fake news change, potentially requiring new strategies or interventions to
address the evolving landscape.

To provide a more detailed analysis, additional information about the
specific functional forms of ?1 (C ) , ?2 (C ) , and any external factors influenc-
ing the payoffs would be necessary.

Scenario 3
In Scenario 3, one of the players continues to alternate between lies (L) and
truths (T), and fact-checking is conducted against them. There is a possibility
that both players’ payoff matrices will be evenly balanced. Such a general
trend can be expressed with mathematical equations. Below, I provide the
idea for a general formula.

Let Player 1 (Information Provider) have a probability of alternating
between lies and truths as ?1 (C ) , and Player 2 (Information Receiver) also
have a probability of believing in lies and truths as ?2 (C ) . Since the prob-
ability of fact-checking may vary for each player, we denote it as ? 5 21 (C )
and ? 5 22 (C ) .
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Here, the strategy probabilities for Player 1 and Player 2 at time C can
be expressed as follows:

?1 (C ) = U · ?10 + (1 � U) · ? 5 21 (C )
?2 (C ) = V · ?20 + (1 � V) · ? 5 22 (C )

Here, U and V are parameters that control to what extent Player 1 and
Player 2 employ the strategies of lies and truths. ?10 and ?20 are the initial
strategy probabilities.

The general formula for the payoff matrices is as follows:

*1(?1 (C ) , ?2 (C ) ) =*10 + 5 (C )
*2(?1 (C ) , ?2 (C ) ) =*20 + 6 (C )

Here, *10 and *20 represent the initial payoffs, and 5 (C ) and 6 (C ) are
functions that change over time. These functions depend on the players’
strategies and the results of fact-checking. For example, if 5 (C ) and 6 (C )
have appropriate functional forms that compete with each other, there is a
possibility that the payoff matrices will be evenly balanced.

Fig.25 representing the evolution of payoffs over time for two players
engaged in a scenario where one alternates between spreading lies and truths,
and the other conducts fact-checking. The described mathematical model
considers the interplay between spreading misinformation and fact-checking,
and how these dynamics affect each player’s payoff.

Player 1 Payoff (Blue Line)
Player 1’s payoff increases over time, suggesting that the strategy of alter-
nating between lies and truths (possibly in response to fact-checking) is
becoming increasingly effective, or that the cost of being caught in a lie
decreases over time due to 5 (C ) .

Player 2 Payoff (Orange Line)
Player 2’s payoff decreases over time, indicating that the strategy of believing
in lies and truths and conducting fact-checking is becoming less effective or
more costly due to 6 (C ) .

Interpretation of the Scenario
The parameters U and V likely represent the extent to which players stick
to their initial strategies versus adjusting in response to the other player’s
actions. The functions 5 (C ) and 6 (C ) reflect the temporal evolution of the
payoffs, potentially incorporating the effects of external factors like increased
public awareness, changing credibility, or the introduction of regulatory mea-
sures. The increasing payoff for Player 1 suggests that they are successfully
navigating between spreading lies and truths to maximize their benefit, pos-
sibly by adapting to the fact-checking efforts of Player 2. The decreasing

payoff for Player 2 suggests that fact-checking is not sufficiently mitigating
the negative impact of misinformation, or the cost of fact-checking (in terms
of resources or credibility) is rising.

Implications for the Payoff Matrix
The graph indicates that the strategies and effectiveness of fact-checking
evolve over time, potentially due to learning, adaptation, or changes in the
information environment. The model suggests that a balance may be reached
if the functional forms of 5 (C ) and 6 (C ) are appropriately chosen, which
could lead to a stable outcome where neither player has an incentive to
unilaterally change their strategy. The described scenario implies a dynamic
competition where the effectiveness of fact-checking and the strategy of
alternating between lies and truths influence the players’ payoffs. The balance
of the payoff matrices will depend on how each player adapts their strategy
in response to the other, as well as on external factors that influence the
efficacy of fact-checking and the cost of spreading misinformation. To fully
understand the dynamics at play, additional details on the specific forms of
5 (C ) and 6 (C ) , as well as the values of U and V, would be required. These
would offer insight into the specific mechanisms through which the strategies
affect the payoffs and how these are expected to evolve over time.

