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Abstract: In this paper, we apply gain function and expected gain function game theory to consider
the egocentricity and convexity in the gain function and expected gain function in the context of the
multicollaboration case in terms of complete and incomplete information games and in the context of
fake news and fact checking in the framework of noncooperative games. Here, we analyze the impact
of informal cooperation on gain, assuming the presence of information and a non-cooperative game
scenario in which different players (e.g., fact-checkers, news providers) choose their own strategies.
This research delves into the complex relationship between the dissemination of fake news and fact-
checking in the context of filter bubbles and examines how game-theoretic principles can be used to
analyze the strategic interactions among news providers, consumers, and fact-checkers. By modeling
these interactions, we explore how the dynamics of hyperadditivity and convexity in cooperative
games, along with the concepts of Nash equilibrium and expected utility, affect the spread and
control of misinformation. We illustrate how filter bubbles exacerbate the challenge of combating fake
news by restricting access to diverse sources of information, thereby affecting the strategic choices
of all parties involved. Through the lens of scenarios characterized by extensive formal games,
repetitive games, and information asymmetry, a multifaceted approach to mitigating the effects of
the filter bubble can be proposed. These include encouraging a diversity of information sources,
increasing the effectiveness of fact-checking through strategic resource allocation, and leveraging
educational initiatives to improve the public’s information literacy. Our analysis emphasizes the
importance of strategic cooperation and informed decision making to curb the spread of fake news
and examines game-theoretic frameworks that contribute to the development of a more resilient
information ecosystem in the digital age.

Keywords: Game Theory, Fake News, Fact-Checking, Complete Information Games, Non-Complete
Information Games, Replica Method, Filter Bubbles, Nash Equilibrium, Expected Utility, Superad-
ditivity, Convexity, Strategic Interaction, areto Optimal Points, Information Asymmetrys

1. Introduction

In this paper, we apply gain function and expected gain func-
tion game theory to consider the egocentricity and convexity
in the gain function and expected gain function in the context
of the multicollaboration case in terms of complete and in-
complete information games and in the context of fake news
and fact checking in the framework of noncooperative games.
Here, we analyze the impact of informal cooperation on gain,

assuming the presence of information and a non-cooperative
game scenario in which different players (e.g., fact-checkers,
news providers) choose their own strategies. We mainly per-
formed some scenario analysis. Define the gain function:
Define a gain function for each player and compute the gain

Fig. 1: Nash Equilibrium and Pareto Optimality in Fake
News Game
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Fig. 2: Nash Equilibrium and Pareto Optimality in Fake
News Game

from independent actions.
Calculate the gain from informal cooperation: We calcu-

late the gain when two players informally share information
or coordinate their strategies to test the concept of egalitari-
anism.

Evaluating Convexity: Evaluate the convexity condition
by calculating the increase in gain that an additional player
brings as the set of players grows.

Visualization of the results: a graphical representation
of the gain function versus the gain obtained from informal
cooperation.

The program calculates gains based on two strategies:
"Fact Check," in which the fact checker identifies fake news,
and "Ignore," in which it ignores it. It also evaluates the
impact of informal cooperation on gains, taking into account
the strategies "spreadfakenews" and "shareinformation," in
which news providers spread fake news and share information,
respectively. Finally, we compare the gains from independent
actions and informal cooperation.

Nash Equilibrium and Pareto Optimality in the Context

of Fake News and Fact-Checking

We have discussed this in light of the aforementioned "Note:
Using game theory in iterative optimization to model the
spread of fake news: insights from Hebbian learning from
Nash equilibrium".

In the realm of fake news and fact-checking, the strategic
behaviors of individuals or organizations disseminating fake
news and the counteractions of fact-checkers can be encap-
sulated within the framework of Nash equilibrium. Here, the
strategies entail various methods of spreading fake news and
conducting fact-checking, respectively. Nash equilibrium is
achieved when each player’s strategy is an optimal response
to the other’s, determined through fixed-point theorems that
delineate the payoff functions for each participant.

1.1 Payoff Functions

1.2 For Fake News Disseminators

The payoff function, denoted as *� (B� , B⇠ ), where B� rep-
resents the strategy of fake news disseminators and B⇠ that
of fact-checkers, hinges on the reach and influence of the
disseminated fake news, adjusted for the deterrent effect of
fact-checking activities.

1.2.1 For Fact-Checkers

Conversely, the payoff function for fact-checkers,
*⇠ (B⇠ , B�), depends on the effectiveness of spreading
accurate information and the societal benefits derived from
curtailing fake news.

1.3 Determining Nash Equilibrium through

Fixed-Point Theorems

Fixed-point theorems, such as Banach’s or Brouwer’s, are
instrumental in computing Nash equilibria. They utilize opti-
mal response functions derived from the players’ payoff func-
tions to identify fixed points, representing the Nash equilibria.

1.3.1 Optimal Response Functions

The optimal response function for fake news disseminators is
given by '� (B⇠ ), and for fact-checkers by '⇠ (B�). These
functions yield the best strategy for each player, given the
opponent’s strategy.

1.3.2 Computing Fixed Points

A strategy pair (B⇤� , B⇤⇠ ) constitutes a Nash equilibrium if it
satisfies the conditions:

'� (B⇤⇠ ) = B⇤� , '⇠ (B⇤�) = B⇤⇠

implying that each player is adopting their best response strat-
egy.

In scenarios where analytical determination of fixed
points is infeasible, numerical methods, such as iterative
updates starting from initial strategy guesses B (0)� , B (0)⇠ , are
employed. The iterative process is as follows:

B (:+1)
� = '� (B (: )⇠ ), B (:+1)

⇠ = '⇠ (B (: )� )

continuing until convergence is achieved.

1.4 Nash Equilibrium in Fake News Diffusion

In modeling fake news diffusion within a game-theoretical
framework, agents—comprising individuals, news sources,
and fact-checkers—select strategies from options such as
spreading, not spreading, or fact-checking fake news. A
Nash equilibrium is reached when all agents, having fixed
their strategies, find no incentive to alter them.



Let # = {1, 2, . . . , =} represent the set of agents, with
each agent 8 possessing a strategy set (8 . The payoff functions
are denoted as D8 : (1 ⇥(2 ⇥ . . .⇥(= ! R, where the product
represents the combined strategy space.

1.4.1 Characterizing Nash Equilibrium

A strategy combination (B⇤1, B⇤2, . . . , B⇤=) achieves Nash equi-
librium if, for every agent 8, and any alternative strategy B08 ,
the following holds:

D8 (B⇤1, B⇤2, . . . , B⇤8 , . . . , B⇤=) � D8 (B⇤1, B⇤2, . . . , B08 , . . . , B⇤=)

1.4.2 Application to Fake News Diffusion

Agents in this context might adopt strategies related to the
dissemination or verification of information, with their pay-
offs influenced by factors like the value placed on accurate
information, the social repercussions of spreading fake news,
and the cost-effectiveness of fact-checking efforts.

Identifying Nash equilibria entails examining all potential
strategy combinations to find those satisfying the equilibrium
condition. This can be achieved either through analytical
means or via numerical simulations, employing methods like
agent-based modeling or evolutionary game theory to explore
the dynamics of strategy evolution and the emergence of equi-
libria.

1.5 Exploring Nash Equilibrium in Filter Bub-

ble Scenarios

In this study, we delve into the dynamics of Nash equilibrium
within the context of filter bubbles, focusing on the strategic
interactions between information providers (Player F) and
receivers (Player C). The methodology involves defining in-
formation reception and payoff functions, redefining best re-
sponse functions, and employing computational techniques
to identify the equilibrium point.

1.6 Information Reception Functions

The functions �� (B� , B⇠ ) and �⇠ (B� , B⇠ ) quantify the quality
and quantity of information received by the players, given
their strategies:

�� (B� , B⇠ ) = VB� (1 � B⇠ ), �⇠ (B� , B⇠ ) = W(1 � B�)B⇠

where V and W signify the sensitivity of the players to
information reception.

1.7 Payoff Functions

The payoff functions, incorporating the effects of the filter
bubble, are expressed as:

*� (B� , B⇠ , ��) = B� (1�B⇠ )+X�� , *⇠ (B� , B⇠ , �⇠ ) = (1�B�)B⇠+[�⇠

Here, X and [ denote the impact of information on the
players’ payoffs.

1.8 Best Response Functions

The best response functions '0
� and '0

⇠ are redefined to
determine the optimal strategies for maximizing each player’s
payoff when the opponent’s strategy is fixed.

1.9 Nash Equilibrium Calculation

The Nash equilibrium (B⇤� , B⇤⇠ ) is computed using '0
� and

'0
⇠ , signifying the strategy pair where both players’ responses

converge.

Parameters Initialization

Initial parameter values are set as V = 1.5, W = 1.5, X =
1.0, and [ = 1.0, aiding in the simulation to explore the
equilibrium point.

2. Previous Research: Differences

Between Perfect Information Games
and Imperfect Information Games

In game theory, Perfect Information Games and Imperfect
Information Games differ in their treatment of Information
Sets.

Information Sets in Perfect Information Games

In Perfect Information Games, all players always know the
entire history of the game, including the choices made by
other players. Each decision node in the game tree has a
unique information set, and strategies are determined through
backward induction.