Scenario 4
In Scenario 4, if one of the players continues to present inconvenient truths
(F), and fact-checking is conducted against them, there is a possibility that
both players’ payoff matrices will be evenly balanced. Such a general trend
can be expressed with mathematical equations. Below, I provide the idea for
a general formula.

Let Player 1 (Information Provider) have a probability of presenting
inconvenient truths (F) as ?1 (C ) , and Player 2 (Information Receiver) also
have a probability of believing in inconvenient truths as ?2 (C ) . Since the
probability of fact-checking may vary for each player, we denote it as ? 5 21 (C )
and ? 5 22 (C ) .

Here, the strategy probabilities for Player 1 and Player 2 at time C can
be expressed as follows:

?1 (C ) = U · ?10 + (1 � U) · ? 5 21 (C )
?2 (C ) = V · ?20 + (1 � V) · ? 5 22 (C )

Here, U and V are parameters that control to what extent Player 1 and
Player 2 present inconvenient truths. ?10 and ?20 are the initial strategy
probabilities.

The general formula for the payoff matrices is as follows:

*1(?1 (C ) , ?2 (C ) ) =*10 + 5 (C )
*2(?1 (C ) , ?2 (C ) ) =*20 + 6 (C )

Here, *10 and *20 represent the initial payoffs, and 5 (C ) and 6 (C ) are
functions that change over time. These functions depend on the players’
strategies and the results of fact-checking. For example, if 5 (C ) and 6 (C )
have appropriate functional forms that compete with each other, there is a
possibility that the payoff matrices will be evenly balanced.

Fig.26 showing the payoffs for two players over time under specific initial
conditions and strategy probabilities related to presenting and believing in
inconvenient truths (F), with a component of fact-checking involved.

Player 1 Payoff (Blue Line)
Player 1’s payoff remains constant over time, suggesting that their strategy
or the effectiveness of presenting inconvenient truths is stable and unaffected
by the dynamics of the game within the observed time frame.

Player 2 Payoff (Orange Line)
Similarly, Player 2’s payoff is also constant over time, indicating that their
strategy or the impact of believing in inconvenient truths does not vary over
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time, or that fact-checking efforts are neither beneficial nor harmful to their
payoff.

Interpretation of the Scenario
The constants U and V suggest the degree to which each player’s strategy
is influenced by their own actions versus the fact-checking activities. The
fact that payoffs are constant may indicate that U and V are such that the
strategies are stable, or that ? 5 21 (C ) and ? 5 22 (C ) are constant and do not
impact the outcome. The functions 5 (C ) and 6 (C ) are meant to reflect
changes in payoffs over time. However, the constant nature of the payoffs in
this graph suggests that these functions are either absent or zero, implying no
change or impact from external factors or strategic shifts over the observed
time.

Implications for the Payoff Matrix
Given that the payoffs do not change, this scenario might represent a system
in equilibrium where the current strategies are optimal for both players, or
where the potential benefits and costs of changing strategies are perfectly
balanced. The scenario assumes no evolution in the strategies of presenting
and believing in inconvenient truths, which could be interpreted as the play-
ers having reached a stable understanding or agreement on how to handle
these truths. The graph suggests a static situation where the initial strategies
and payoffs are maintained over time. This could either be due to a lack of
incentive for either player to deviate from their strategy or due to external
constraints that prevent the players from altering their strategies. To deter-
mine why the payoffs are static and to predict future changes, one would need
to consider additional information about the nature of the inconvenient truths,
the context in which they are presented and received, and the effectiveness
and intensity of the fact-checking efforts.

Scenario 5
In Scenario 5, if one of the players continues to provide accurate informa-
tion (T), and no fact-checking is performed, there is a possibility that both
players’ payoff matrices will be evenly balanced. This general trend can be
expressed using mathematical equations. Below, I provide the idea for a
general formula.

Let Player 1 (Information Provider) have a probability of continuously
providing accurate information (T) as ?1 (C ) , and Player 2 (Information
Receiver) also have a probability of believing in accurate information as
?2 (C ) . Since the probability of fact-checking may vary for each player, we
denote it as ? 5 21 (C ) and ? 5 22 (C ) .

Here, the strategy probabilities for Player 1 and Player 2 at time C can
be expressed as follows:

?1 (C ) = U · ?10 + (1 � U) · ? 5 21 (C )
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?2 (C ) = V · ?20 + (1 � V) · ? 5 22 (C )
Here, U and V are parameters that control to what extent Player 1 and

Player 2 provide accurate information. ?10 and ?20 are the initial strategy
probabilities.

The general formula for the payoff matrices is as follows:

*1(?1 (C ) , ?2 (C ) ) =*10 + 5 (C )
*2(?1 (C ) , ?2 (C ) ) =*20 + 6 (C )

Here, *10 and *20 represent the initial payoffs, and 5 (C ) and 6 (C ) are
functions that change over time. These functions depend on the players’
strategies and the results of fact-checking. For example, if 5 (C ) and 6 (C )
have appropriate functional forms that lead to disagreements at some point,
there is a possibility that the payoff matrices will be evenly balanced.

Fig.27 depicts the payoffs for two players over time within a specific
scenario where Player 1 (Information Provider) is continuously providing
accurate information, and Player 2 (Information Receiver) believes in this
information. In this scenario, no fact-checking is being performed. The
mathematical equations provided are used to model the strategy probabilities
and payoffs over time.

Player 1 Payoff (Blue Line)
Player 1’s payoff increases over time, which indicates that continuously
providing accurate information is becoming increasingly beneficial for Player
1. The payoff starts at 1.0 and grows steadily, suggesting that the value of
truthfulness in the information provided by Player 1 increases over time,
perhaps due to building trust or credibility.

Player 2 Payoff (Orange Line)
Player 2’s payoff decreases over time, starting higher than Player 1’s but
dropping below it as time progresses. This may suggest that while initially,
there is a benefit to believing accurate information, over time, the lack of fact-
checking might lead to a decrease in Player 2’s ability to discern the truth or
perhaps an increase in the cost associated with accepting information without
verification.

Interpretation of the Scenario
Strategy Probabilities, The probabilities ?1 (C ) and ?2 (C ) represent the like-
lihood of Players 1 and 2 sticking to their strategies of providing and believing
in accurate information, respectively. Since U and V are low (0.1 and 0.5,
respectively), this suggests that fact-checking plays a small role in their strate-
gies. The payoff functions *1(?1 (C ) , ?2 (C ) ) and *2(?1 (C ) , ?2 (C ) ) are
affected by the functions 5 (C ) and 6 (C ) , which represent the time-dependent
change in payoffs due to the players’ strategies and possibly other external
factors. In a scenario without fact-checking, the players’ payoffs change as



a direct consequence of their strategies and the changing environment in
which the information is provided and received. The increasing payoff for
Player 1 suggests that providing accurate information without the need for
fact-checking is rewarded over time, possibly due to establishing a reputation
for reliability. The decreasing payoff for Player 2 indicates a potential cost
associated with not verifying information, even if it is accurate. Over time,
the information landscape may change, or there may be a need for more
scrutiny, leading to lower payoffs for simply accepting information at face
value.

The graph and scenario highlight the dynamic nature of trust and cred-
ibility in information exchange. While initially, there may be high trust and
lower verification costs, over time, the need for fact-checking and verification
may become more apparent, affecting the payoffs for both the information
provider and receiver. The crossing point of the payoffs suggests a critical
moment where the benefit of providing accurate information equates to the
cost of believing it without verification. This model serves as a simplified
representation of the complex dynamics involved in information dissemina-
tion and consumption.

Scenario 6
In Scenario 6, if one of the players continues to provide false information
(L) without fact-checking, over time, the fact-checker may also continue to
provide correct information until an error occurs at some point, leading to a
divergence in opinions. We consider the possibility of such a general trend
being expressed using mathematical equations. Below, I provide the idea for
a general formula.