Information Sets in Imperfect Information

Games

In Imperfect Information Games, players lack complete
knowledge of all game histories. Information sets represent
sets of decision nodes that players cannot distinguish between,
and strategies are based on calculating expected payoffs using
Bayesian Games.

Calculation Process

The calculation process in Imperfect Information Games in-
volves:

(1) Calculating Expected Payoffs.

(2) Bayesian Updating of Beliefs.

(3) Adoption of Mixed Strategies.



Cooperative Games in Perfect Information

Games

In Perfect Information Games, cooperative games involve
characteristic functions and expected payoff functions.

Characteristic Function

The characteristic function E(() specifies the maximum total
payoff that any subset ( of players can achieve cooperatively.

Expected Payoff Functions

Players have a complete understanding of cooperative payoffs.
Expected payoff functions depend on characteristic functions
and how payoffs are allocated within coalitions.

Cooperative Games in Imperfect Information

Games

In Imperfect Information Games, cooperative games also in-
volve characteristic functions and expected payoff functions,
taking into account information uncertainty.

Characteristic Function

The characteristic function considers players’ information
asymmetry and specifies the maximum expected payoff that
any subset of players can achieve cooperatively.

Expected Payoff Functions

Expected payoff functions account for players’ uncertainty
about other players’ types and actions. Calculation involves
Bayesian updating and belief revision.

Mathematical Formulas and Calculation Pro-
cess

The specific calculation process for cooperative games de-
pends on the game’s settings and agreements among players.

Calculating Shapley Values

For example, when calculating Shapley values, the following
steps are commonly followed:

(1) Define the Characteristic Function for all player sets #
and each subset (.

(2) Calculate Shapley Values for each player 8.

In Imperfect Information Games, cooperative game anal-
ysis involves calculating expected payoffs while considering
players’ beliefs and information updates. Strategies are cho-
sen based on available information and beliefs, and the payoff
allocation may vary as beliefs evolve during the game.

2.1 Cooperative game theory explores Nash

equilibrium

Cooperative game theory explores Nash equilibrium in both
perfect and imperfect information contexts. This concept, tra-
ditionally associated with non-cooperative games, becomes
relevant in cooperative games when player agreements or
contracts are based on Nash equilibrium principles.

Nash Equilibrium in Cooperative Games with

Perfect Information

In cooperative games with perfect information, where all
players possess complete knowledge of each other’s payoff
functions and possible choices, cooperative agreements are
formed. Nash equilibrium represents a state where each
player maximizes their own payoff while considering the
choices of others.

Formulas and Calculation Process

(1) Define the characteristic function E((), which represents
the maximum total payoff achievable by any player sub-
set ( cooperating.

(2) Set conditions for cooperative agreements forming Nash
equilibrium regarding the payoff distribution G8 for each
player 8 (8 2 ().

(3) Determine the payoff G8 for each player to maximize their
expected payoff ⇢ [*8].

Nash Equilibrium in Cooperative Games with

Imperfect Information

In imperfect information games, finding Nash equilibrium is
more complex due to players’ incomplete information. Play-
ers choose optimal strategies under uncertainty and reach
cooperative agreements while considering other players’ po-
tential choices and beliefs.

Formulas and Calculation Process

(1) Define expected payoff functions based on each player’s
beliefs and possible strategies.

(2) Set conditions for cooperative agreements forming Nash
equilibrium regarding the expected payoff for each
player.

(3) Find the payoff distribution G8 for each player that max-
imizes their expected payoff ⇢ [*8].

Game Theory Nash Equilibrium in the Context

of Fake News and Fact-Checking

In the context of fake news and fact-checking, Nash equilib-
rium considerations are essential, especially when filter bub-
bles affect information consumption patterns. Participants
include news providers, consumers, and fact-checkers.



Game Participants and Strategies

(1) News Providers: Strategies of providing true or fake
news.

(2) Consumers (Users): Strategies of diversifying infor-
mation sources or relying on aligned sources.

(3) Fact-Checkers: Strategies of active or selective fact-
checking.

Analysis of Nash Equilibrium

Nash equilibrium in this context implies:

(1) Incentives for news providers to spread fake news.

(2) Reduced incentive for consumers to diversify informa-
tion sources.

(3) Selective fact-checking by fact-checkers due to limited
resources.

Example of Nash Equilibrium in a Filter Bubble

An example equilibrium involves:

(1) News providers spreading fake news.

(2) Consumers relying on biased information.

(3) Limited effectiveness of fact-checking.

Factors Influencing Equilibrium Changes

(1) Consumer behavior changes: Prioritizing diversification
and critical thinking.

(2) Enhanced fact-checker resources: Increased ability to
verify information.

3. Discussion:Superadditivity and

Convexity in the Context of Filter

Bubbles in Fake News and
Fact-Checking

Superadditivity and Convexity are fundamental concepts in
cooperative game theory. However, they are also applicable in
analyzing game theory within the context of filter bubbles in
fake news and fact-checking. In this article, we explore how
these concepts can be used in understanding and promoting
cooperation among fact-checkers to combat fake news.

Superadditivity

Concept of Superadditivity

Superadditivity refers to a property where the gains obtained
through cooperation by a group of players exceed the sum of
individual gains. Formally, it is defined as follows:

E(� [ ⌫) � E(�) + E(⌫)

Here, E(() is the characteristic function representing the
benefit of a coalition (, and � and ⌫ are non-overlapping
coalitions. This condition indicates the presence of incentives
for players to cooperate.

Application to Fake News and Fact-Checking

In the context of fake news and fact-checking, superadditivity
can apply when multiple fact-checkers cooperate to efficiently
identify and prevent the spread of fake news. This collective
effort is more efficient than individual fact-checking actions.

Formulas and Calculation Process

To verify superadditivity, the characteristic function E(()
should be explicitly defined, and the inequality E(� [ ⌫) �
E(�) + E(⌫) should be confirmed for any two fact-checker
groups � and ⌫.

Convexity

Concept of Convexity

Convexity is a stronger property where the characteristic func-
tion E(() is convex. It satisfies the following condition for
any player 8 and any two player coalitions � and ⌫ (� ✓ ⌫
and 8 8 ⌫):

E(⌫ [ {8}) � E(⌫) � E(� [ {8}) � E(�)

This property indicates that the additional gains from a
player joining a larger cooperation group are greater than the
gains from joining a smaller group.

Application to Fake News and Fact-Checking

In the context of fake news, convexity might imply that as
the network of fact-checkers grows, the added value brought
by new fact-checkers (e.g., increased efficiency in identifying
and preventing the spread of fake news) increases.

Formulas and Calculation Process

To verify convexity, the characteristic function E(() should
be defined, and the inequality E(⌫ [ {8}) � E(⌫) � E(� [
{8}) � E(�) should be checked for any fact-checker 8 and any
two groups � and ⌫.

Superadditivity and Convexity are powerful concepts that
can be applied in the analysis of cooperation among fact-
checkers in the fight against fake news, even in the challenging
context of filter bubbles. These concepts provide insights into
the benefits of collaboration and can help improve information
quality.



4. Discussion:Nash Equilibrium in

Situations with Filter Bubbles
Applications to Bayesian Games and

Adaptive Dynamics Games

In this paper, we first consider a model that combines Bayesian
and adaptive dynamics games to explore Nash equilibrium
in the context of fake news and fact-checking under a filter
bubble. This approach assumes a dynamic environment in
which players (e.g., news consumers, news providers, and
fact-checkers) act under imperfect information and their ac-
tions interact with each other. The following is a theoretical
explanation and a simple mathematical equation that we will
examine.

4.1 Theoretical Description

Definition of a Player

News consumers aim to evaluate the truth or falsity of
the news they are provided and to select reliable sources
of information.

News providers aim to ensure that their information is
widely accepted, and there are two strategies for this:
providing truth and providing fake news.

Fact checkers aim to verify the truth of the information
provided and provide accurate information to the public.

4.2 Setting Incomplete Information

Each player does not have complete information about the
types of other players (e.g., whether the news provider is
trustworthy) or their intentions. To model this uncertainty,
we use a Bayesian game framework.

4.3 Adaptive Dynamics

Players learn from past experiences and adapt their own strate-
gies. This process is modeled through an adaptive dynamics
game to show how a player’s strategy evolves over time.

4.4 Ideas for Formulas and Computational Pro-
cesses

Players’ Belief Updates

News consumers have prior probabilities about the type of
news provider and update these as new information becomes
available. This belief update is modeled using Bayes’ theo-
rem.

Strategy Adaptation

Players choose strategies that maximize their own gain, which
depends on the strategies and beliefs of other players. Let the
gain function be *8 (B8 , B�8) and define the gain when player
8 takes strategy B8 for the set of other players’ strategies B�8 .

Adaptive dynamics is represented by defining rules for
updating a player’s strategy. For example, a player decides
whether to repeat a successful strategy or try a new strategy
in an exploratory manner based on past results.

Derivation of Nash Equilibrium

A Nash equilibrium is a state in which no player can uni-
laterally improve his or her gain by changing strategies. To
find this state, we define the optimal reaction function of each
player and look for the point where they intersect.

To find the Nash equilibrium, we need to find the strategy
that maximizes each player’s gain function and check if it is
also optimal for the other players’ strategies.

Implementation and Analysis

The implementation and analysis of this model could be based
on specific parameters of the game (e.g., value of information,
cost of false information, learning rate, etc.), using numerical
simulation or analytical methods. Depending on the com-
plexity of the model, computer simulations may be required.