Let Player 1 (Information Provider) have a probability of continuously
providing false information (L) as ?1 (C ) , and Player 2 (Information Receiver)
also have a probability of believing in lies as ?2 (C ) . Since the probability
of fact-checking may vary for each player, we denote it as ? 5 21 (C ) and
? 5 22 (C ) .

Here, the strategy probabilities for Player 1 and Player 2 at time C can
be expressed as follows:

?1 (C ) = U · ?10 + (1 � U) · ? 5 21 (C )
?2 (C ) = V · ?20 + (1 � V) · ? 5 22 (C )

Here, U and V are parameters that control to what extent Player 1 and
Player 2 provide false information. ?10 and ?20 are the initial strategy
probabilities.

The general formula for the payoff matrices is as follows:

*1(?1 (C ) , ?2 (C ) ) =*10 + 5 (C )
*2(?1 (C ) , ?2 (C ) ) =*20 + 6 (C )

Here, *10 and *20 represent the initial payoffs, and 5 (C ) and 6 (C ) are
functions that change over time. These functions depend on the players’
strategies and the results of fact-checking. For example, if 5 (C ) and 6 (C )
have appropriate functional forms that lead to errors occurring at some point,
causing a divergence in opinions, there is a possibility that the payoff matrices
will be evenly balanced.

Fig.28-29, representing the payoffs for two players over time in a sce-
nario where one player provides false information without fact-checking and
the other player, a fact-checker, may provide correct information until a
divergence occurs due to an error.

Player 1 Payoff (Blue Line)
Player 1 starts with a higher payoff that increases over time. This suggests that
providing false information without the presence of fact-checking initially
benefits Player 1, and this benefit grows over time, possibly due to the
accumulation of influence or trust built on the unverified information.

Fig. 27: Filter Bubble Scenario 6, Game Theory Applications
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Player 2 Payoff (Orange Line)
Player 2’s payoff begins lower than Player 1’s and shows a slight decrease
before stabilizing. The initial decline might reflect the initial costs or con-
sequences of believing false information. The subsequent stability could
indicate that Player 2 either starts to detect falsehoods or that the costs asso-
ciated with false beliefs have reached a steady state.

Interpretation of the Scenario
The strategy probabilities, represented by ?1 (C ) and ?2 (C ) , are influenced
by the parameters U and V, which determine how much the players stick
to their initial strategies in the presence of fact-checking activities. The
functions 5 (C ) and 6 (C ) in the payoff formulas are designed to model the
time-dependent change in payoffs, which could include the impact of ex-
ternal factors such as societal reactions to misinformation or changes in the
information environment.

Implications for the Payoff Matrix
The increasing payoff for Player 1 despite providing false information sug-
gests that the negative consequences of spreading falsehoods have not yet
materialized significantly within the model’s timeframe or that these con-
sequences are outweighed by the benefits gained. The fact that Player 2’s
payoff stabilizes suggests that the negative impact of false information may
be mitigated over time, possibly due to adaptation by Player 2 or other en-
tities in the system that begin to counteract the misinformation. Fig.28-29
demonstrates a scenario where misinformation initially leads to an advantage
for the provider but does not result in a continuous decline for the receiver,
suggesting a complex interplay between the spread of misinformation and the
response of the information environment. The dynamics between the play-
ers’ strategies and the resulting payoffs would be influenced by additional
factors in a real-world context, such as the ability of the wider community
to recognize and challenge false information, or the introduction of penal-
ties or other disincentives for spreading falsehoods. To fully understand the
evolution of the payoffs and the potential for errors causing a divergence in
opinions, further details about the nature of the false information, the ef-
fectiveness of fact-checking, and the potential for correcting misinformation
would be needed.

9. Note:Exploring Nash Equilibrium in
Scenarios

In this computational experiment, we aim to find Nash equilibrium on the
filter bubble by performing the following calculations:

Definition of Information Reception Functions
We define the information reception functions �� (B� , B⇠ ) and �⇠ (B� , B⇠ ) ,
which represent the quality and quantity of information received by players
based on their strategies.