Expansive Games and Tree Structures

When considering the issue of fake news and fact-checking
in an unfolding game, the information structure of the game
and the characteristics of a non-cooperative game need to be
clearly defined. In an unfolding game, the actions a player
can take as the game progresses and the corresponding in-
formation set are represented by a tree structure. Below is a
concrete model and computational process using this concept.

Game Setup

Player: News provider (P) and fact checker (F)

Behavior:

– P can choose to "provide truthful news" (T) or
"provide fake news" (F).

– F can choose to "verify" (V) or "not verify" (N) the
news provided.

Gain

The gain of a player depends on the combination of their ac-
tions. For example, if P chooses F and F chooses V, the gains
for P and F are different. The gains could be represented as fol-
lows: *% () ,+), *% () , #), *% (�,+), *% (�, #), *� () ,+),
*� () , #), *� (�,+), *� (�, #).

Information Structure

The developmental form of the game takes into account the
information that each player has at that point in time. For
example, at the stage when F chooses an action, we assume



that P does not know the action (T or F) chosen by P (the
information set is divided at F’s action selection point).

Representation of the Expanded Form Game

A game is represented by the following tree structure:

(1) First, P chooses an action (T or F).

(2) Next, F chooses an action, but does not know what P has
chosen (V or N).

Using this tree structure, the gain corresponding to each
end node (the final outcome of the game) is assigned to each
player.

Formula and Calculation Process

In the expanded form game, we use backward induction to
find the Nash equilibrium. This is a method of determining
the optimal behavior of the players at each stage of the game,
working backward from the end of the game.

(1) Start with the last decision node: when F chooses V
or N, determine F’s optimal choice based on whether P
chose T or F. At this point, the expected gain of F can be
computed as follows:

⇢ [*� |+ ,))] and ⇢ [*� |+ , �)] (the expected gain when F chooses V)
⇢ [*� |# ,))] and ⇢ [*� |# , �)] (expected gain when F chooses N)

(2) Determine F’s optimal strategy: Choose the action
that maximizes F’s expected gain. For example, if
⇢ [*� |+ , �)] > ⇢ [*� |# , �)] then it is optimal for F
to choose V.

(3) Determining P’s optimal strategy: P predicts how F
will react and chooses the action that maximizes its own
expected gain; P’s expected gain depends on the actions
F can take, but F’s choice is known in advance due to
backward induction.

Fig.3-5 depict bar graphs titled "Game Outcomes with su-
peradditivity factor=1.5, convexity factor=1.2," "Game Out-
comes with superadditivity factor=2, convexity factor=5,"
and "Game Outcomes with superadditivity factor=20, con-
vexity factor=5," respectively. Each graph shows the utilities
of four strategies labeled T, F, V, and N, with utilities repre-
sented by the height of the bars.

Impact of Superadditivity Factor

As the superadditivity factor increases from 1.5 in the first
image to 20 in the third image, the utilities of the strategies,
especially for F and V, increase significantly. This suggests
that the combined strategies are producing greater value than
the individual ones. The F strategy seems to benefit the

Fig. 3: Game Outcomes with superadditivity factor=1.5,
convexity factor=1.2

Fig. 4: Game Outcomes with superadditivity factor=2, con-
vexity factor=5

Fig. 5: Game Outcomes with superadditivity factor=20,
convexity factor=5



most from the increase in the superadditivity factor, which
might indicate that it involves a combination of resources or
strategies that scale very well with this factor.

Impact of Convexity Factor

The convexity factor increases from 1.2 in the first image to
5 in the second and third images. The increase between the
first and second images leads to a noticeable jump in utilities,
suggesting that mixing strategies is yielding better outcomes
than choosing them individually. However, the increase in
the superadditivity factor from the second to the third image
has a much more significant effect than the increase in the
convexity factor, indicating that superadditivity might be the
more dominant factor in this game setup.

Optimal Strategies

F and V consistently show higher utilities across all three
images, with F being the highest. This could indicate that
these strategies are the most optimal choices for players under
the conditions set by the superadditivity and convexity factors.
Strategy N consistently shows the lowest utility, which might
suggest it is the least favorable or effective strategy.

Strategy Analysis

Strategy T shows moderate utility across all graphs and does
not seem to be as sensitive to changes in the superadditivity
and convexity factors. This could suggest that T is a stable but
not necessarily the most effective strategy. F and V, however,
show a greater sensitivity to these factors, especially F, which
might be the most aggressive strategy that leverages resources
or strategies with a high degree of superadditivity.

Game Dynamics

The game dynamics seem to favor strategies that benefit from
combined resources (superadditivity) and flexible mixing of
strategies (convexity). The graphs suggest that a player who
can effectively combine strategies or resources will have a
significant advantage.

Visualization and Interpretation

The bar graphs effectively show the difference in utilities for
different strategies under varying conditions of superadditiv-
ity and convexity. They allow for a clear visual comparison
and interpretation of the effectiveness of each strategy.

In summary, these graphs can be used to analyze how dif-
ferent game-theoretic concepts like superadditivity and con-
vexity impact the outcomes and strategic choices of players
in a game that might represent the dynamics between fake
news and fact-checking. The increase in utilities with higher
superadditivity and convexity factors suggests that the game

rewards strategies that synergize well and adapt flexibly to
different mixes of choices.

5. Discussion:Fact-Checking in

Full-Information Games

When considering the context of fake news and fact-checking
as an extensive-form game under full information, we assume
that all players know the actions and payoffs of other players
at every stage of the game. In this paper, we analyze strategies
for News Provider (P) and Fact Checker (F) using expected
payoff functions.

Game Setup

Players and Actions

Players: News Provider (P) and Fact Checker (F)

Actions: P can choose to provide "Truthful News" (T)
or "Fake News" (F), F can choose to "Verify" (V) or "Not
Verify" (N)

Payoffs: Each player’s payoffs depend on the combina-
tion of actions and are fully known.

Game Unfolding

(1) P makes the initial choice of action (T or F).

(2) P’s choice is fully revealed, and then F selects an action
based on that information (V or N).

Payoff Functions

Payoff functions for each player are set as follows:

*% () ,+) : Payoff for P when choosing T and F choosing V
*% () , #) : Payoff for P when choosing T and F choosing N
*% (�,+) : Payoff for P when choosing F and F choosing V
*% (�, #) : Payoff for P when choosing F and F choosing N
*� () ,+) : Payoff for F when P chooses T and F chooses V
*� () , #) : Payoff for F when P chooses T and F chooses N
*� (�,+) : Payoff for F when P chooses F and F chooses V
*� (�, #) : Payoff for F when P chooses F and F chooses N

Calculating Expected Payoffs

Expected Payoff for F

When F selects an action, the expected payoff depends on
P’s action, but in full-information games, F knows P’s action,
so the expected payoff directly corresponds to the payoff as-
sociated with P’s choice. For example, if P chooses T, F’s
expected payoff is either *� () ,+) or *� () , #).



Fig. 6: Game Outcomes in Full-Information Game, TandV’,
’TandN’, ’FandV’, ’FandN

Expected Payoff for P

When P selects an action, P predicts how F will react and
calculates its expected payoff. P can accurately predict F’s
reaction since F’s payoff function and optimal reactions are
known. For instance, if P predicts that F will always choose
V, P’s expected payoff is either *% () ,+) or *% (�,+).

5.1 Calculation Process Using Backward Induc-

tion

Determining F’s Optimal Action

F selects the action that maximizes its payoff based on P’s
choice. F can accurately predict P’s action because it is
known. For example, if*� () ,+) > *� () , #), then F selects
V when P chooses T.

Determining P’s Optimal Action

P predicts how F will react and selects the action that max-
imizes its expected payoff. P has complete information
about F’s reaction, allowing for precise calculations. For
instance, if P predicts that F will always choose V, and
*% () ,+) < *% (�,+), P selects F.

Concrete Example

For example, assume the following payoffs:

*% () ,+) = 2, *% () , #) = 3, *% (�,+) = 1, *% (�, #) = 4
*� () ,+) = 3, *� () , #) = 2, *� (�,+) = 4, *� (�, #) = 1

In this scenario, F chooses N when P selects T
(*� () , #) > *� () ,+)), and F chooses V when P selects
F (*� (�,+) > *� (�, #)). Therefore, P predicts that F will
choose V and selects F (*% (�,+) > *% () ,+)).

Fig. 7: Game Outcomes in Full-Information Game, TandV’,
’TandN’, ’FandV’, ’FandN

Fig. 8: Game Outcomes in Full-Information Game, TandV’,
’TandN’, ’FandV’, ’FandN

Fig. 9: Game Outcomes in Full-Information Game, TandV’,
’TandN’, ’FandV’, ’FandN



Fig.6-9 depict bar graphs with the title "Game Outcomes
in Full-Information Game." Each graph shows the total utility
for four combined strategies: TandV, TandN, FandV, and
FandN. The utilities are represented by the height of the bars
in each strategy combination.

Strategy Combinations

The combined strategies suggest a two-player game where
each player chooses one strategy from T (Truth) or F (Fake),
and one strategy from V (Verify) or N (No Verify). TandV
and FandN could represent coordinated strategies between
players, while TandN and FandV could represent conflicting
strategies.

Utility Analysis

In the first image, the TandN strategy combination has the
highest total utility, followed closely by FandV, with FandN
being the least favored. In the second image, FandV shows
the highest total utility, significantly more than the others,
while FandN remains the least favored. In the third image,
TandN continues to hold the highest utility, with TandV being
the lowest.In the fourth image, TandV has the highest utility,
a reversal from the previous patterns, and again FandN is the
least favored.

Implications for Full-Information Game

The variations in utility across these images suggest that the
optimal strategy combinations depend on specific parameters
within the game, which could include the payoffs for truth
versus falsehoods, the benefits of verification, and the costs
of no verification.The consistently low utility for the FandN
strategy implies that in a full-information game, choosing
falsehoods without verification is generally the least benefi-
cial strategy. The highest utility alternating between TandN
and FandV across the images suggests that the context or
additional parameters of the game (not visible to us) signif-
icantly impact what is considered the best response for each
player.

Game Dynamics

Full-information games assume that all players know the pay-
offs and strategies available to all other players. This knowl-
edge influences the strategic choices and the resulting Nash
equilibrium. The fact that utility shifts between strategies
across images may reflect changes in the game’s payoff struc-
ture or players’ preferences, indicating different scenarios
or "states of the world" within the modeled game. The bar
graphs effectively communicate the total utility for each strat-
egy combination in a full-information setting, allowing for a

quick visual comparison of strategy effectiveness. The differ-
ences in utility outcomes across the graphs demonstrate the
sensitivity of the game’s equilibrium to its parameters.

In summary, these graphs can be used to study how dif-
ferent strategy combinations perform in a game modeling the
scenario of fake news and fact-checking under full informa-
tion. The optimal strategies vary, suggesting that the specific
details of the game’s setup, such as the payoffs for different
actions and the cost-benefit analysis of verifying information,
are crucial in determining the best strategies for players.

6. Discussion:Superadditivity and

Convexity: Perfect Information

Games and Incomplete Information

Games

When considering superadditivity and convexity in the con-
text of filter bubbles in fake news and fact-checking within the
framework of perfect information games, we can contemplate
the following equations and calculation processes:

Superadditivity in Perfect Information Games

Superadditivity refers to the property where the gains ob-
tained through cooperation by a group of players exceed the
sum of individual gains when they act independently. In the
context of fake news and fact-checking, we define the char-
acteristic function E(() to represent the gains related to the
identification and prevention of fake news achievable by a
player coalition (. To demonstrate superadditivity, the fol-
lowing inequality should hold for any two non-overlapping
sets � and ⌫:

E(� [ ⌫) � E(�) + E(⌫) (1)

This inequality indicates the presence of incentives for
fact-checkers or news providers to cooperate.

Convexity in Perfect Information Games

Convexity is a property where the additional gains from a
player joining a cooperation group increase as the group’s
size grows. If the characteristic function E(() is convex,
it satisfies the following inequality for any player 8 and any
� ✓ ⌫ with 8 8 ⌫:

E(⌫ [ {8}) � E(⌫) � E(� [ {8}) � E(�) (2)

This inequality implies that joining larger cooperation
groups offers more significant benefits than joining smaller
groups. In the context of fake news, it suggests that a larger
network of fact-checkers can more effectively identify and
prevent fake news.



Calculation Process

Definition of the Characteristic Function

In incomplete information games, define the characteristic
function E(() for different player sets (. This function quan-
tifies the expected gains achievable through the cooperation
of set (, accounting for the players’ beliefs and information
uncertainty.

Example: In the case of fact-checkers, E(() represents
the expected gains achievable by identifying and pre-
venting fake news.

Verification of Superadditivity

Check whether the following inequality holds for any two
non-overlapping sets � and ⌫:

⇢ [E(� [ ⌫)] � ⇢ [E(�)] + ⇢ [E(⌫)] (3)

Here, ⇢ [·] represents the expected value, considering ex-
pected gains under uncertainty.

Verification of Convexity

For any player 8, check whether the following inequality holds
for any � ✓ ⌫ and 8 8 ⌫:

⇢ [E(⌫ [ {8})] � ⇢ [E(⌫)] � ⇢ [E(� [ {8})] � ⇢ [E(�)] (4)

Similarly, consider expected values ⇢ [·] while taking un-
certainty into account.

Details of Calculation Process

For the characteristic function E((), calculate the ex-
pected gains by considering the outcomes of each pos-
sible action that the player coalition ( can take and their
corresponding probabilities. This involves using prob-
ability distributions based on players’ beliefs and avail-
able information to compute the expected values.

Substitute expected values into the superadditivity and
convexity inequalities and verify whether they hold. If
the inequalities hold, it indicates that an increase in co-
operation is beneficial for the players.

To analyze superadditivity and convexity in the context
of fake news and fact-checking within perfect and incomplete
information games, we can create a program that defines char-
acteristic functions representing gains from identifying and
preventing fake news. This program will verify superadditiv-
ity and convexity by evaluating the characteristic function for
different player coalitions and visualizing the results.

Fig. 10: Characteristic Function in Fake News Gam

Define Characteristic Functions: Set up a characteristic
function for player coalitions to represent gains from coopera-
tion in identifying and preventing fake news. Verify Superad-
ditivity: Check if the gains from cooperating exceed the sum
of individual gains for any two non-overlapping player sets.
Verify Convexity: Assess if the additional gains from a player
joining a coalition increase with the coalition’s size. Visu-
alize Results: Plot the characteristic function and indicate
regions demonstrating superadditivity and convexity.

Discussion

This program defines a characteristic function v(S) that quan-
tifies the gains from identifying and preventing fake news for
a coalition S. It then verifies superadditivity by checking if the
gains from cooperation exceed the sum of individual gains for
any two non-overlapping player sets. It also assesses convex-
ity by determining if the additional gains from a player joining
a coalition increase with the coalition’s size. The results of
superadditivity and convexity checks are printed out, and the
characteristic function is visualized to show how the value
changes with the size of the coalition, providing insights into
the benefits of cooperation among players in the context of
fake news and fact-checking.

"Characteristic Function in Fake News Game" and plots
the value of the characteristic function against the size of the
coalition, ranging from 2 to 10. The value of the characteristic
function increases with the size of the coalition, which is
represented by the upward curve connecting the data points.

Superadditivity

The graph suggests that the game is superadditive. Superad-
ditivity means that for any two non-overlapping coalitions, the
value of their union is greater than the sum of their separate



values. In the context of the fake news game, this indicates
that larger coalitions are more effective at identifying and
preventing fake news than smaller, separate groups.

Convexity

The curve appears to show convexity. Convexity in cooper-
ative games means that as the coalition grows, the marginal
contribution of each additional player is increasing. This
would imply that adding more players to an already large
coalition provides a greater benefit than adding them to a
smaller one. This is often the case in activities where the
sharing of information or resources can lead to a more than
proportional increase in effectiveness.

Characteristic Function

The characteristic function, E((), reflects the total worth or
value that a coalition ( can achieve. In this context, it quanti-
fies the effectiveness of a coalition at tackling fake news. The
increasing values suggest that the coalition’s effectiveness at
preventing fake news improves as more members join.

Game Theory Implications

From a game theory perspective, this graph can inform strate-
gies in forming coalitions. Players would be incentivized to
form larger coalitions, as the value or payoff is higher when
they work together. This could influence negotiations and
the formation of partnerships or alliances in efforts to combat
fake news.

Practical Implications

For policymakers or platforms trying to mitigate the spread
of fake news, the graph underscores the importance of col-
laboration. It suggests that forming larger alliances or con-
sortia could be significantly more effective than individual or
smaller group efforts.

In summary, the graph reflects the principles of coopera-
tive game theory applied to a scenario of fake news preven-
tion, showing that there is a clear benefit to forming larger
coalitions. The characteristic function’s increasing trend as
the coalition size increases indicates that both superadditivity
and convexity are present in the game, which are desirable
properties for cooperative efforts in this context.

7. Discussion:Deployment of

Non-Cooperative Games: Context of

Fake News and Fact-Checking within

the Framework of Perfect
Information Games

When considering the context of fake news and fact-checking
within the framework of perfect information games in the de-

ployment of non-cooperative games, we examine how to in-
corporate superadditivity and convexity. In non-cooperative
games, players pursue strategies to maximize their own gains
without cooperating with other players. In perfect informa-
tion games, all players have complete information about all
aspects of the game, including other players’ strategies and
possible gains.

Consideration of Superadditivity and Convexity

Superadditivity and convexity in non-cooperative games can
be indirectly applied to explore potential cooperation or coali-
tion formation among players. For instance, players might in-
formally share information to make better strategic choices.

Superadditivity

When two players or groups of players can achieve
greater gains by informally cooperating than by acting
individually, the concept of superadditivity applies. This
can be achieved through information sharing and strate-
gic adjustments.

The formula for superadditivity is as follows:

⇢ [E(� [ ⌫)] � ⇢ [E(�)] + ⇢ [E(⌫)]

Here, � and ⌫ are non-overlapping sets of players, and
⇢ [·] denotes the expected value.

Convexity

Convexity applies when additional gains from the inclu-
sion of a new player in a group increase as the group
size grows. This may result from broader information
sharing and diverse strategic options.