Definition of Payoff Functions
We define the payoff functions *� and *⇠ that are influenced by the filter
bubble.

Redefinition of Best Response Functions
We redefine the best response functions '0

� and '0
⇠ for Player F and Player

C.

Fig. 29: Filter Bubble Scenario:Player F and C Payoff Func-
tion

Calculation of Nash Equilibrium
Using '0

� and '0
⇠ , we calculate the strategy pair (B⇤� , B⇤⇠ ) at Nash equilib-

rium.
In this simulation, specific forms of information reception functions and

payoff functions have not been defined yet. We will assume appropriate
functional forms to find the Nash equilibrium.

As an assumption, information reception functions are defined as func-
tions of strategies:

�� (B� , B⇠ ) = VB� (1 � B⇠ )
�⇠ (B� , B⇠ ) = W (1 � B� )B⇠

Here, V and W are parameters representing players’ sensitivity to receiv-
ing information.

The payoff functions are defined by adding the influence of information
reception functions to basic payoffs:

*� (B� , B⇠ , �� ) = B� (1 � B⇠ ) + X��

*⇠ (B� , B⇠ , �⇠ ) = (1 � B� )B⇠ + [�⇠

X and [ are parameters representing how much the impact of informa-
tion is reflected in payoffs. Player’s best response functions '0

� and '0
⇠

are functions that return the strategy that maximizes their own payoff when
the opponent’s strategy is fixed. We will implement a Python simulation to
explore the Nash equilibrium. Set the initial values for parameters as follows:

V = 1.5, W = 1.5, X = 1.0, [ = 1.0
The Nash equilibrium is the point where both players’ best response

strategies intersect. Use numerical analysis to find this point.
In this computational experiment, we have outlined the methodology for

finding Nash equilibrium on the filter bubble. The actual implementation and
results will depend on the specific functional forms chosen for information
reception and payoff functions.

Fig.30, depict a game-theoretic model concerning the dissemination
and reception of information within the context of a filter bubble effect.
The model includes Player F (the information provider) and Player C (the
information receiver), with strategies B� and B⇠ , respectively. The filter
bubble effect parameters U, V, X, and W influence how players receive and
value information.

Player F Payoff Function
The heatmap indicates that Player F’s payoff increases as their strategy B�
approaches 1, regardless of Player C’s strategy. This suggests that Player F
benefits more from fully committing to their strategy of information provision
within the filter bubble.

Player C Payoff Function
Conversely, Player C’s payoff is maximized when B⇠ is higher, meaning they
benefit from fully engaging with the information they receive. This could be



interpreted as Player C gaining more when they are open to the information
provided by Player F.

Nash Equilibrium
The Nash Equilibrium, indicated by the red dot at the coordinates (1.00,
1.00) on both heatmaps, represents the strategy profile where Player F fully
commits to their information strategy and Player C fully engages with the
information. At this point, neither player has an incentive to change their
strategy unilaterally.

Interpretation of the Scenario
The heatmaps suggest a scenario where both players find it best to engage
fully with their respective strategies. The filter bubble effect appears to
reinforce the players’ tendencies to stick to their strategies, leading to a
situation where both are locked into their behavior.

Implications for Payoff Matrix
The players’ payoff functions, including the terms X�� and [�⇠ , suggest
that the payoff is not only determined by the strategies themselves but also
by the quality of information reception within the filter bubble. The best
response functions '0

� and '0
⇠ will mathematically determine the players’

optimal strategies given the opponent’s strategy. These functions likely re-
flect a dynamic system where players adjust their strategies based on the
payoffs and the information received. The model outlined and the associated
heatmaps represent a simplified view of the complex interactions within a
filter bubble. In this environment, the players are incentivized to fully engage
with their strategies, leading to a Nash Equilibrium where both players fully
commit to their roles as information provider and receiver. This scenario can
be illustrative of online social platforms where users and content creators be-
come increasingly entrenched in their respective echo chambers, potentially
leading to polarization.

To validate these insights, an actual implementation of the simulation
with the specified parameters would be necessary, considering the functional
forms for the information reception and the impact on the payoffs.
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