The formula for convexity is as follows:

⇢ [E(⌫ [ {8})] � ⇢ [E(⌫)] � ⇢ [E(� [ {8})] � ⇢ [E(�)]

7.1 Discussion:Considering Non-Cooperative

Games in Extensive Form: Context of
Fake News and Fact-Checking within the

Framework of Incomplete Information

Games

When considering non-cooperative games in extensive form
in the context of fake news and fact-checking within the
framework of incomplete information games, players do not
have complete information about other players’ choices or
types (e.g., whether they are reliable information sources).
To consider superadditivity and convexity in such a situation,
an analysis based on expected payoffs is necessary.



Considering Superadditivity

In incomplete information games, superadditivity implies that
the expected payoff achieved when different sets of players
cooperate is greater than the sum of expected payoffs when
they act individually. Defining a characteristic function E(()
for player sets ( as the maximum expected payoff achievable,
superadditivity can be expressed by the following inequality:

⇢ [E(� [ ⌫)] � ⇢ [E(�)] + ⇢ [E(⌫)]

Here, � and ⌫ are non-overlapping sets of players, and
⇢ [·] represents expected value.

Considering Convexity

Convexity in incomplete information games implies that as
the size of a player set increases, the additional expected
payoff brought by a new player joining the set also increases.
To demonstrate convexity, the following inequality must hold
for any player 8, player sets � ✓ ⌫, and 8 8 ⌫:

⇢ [E(⌫ [ {8})] � ⇢ [E(⌫)] � ⇢ [E(� [ {8})] � ⇢ [E(�)]

Formulas and Calculation Process

The specific calculation process for considering superadditiv-
ity and convexity in incomplete information games involves
the following steps:

(1) Definition of Characteristic Function: Define the ex-
pected payoff function E(() for player sets (. This value
quantifies the expected payoffs achievable, considering
factors like fake news identification and the impact of
fact-checking, depending on the context.

(2) Calculation of Expected Values: Calculate the ex-
pected value ⇢ [E(()] of the characteristic function, con-
sidering uncertainties related to each player’s actions
and the types of other players. This calculation involves
probability distributions based on player beliefs and in-
formation uncertainty.

(3) Verification of Superadditivity: Verify the inequality
for superadditivity using expected values for any two
non-overlapping sets of players, � and ⌫:

⇢ [E(� [ ⌫)] � ⇢ [E(�)] + ⇢ [E(⌫)]

(4) Verification of Convexity: Verify the inequality for
convexity using expected values for any player 8, player
sets � ✓ ⌫, and 8 8 ⌫:

⇢ [E(⌫ [ {8})] � ⇢ [E(⌫)] � ⇢ [E(� [ {8})] � ⇢ [E(�)]

Fig. 11: Shapley Values with Superadditivity and Convexity

Fig. 12: Shapley Values with Superadditivity and Convexity

(5) Analysis of Cooperative Benefits: Through this anal-
ysis, evaluate the potential benefits of informal coop-
eration among players in the context of fake news and
fact-checking under filter bubble conditions. Addition-
ally, assess how the additional payoff from joining a
larger cooperative group increases concerning the size
of the group. These calculations consider the impact of
information incompleteness.

Fig.11-14 depict bar graphs titled "Shapley Values with
Superadditivity and Convexity," each followed by a set of
values for players A, B, and C. The Shapley value is a concept
in cooperative game theory that represents a fair distribution
of the total gains (or costs) to the players, based on their
individual contributions to the collective effort.

Player Contributions

In all the graphs, the players’ contributions are depicted by the
height of the bars, which represent their Shapley values. The
numerical values in the title indicate the amount contributed



Fig. 13: Shapley Values with Superadditivity and Convexity

Fig. 14: Shapley Values with Superadditivity and Convexity

by each player to the total payoff when they all cooperate.
The first graph shows the Shapley values for players A, B,
and C as 100, 200, and 300, respectively. The second graph
increases the values significantly, with player A contributing
300, B contributing 500, and C contributing 1000. The third
graph shows a different distribution with A contributing 300,
B contributing 500, and C contributing 300. The fourth
graph returns to a similar distribution as the first, with player
A contributing 300, B contributing 200, and C contributing
300.

Effects of Superadditivity and Convexity

Superadditivity implies that the whole is greater than the sum
of its parts, meaning that the players achieve a better outcome
by cooperating than by acting independently. Convexity in
this context suggests that the marginal contributions of each
player increase as more players join the coalition. This often
leads to a higher payoff for players who are more crucial to
forming larger, more productive coalitions. It appears that
players B and C are valued more in scenarios where their
contributions lead to greater total payoffs, which is consistent
with the principles of superadditivity and convexity.

Shapley Value Dynamics

The variation in the Shapley values indicates that the contribu-
tion of each player to the total payoff is recognized differently
across different cooperative scenarios. In scenarios where
player C contributes a significantly larger amount (as in the
second graph), the Shapley value calculation gives C a much
larger share of the total payoff, which could be due to C’s
pivotal role in the coalition’s success.

Strategic Implications

Understanding these Shapley values can guide players in
forming coalitions. For instance, players A and B might seek
to form a coalition with C when C’s contribution is pivotal to
the success of the collective effort. The Shapley value pro-
vides a way to allocate payoffs that account for each player’s
marginal contribution, which could incentivize players to par-
ticipate and contribute meaningfully to the coalition.

In summary, these graphs visualize how the Shapley value
allocates payoffs to players based on their individual con-
tributions in a game that incorporates superadditivity and
convexity. The allocation changes based on the different
contributions by the players, reflecting the fundamental idea
that payoffs should compensate players according to their
marginal impact on the total payoff when cooperating.



8. Analyzing Dynamic and Static Best

Response Dynamics and Pareto

Optimality in the Context of Fake

News and Fact-Checking in

Non-Cooperative Games in Extensive

Form

In the context of fake news and fact-checking, when consider-
ing non-cooperative games in extensive form, it is important
to analyze the impact of information asymmetry among game
participants (e.g., news providers, consumers, fact-checkers)
and the influence of their strategies on social welfare through
dynamic or static best response dynamics and Pareto optimal-
ity.

Dynamic Best Response Dynamics

Dynamic best response dynamics involve continuous updates
of optimal strategies by each player based on the actions of
other players over time. In the context of fake news and fact-
checking, for example, if fact-checkers develop new tech-
niques to detect fake news, news providers may adopt new
strategies to evade detection, creating an incentive for fact-
checkers to update their responses.

Formulas and Calculation Process

Define utility functions for each player. For example, the
utility of fact-checkers may be proportional to the number of
correctly identified fake news. Identify the possible strategy
sets for each player. For instance, news providers may have
strategies to spread fake news or provide only accurate infor-
mation. Calculate the best response strategies at each time
point. This involves the process of selecting strategies that
maximize a player’s utility based on the opponent’s strate-
gies. Find the point where dynamics converge (i.e., players
no longer change their strategies).

Pareto Optimality

Pareto optimality refers to a situation where it is impossi-
ble to improve one player’s utility without reducing another
player’s utility in a given strategy combination. In the con-
text of fake news, the goal is to identify strategy combinations
that maximize social welfare (i.e., minimizing fake news and
maximizing the spread of accurate information).

Formulas and Calculation Process

Define a social welfare function, often represented as the sum
of all players’ utilities or as a specific function. Calculate
social welfare for all possible strategy combinations. Identify
strategy combinations where it is impossible to increase one
player’s utility without decreasing another player’s utility.

Fig. 15: Pareto Optimal Strategies in Fake News and Fact-
Checking Game

Fig. 16: Pareto Optimal Strategies in Fake News and Fact-
Checking Game

In the game of fake news and fact-checking, achieving
Pareto optimal outcomes may involve maximizing the iden-
tification of fake news and the widespread dissemination of
accurate information. However, in non-cooperative games
with incomplete information, reaching Pareto optimal out-
comes can be more complex due to the players’ imperfect
information.

These analyses provide insights into the strategic interac-
tions among players and their impact on social welfare in the
context of fake news and fact-checking. Understanding how
information asymmetry and uncertainty influence strategic
choices is crucial.

Fig.15-17 provided appear to be scatter plots illustrat-
ing the Pareto optimal strategies in a game between news
providers and fact-checkers. Pareto optimality in a game
theory context means that no player can be made better off
without making another player worse off.



Fig. 17: Pareto Optimal Strategies in Fake News and Fact-
Checking Game

Strategies of Players

The x-axis represents the strategies of the news provider,
ranging from ’spreadfakenews’ to ’spreadtruenews’, while the
y-axis represents the strategies of the fact-checker, ranging
from ’ignore’ to ’factcheck’.

Pareto Optimal Points

Each plot has points marked that represent different combina-
tions of strategies for the news provider and the fact-checker.
These points are Pareto optimal, meaning that these strategy
combinations cannot be improved upon without hurting either
player. In the first plot, the Pareto optimal strategy is where
the news provider spreads true news, and the fact-checker
performs fact checks. The second plot shows a Pareto op-
timal outcome where the news provider spreads fake news,
but the fact-checker chooses to ignore it. The third plot indi-
cates that spreading true news and ignoring the fact-checking
is Pareto optimal. The first plot suggests an ideal situation
where both parties are actively engaged in disseminating and
verifying truthful information. The second plot may reflect a
scenario where the cost of fact-checking outweighs the ben-
efits, possibly due to the fake news not being influential or
harmful enough to warrant action. The third plot could in-
dicate a scenario where the news provider is trusted, and the
need for fact-checking is low because the information spread
is true. These plots can be used to understand the strategic
interactions in the fight against fake news. They show that
depending on the context, different strategies may be optimal.
The scenarios depicted here are simplified and assume that
the strategies of spreading true news, spreading fake news,
and fact-checking are clear-cut and mutually exclusive. Real-
world scenarios would likely involve more nuanced strategies
and outcomes.

Simulating this game would need to account for the utility
functions of both players, the dynamic update of strategies,
and the evaluation of social welfare to identify Pareto optimal

strategies. The visualizations can help to explain the evolution
of strategies over time and determine which strategies might
lead to a social welfare maximum in a non-cooperative game
setting.

Different strategies may be effective in different contexts
within the framework of a game designed to model the spread
of fake news and the response of fact-checkers. The high-
lighted Pareto optimal strategies suggest the best-case sce-
narios under the assumption that both players are rational
and aim to optimize their payoffs without harming the other’s
position.

9. Discussion:Analyzing Strategic

Interactions and Social Efficiency in

the Context of Fake News and
Fact-Checking in Non-Cooperative

Games in Extensive Form

In the context of fake news and fact-checking, when consider-
ing non-cooperative games in extensive form, understanding
player interactions and the resulting social efficiency can be
achieved through the analysis of dynamic or static best re-
sponse dynamics and Pareto optimality.

Dynamic Best Response Dynamics

Dynamic best response dynamics refer to the process in which
players choose their optimal strategies based on their oppo-
nents’ strategies over time. In the game of fake news and
fact-checking, news providers and fact-checkers may update
their strategies in response to each other’s actions.

Formulas and Calculation Process

Let B? represent the strategy of news providers and B 5 repre-
sent the strategy of fact-checkers. Define the utility function
of news providers as *? (B? , B 5 ) and the utility function of
fact-checkers as * 5 (B? , B 5 ). In each turn, news providers
and fact-checkers calculate their best responses to the oppo-
nent’s strategy B 5 or B? . For example, the best response for
news providers is B⇤? = arg maxB? *? (B? , B 5 ), and the best re-
sponse for fact-checkers is B⇤5 = arg maxB 5 * 5 (B? , B 5 ). The
dynamics continue until a Nash equilibrium is reached, where
the best response selections stabilize.

Pareto Optimality

Pareto optimality refers to a situation where it is impossible to
improve one player’s utility without reducing another player’s
utility in a given strategy combination. In the context of
fake news and fact-checking, strategies that achieve socially
desirable outcomes (e.g., minimizing fake news and spreading
accurate information) may be Pareto optimal.



Fig. 18: Shapley Values with Superadditivity and Convexity

Fig. 19: Shapley Values with Superadditivity and Convexity

Formulas and Calculation Process

The strategy combination (B⇤? , B⇤5 ) is Pareto optimal if it sat-
isfies the following condition:

8(B? , B 5 ),*? (B⇤? , B⇤5 ) � *? (B? , B 5 )^* 5 (B⇤? , B⇤5 ) � * 5 (B? , B 5 )

This condition implies that choosing any other combination
of strategies would either worsen at least one player’s utility
or not improve both players’ utilities. To find Pareto optimal
solutions, all possible combinations of strategies need to be
evaluated to identify those that meet the above condition.

The analysis of dynamic best response dynamics and
Pareto optimality in the game of fake news and fact-checking
provides insights into how strategic interactions among play-
ers evolve and what societal outcomes they lead to. Par-
ticularly, in situations with information bias, such as filter
bubbles, these analyses can offer valuable insights for design-
ing strategies to suppress the spread of fake news and promote
the dissemination of accurate information.

Fig. 20: Shapley Values with Superadditivity and Convexity

10. Discussion:Dynamic Best Response

Dynamics

When considering non-cooperative games in extensive form
in the context of fake news and fact-checking, dynamic best re-
sponse dynamics involve players choosing optimal responses
to their opponents’ strategies in a continuous time sequence.
This process unfolds as each player continuously updates their
strategies based on the choices of their opponents.

Formulas and Calculation Process

(1) Definition of Player Utility Functions: Define the util-
ity functions for the news provider as *? (B? , B 5 ) and
for the fact-checker as * 5 (B? , B 5 ), where B? represents
the news provider’s strategy, and B 5 represents the fact-
checker’s strategy.

(2) Definition of Best Response Functions: The best re-
sponse for the news provider is given by ⌫'? (B 5 ) =
arg maxB? *? (B? , B 5 ), and for the fact-checker, it is
⌫' 5 (B?) = arg maxB 5 * 5 (B? , B 5 ).

(3) Iterative Best Response Calculation: Starting from
initial strategies B0

? and B0
5 , iteratively calculate ⌫'? (BC5 )

and ⌫' 5 (BC?) alternately to update each player’s strategy
until reaching a Nash equilibrium.

Pareto Optimality

Pareto optimality refers to a situation where it is impossible to
improve one player’s utility without reducing another player’s
utility in a given strategy combination. In the context of fake
news, the goal may be to identify strategy combinations that
maximize social welfare (e.g., minimizing fake news while
maximizing the spread of accurate information).



Formulas and Calculation Process

(1) Definition of Social Welfare Function: Define social
welfare as , (B? , B 5 ) = *? (B? , B 5 ) +* 5 (B? , B 5 ).

(2) Calculation of Pareto Optimal Solutions: Calculate
, (B? , B 5 ) for all strategy profiles (B? , B 5 ) and identify
profiles where , cannot be increased in any other strat-
egy profile.

When considering extensive form non-cooperative games
in the context of fake news and fact-checking, it is important
to understand the trends that can be derived from dynamic or
static best response dynamics and Pareto optimality. Here,
we explain the specific formulas and calculation process using
expected payoff functions.

Dynamic Best Response Dynamics

In dynamic best response dynamics, each player repeatedly
updates their optimal strategy based on the choices of other
players. This process evolves over time as each player’s strat-
egy adapts, ultimately potentially reaching a stable state (Nash
equilibrium).

Formulas and Calculation Process

(1) Define the expected payoff function for each player 8 as
*8 (B8 , B�8), where B8 represents the strategy of player 8,
and B�8 represents the combination of strategies of the
other players.

(2) Define the best response function for player 8 as
⌫'8 (B�8) = arg maxB8 *8 (B8 , B�8).

(3) Each player starts with an initial strategy and then selects
their best response based on the strategies of the other
players. This process is repeated.

(4) When this dynamics converges, the strategies of each
player no longer change, reaching a Nash equilibrium.

Pareto Optimality

Pareto optimality refers to a situation where one player’s util-
ity cannot be increased without decreasing the utility of an-
other player in a given strategy combination. In the context
of fake news and fact-checking, the goal is to find strategies
that maximize the interests of all stakeholders, such as news
providers, fact-checkers, and the general public.

Formulas and Calculation Process

(1) Define the social welfare function that maximizes the
sum of all players’ utilities as , (B) = Õ

8*8 (B8 , B�8).
(2) Calculate , (B) for all possible strategy combinations

B and identify the strategy combination that yields the
maximum value.

Fig. 21: Nash Equilibrium and Pareto Optimality in Fake
News Game

Fig. 22: Nash Equilibrium and Pareto Optimality in Fake
News Game

(3) To confirm whether this strategy is Pareto optimal, check
that for any other arbitrary strategy combination B0, at
least one player’s utility is higher in B, and the utilities
of all other players are not lower than in B0.

Summary in Fig.21-22

Fig.21-22 show graphs that plot Nash Equilibrium and Pareto
Optimal points in the context of a game between news
providers and fact-checkers. In game theory, a Nash Equi-
librium is a set of strategies where no player can benefit by
changing their strategy while the other players keep theirs
unchanged. Pareto Optimality, on the other hand, refers to a
state where it is impossible to make any one individual better
off without making at least one individual worse off.



Nash Equilibrium

The red dots represent the Nash Equilibrium points, where
each player’s strategy is a best response to the other’s strategy.
In the first image, the Nash Equilibrium is at the point where
the news provider chooses to spread fake news and the fact-
checker chooses to ignore it. This suggests a situation where
it is not beneficial for either player to unilaterally change their
strategy – the news provider has no incentive to provide true
news if it’s going to be ignored, and the fact-checker has no
incentive to fact-check if the news is fake.

Pareto Optimal

The blue crosses represent Pareto Optimal points. In the sec-
ond image, the Pareto Optimal strategy is where the news
provider spreads true news, and the fact-checker chooses to
ignore it. This indicates a scenario where resources used for
fact-checking might be conserved because the news provider
is not spreading fake news. The juxtaposition of Nash Equi-
librium and Pareto Optimal points can indicate a discrepancy
between individual rationality and collective welfare. For
example, while it may be in equilibrium for a news provider
to spread fake news and for the fact-checker to ignore it,
this is not Pareto optimal because there are other outcomes
where both players could be better off (e.g., both spreading
and fact-checking true news). The points where both Nash
Equilibrium and Pareto Optimality coincide are of particular
interest because they represent situations where individual in-
centives align with collective welfare. However, the provided
images do not show such an overlap.

Game Theory Application

These findings can be instrumental for policymakers and plat-
forms in designing mechanisms or incentives that encourage
news providers to spread true news and fact-checkers to ver-
ify information. In the real world, achieving such outcomes
may involve introducing regulations, fact-checking subsidies,
or other interventions to align individual incentives with so-
cially desirable outcomes.

In summary, the provided graphs offer insights into the
strategic decisions involved in spreading and checking infor-
mation. They reveal the potential conflicts between individ-
ual strategies that are stable (Nash Equilibria) and collectively
beneficial outcomes (Pareto Optimal points). Understanding
these dynamics can inform efforts to combat fake news and
promote the dissemination of accurate information.

Summary in Fig.23-24

Fig.23-24 depict plots that illustrate Nash Equilibrium and
Pareto Optimal strategies in a game theoretical model con-
cerning fake news and fact-checking.

Fig. 23: Nash Equilibrium and Pareto Optimality in Fake
News Game

Fig. 24: Nash Equilibrium and Pareto Optimality in Fake
News Game



Nash Equilibrium (Red Dot)

This is a situation in a non-cooperative game where no player
can benefit by unilaterally changing their strategy, given the
strategy of the other player. This point represents a stable
state of the game where players’ strategies are in balance, and
neither has anything to gain by changing course alone.

Pareto Optimal (Blue Cross)

This refers to allocations where no individual can be made
better off without making someone else worse off. Pareto
optimal outcomes are efficient in the sense that all opportu-
nities to make someone better off without hurting someone
else have been exploited.

Considering the strategic options, where the x-axis rep-
resents strategies from "spreadfakenews" to "spreadtrue-
news," and the y-axis represents strategies from "ignore" to
"factcheck," we can deduce the following.

In scenarios where Nash Equilibrium is not Pareto Op-
timal, it signifies that while players’ strategies are in a state
of mutual best response, there is still room for improvement
in terms of social welfare. In other words, the equilibrium is
stable, but not socially optimal. Where Pareto Optimal points
exist without corresponding Nash Equilibria, these represent
potentially desirable outcomes that are not stable. Players
might want to reach these points but have no incentive to
move there unilaterally given the current strategic landscape.
If both Nash Equilibrium and Pareto Optimal points coincide,
it indicates a highly desirable situation where the players’
strategy choices are both stable and socially efficient.

Based on the explanation, the program likely simulates
various strategies for news providers and fact-checkers, de-
fines utility functions for each player, and iteratively simu-
lates the game to find Nash Equilibria and Pareto optimal
outcomes. The visualized results would help identify the
strategic combinations that are stable and those that are ef-
ficient, aiding in understanding how to encourage behaviors
that promote both individual rationality and social welfare in
the context of spreading news and fact-checking.

In practice, achieving the overlap between Nash Equilib-
rium and Pareto Optimality often requires mechanisms that
align individual incentives with socially optimal outcomes,
such as policy interventions, subsidies for fact-checking, or
penalties for spreading misinformation. These plots are use-
ful for identifying where such interventions might be neces-
sary and what form they should take.

11. Discussion:Extensive-Form Perfect

Information Games in the context of
fake news and fact-checking

When considering extensive-form perfect information games
in the context of fake news and fact-checking, it is impor-

tant to analyze the expected payoff functions among players.
Here, we assume that the characteristic function E(() rep-
resents the gains related to the identification and prevention
of the spread of fake news achievable by player sets (. We
will explain specific formulas and calculation processes re-
garding these expected payoff functions using the concepts of
superadditivity and convexity.

Consideration of Superadditivity

Superadditivity is the property that the gains obtained by a
set of players cooperating are greater than the sum of the
gains when each acts independently. This property can be
expressed in the following formula:

E(� [ ⌫) � E(�) + E(⌫)
Here, � and ⌫ are non-overlapping sets of players.

Consideration of Convexity

Convexity is the property that the additional gains from a
player joining a cooperative group increase as the size of the
group grows. It can be mathematically expressed as follows:

E(⌫ [ {8}) � E(⌫) � E(� [ {8}) � E(�)
Here, � ✓ ⌫ and 8 is a player who is not in ⌫ and also not

in �.

Calculation Process

(1) Definition of the Characteristic Function: Define the
characteristic function E(() for different sets of play-
ers (, including fact-checkers, news providers, users,
etc. This function quantitatively represents the effect of
cooperative efforts within the set ( in identifying and
preventing the spread of fake news.

(2) Verification of Superadditivity: Check whether E(�[
⌫) � E(�)+E(⌫) holds for any two non-overlapping sets
� and ⌫. To do this, you may need to analyze synergy
effects of fact-checkers’ cooperation using specific case
studies or real data.

(3) Verification of Convexity: Check whether E(⌫[ {8}) �
E(⌫) � E(�[ {8}) � E(�) holds for any player 8 and any
� ✓ ⌫ where 8 is not in ⌫ and also not in �. To do this,
evaluate the increase in the effectiveness of fact-checkers
as the size of the cooperative group varies.

In the context of fake news and fact-checking, analyzing
the expected payoff functions, considering the incomplete-
ness and uncertainty of the information held by players, is
crucial when dealing with extensive-form imperfect informa-
tion games. This section provides a detailed explanation of
expected payoff functions based on the concepts of superad-
ditivity and convexity.



Definition of Expected Payoff Functions

First, we define the characteristic function E(() for the player’s
set (. This function represents the gains related to the iden-
tification and prevention of the spread of fake news achiev-
able by player sets (. In imperfect information games, since
players do not have complete information about the types
and choices of other players, it is necessary to consider the
player’s beliefs and information uncertainty when calculating
the expected payoff ⇢ [E(()].

11.1 Discussion:Verification of Superadditivity

Superadditivity is the property that the expected gains ob-
tained when different player sets cooperate are greater than
the expected sum of gains when each player acts indepen-
dently. This property can be expressed by the following
formula:

⇢ [E(� [ ⌫)] � ⇢ [E(�)] + ⇢ [E(⌫)]

Here, � and ⌫ are non-overlapping sets of players. The
expected value ⇢ [·] is calculated based on probability distri-
butions that account for player beliefs and information uncer-
tainty.

Verification of Convexity

Convexity is the property that the increase in expected gains
brought by a newly added player as the size of the player set
increases is substantial. This property can be expressed as
follows:

⇢ [E(⌫ [ {8})] � ⇢ [E(⌫)] � ⇢ [E(� [ {8})] � ⇢ [E(�)]

Here, � ✓ ⌫, and 8 is a player not included in ⌫ and not
in �.

Calculation Process

(1) Setting the Characteristic Function: Define the char-
acteristic function E(() for each player set ( and establish
gains related to the identification and prevention of fake
news.

(2) Calculating Expectations: Calculate the expected
value ⇢ [E(()] of the characteristic function, taking into
consideration player beliefs and information uncertainty.
This requires setting up probability distributions that
account for the incomplete and uncertain information
among players.

(3) Evaluation of Superadditivity: Verify the condition of
superadditivity ⇢ [E(� [ ⌫)] � ⇢ [E(�)] + ⇢ [E(⌫)] for
different player sets � and ⌫.

(4) Evaluation of Convexity: For each player 8, assess
the condition of convexity ⇢ [E(⌫ [ {8})] � ⇢ [E(⌫)] �
⇢ [E(� [ {8})] � ⇢ [E(�)].

We propose a program to analyze dominance and convex-
ity in complete information games under filter bubble con-
ditions in the context of fake news and fact checking. The
program evaluates the extent to which different sets of play-
ers can contribute to identifying and preventing the spread
of fake news and examines the conditions of dominance and
convexity.

Definition of a characteristic function: We define a char-
acteristic function that indicates the effectiveness of a set of
players in identifying and preventing the spread of fake news.

Verification of eugeneracy: Verify the condition of eu-
generacy using the defined characteristic function.

Convexity Verification: Similarly, verify the convexity
condition using the characteristic function.

Visualization of results: Graphical display of the results
of the dominance and convexity validation to visually analyze
the effects of cooperation.

The program computes the value of the characteristic
function for a specific set of players (e.g., fact checkers, news
providers, etc.) and verifies the conditions of dominance and
convexity. The validation results are displayed in the console
and the values of the characteristic functions are visualized
in a graph. The titles of the graphs are displayed in En-
glish, illustrating the effectiveness of applying cooperative
game theory concepts to the context of fake news and fact
checking.

Summary in Fig.25-26

Fig.25-26 depict bar charts representing the characteristic
function values for various groups in a complete informa-
tion game considering superadditivity and convexity. These
values are a part of cooperative game theory, where the char-
acteristic function defines the value (often in terms of utility
or payoff) that a set of players (or a coalition) can achieve
together.

Superadditivity

This property is shown if the value of a coalition is at least
as large as the sum of the values of smaller, non-overlapping
coalitions. In the context of these graphs, we would expect
to see that groups with more fact-checkers (larger coalitions)
have a characteristic function value that is greater than the
sum of smaller groups. The graphs seem to demonstrate this,
as larger coalitions tend to have higher values.

Convexity

A game exhibits convexity if the incremental contribution of
each additional player to a coalition increases as the coalition



Fig. 25: Complete Information Games:Characteristic Func-
tion Values with Superadditivity and Convexity

Fig. 26: Complete Information Games:Characteristic Func-
tion Values with Superadditivity and Convexity,

grows. This would be visualized by a steeper increase in
the characteristic function value as the group size increases.
This is a bit harder to assess directly from these charts without
specific numerical values of the incremental increases, but the
general trend in the bar heights could suggest this property.

Groups Analysis

The groups are labeled with different combinations of ’fact-
checker’ and ’news provider’. The values given for the coali-
tions seem to reflect the benefit of having multiple fact-
checkers working together, and possibly the effect of news
providers joining the coalition.

Base Value and Synergy

The mention of a base value and a synergy parameter in the
graph titles suggests that the value of each group starts with
a certain base (50 or 100) and then increases based on the
synergy parameter (20). This parameter likely represents the
additional value generated by the cooperative effort among
fact-checkers and possibly the news providers. The difference
in base values across the two graphs (50 in one and 100 in
another) could represent different scenarios or games where
the starting value of the coalition’s efforts varies. The impact
of the synergy parameter also seems to scale with the base
value, leading to greater overall characteristic function values.

In summary, these graphs can provide insights into how
groups of fact-checkers and news providers can collaborate
to maximize their utility in the context of identifying and pre-
venting the spread of fake news. They visualize the effects
of superadditivity and convexity, which are important con-
cepts in cooperative game theory and can inform strategies
for collective action in complete information games. The
data suggests that larger coalitions and the inclusion of news
providers in the coalition can lead to higher overall utility,
which is conducive to combating fake news effectively.

Summary in Fig.27-28

Fig.27-28 displaying the characteristic function values for var-
ious groups within a complete information game framework
that considers superadditivity and convexity. The character-
istic function is a key concept in cooperative game theory,
representing the value (often payoff or utility) that a coalition
of players can obtain together.

Characteristic Function Values

The bars in each chart represent the value that different groups
or coalitions of players (fact-checkers and possibly a news
provider) can achieve. We see single groups (single fact-
checker), pairs, triples, and a mix of fact-checkers and a news
provider.



Fig. 27: Complete Information Games:Characteristic Func-
tion Values with Superadditivity and Convexity,

Fig. 28: Complete Information Games:Characteristic Func-
tion Values with Superadditivity and Convexity,

Superadditivity

A game is superadditive if the value of a combined coalition is
greater than the sum of the values of the individual coalitions.
The bar charts should reflect higher values for larger coalitions
if superadditivity holds.

Convexity

Convexity implies that as a coalition grows, the incremental
benefit of adding an additional member is at least as great
as the benefit that the last member brought. This would be
demonstrated by an increasing incremental rise in the bar
chart values as coalitions grow in size.

Base Value and Synergy

The base value is likely the starting point for the coalition’s
value, and the synergy represents the additional value gener-
ated due to the cooperative effort of the coalition members.
The first image has a positive synergy, indicating that co-
operation increases the value, while the second image has
a negative synergy, implying that cooperation may actually
decrease the value (perhaps due to misinformation or redun-
dancy). In the first image, with a positive synergy, the largest
coalition has the highest characteristic function value, which
suggests that the fact-checkers’ cooperative effort has a cu-
mulative positive effect. In the second image, with a negative
synergy, the largest coalition does not have the highest value,
which could imply that beyond a certain point, adding more
fact-checkers does not increase the effectiveness of the group
or could even be detrimental (e.g., too many fact-checkers
leading to inefficiencies or conflicting information).

These graphs can be used to analyze the optimal size
of a coalition of fact-checkers in terms of maximizing their
effectiveness in identifying and preventing the spread of fake
news. Policymakers or organizations can use such analyses
to determine the best strategies for allocating resources to
fact-checking efforts.

In summary, these bar charts are visual tools to help un-
derstand the principles of cooperative game theory applied to
the context of fake news and fact-checking. They can provide
insights into how groups of players can work together effec-
tively and what configurations might lead to the best outcomes
in terms of identifying and preventing the dissemination of
fake news.

Summary in Fig.29-30

Fig.29-30 show bar charts that represent the characteristic
function values of different groups within a game that an-
alyzes the problem of fake news and fact-checking. These
values are used to assess the potential payoff or utility that
various coalitions (groups of fact-checkers and possibly news



Fig. 29: Complete Information Games:Characteristic Func-
tion Values with Superadditivity and Convexity,

Fig. 30: Complete Information Games:Characteristic Func-
tion Values with Superadditivity and Convexity,

providers) can achieve through cooperation in a game with
complete information.

Superadditivity

The game exhibits superadditivity if the value of a coalition
is greater than the sum of the values of its parts. This means
that as fact-checkers (or fact-checkers and a news provider)
join forces, their combined effort is more valuable than their
individual efforts. Convexity is present if the incremental
value of adding an additional member to a coalition increases
the larger the coalition becomes. This implies that larger
groups are not only more effective together, but also that each
new member adds increasingly more value. The first chart
indicates a positive synergy (synergy = 10), where the charac-
teristic function values increase as the coalition size increases.
This suggests that the combined efforts of fact-checkers and
the inclusion of a news provider create additional value. The
second chart presents a negative synergy (synergy = -10),
where the characteristic function values decrease as the coali-
tion size increases, implying that there may be diminishing
returns or negative effects from adding more members to the
coalition. These charts could be used to determine the opti-
mal size of a group of fact-checkers. For instance, if adding
more fact-checkers leads to a decrease in overall utility (as
suggested by the negative synergy), it might be more effi-
cient to have smaller teams. In the context of fake news,
the charts could suggest that too many fact-checkers might
lead to confusion, inefficiency, or competition for resources,
which could hinder the overall goal of accurately identifying
and mitigating fake news. The base value represents a starting
point for the coalition’s value. In both charts, the base value is
100, but the effect of synergy is different, which significantly
alters the characteristic function values for each coalition. In
a real-world setting, these results could influence how orga-
nizations form teams of fact-checkers and collaborate with
news providers. Positive synergy suggests that collaboration
is beneficial and should be encouraged, while negative syn-
ergy may indicate a need for careful management of team
sizes and composition to avoid counterproductive outcomes.

In summary, these bar charts illustrate the concepts of
superadditivity and convexity in cooperative game theory,
applied to the context of combating fake news. The data dis-
played in the charts could inform strategies for collaborative
efforts among fact-checkers and news providers, with the goal
of maximizing the effectiveness of their collective actions.

12. Discussion:Fake News and

Fact-Checking in Non-Cooperative

Games

When considering the context of fake news and fact-checking
within the framework of a complete information game in the



context of non-cooperative game theory, we examine how the
concepts of superadditivity and convexity can be incorpo-
rated.

In non-cooperative games, players pursue strategies to
maximize their own gains without cooperating with other
players. In complete information games, all players are aware
of all aspects of the game, including other players’ strategies
and potential gains.

13. Consideration of Superadditivity

and Convexity

In non-cooperative games, superadditivity and convexity can
be indirectly applied to explore the potential for cooperation
or coalition formation among players.

(1) Superadditivity: The concept of superadditivity is ap-
plied when two players or a group of players can po-
tentially achieve greater gains by unofficially cooperat-
ing than by acting individually. This can be achieved
through information sharing or strategic adjustments.

(2) Convexity: The concept of convexity is applied when
the additional gains from new players joining a group in-
crease as the group becomes larger. This can be achieved
through more extensive information sharing and diver-
sity of strategies.

14. Formulas and Calculation Process

The specific calculation process for considering superaddi-
tivity and convexity in non-cooperative games consists of the
following steps:

(1) Definition of Payoff Functions: Define payoff functions
for each player. For example, this could include the soci-
etal benefits of fact-checkers identifying fake news or the
improvement in reputation for news providers delivering
truthful information.

(2) Examination of Strategy Profiles: Examine all pos-
sible strategy profiles for each player and calculate the
gains for each profile.

(3) Identification of Nash Equilibrium: Identify the Nash
equilibrium formed when each player selects strategies
that maximize their own gains, assuming other players’
strategies are fixed.

(4) Evaluation of Superadditivity and Convexity: Eval-
uate the gains that can be achieved through unofficial
cooperation between two players or a group of players
and compare them to the gains from acting individually.
This can be done by assuming information sharing and
strategic adjustments.

(5) Analysis of the Impact of Strategic Adjustments: An-
alyze the impact of strategic adjustments when unofficial
cooperation occurs among players on the Nash equilib-
rium.

Considering superadditivity and convexity in the context
of non-cooperative game theory in the development of non-
cooperative games provides a theoretical framework for ex-
ploring the potential for cooperation and information sharing
among players. In the context of fake news and fact-checking,
these concepts help understand how unofficial information
sharing and cooperation among players can occur and how
they can impact overall gains. We propose a Python program
that considers dominance and convexity in the context of fake
news and fact checking in the framework of non-cooperative
games. The program will assume a non-cooperative game
scenario in which different players (e.g., fact checkers, news
providers) choose their own strategies and analyze the impact
of informal cooperation on the gains.

Define the gain function: Define a gain function for each
player and compute the gain from independent actions.

Compute the gain from informal cooperation: Compute
the gain when two players informally share information or co-
ordinate their strategies to test the concept of egalitarianism.

Evaluating Convexity: Evaluate the convexity condition
by calculating the increase in gain that an additional player
brings as the set of players grows.

Visualize the results: graphically compare the gains ob-
tained from the gain function and informal cooperation.

The program calculates gains based on two strategies:
"Fact Check," in which the fact checker identifies fake news,
and "Ignore," in which it ignores it. It also evaluates the
impact of informal cooperation on gains, taking into account
the strategies "spreadfakenews" and "shareinformation," in
which news providers spread fake news and share information,
respectively. Finally, a comparison of gains from independent
actions and informal cooperation is visualized in a graph, with
the titles of the graphs set in English.

Summary in Fig.31-32

Fig.31-32 represent the payoffs of different strategies in the
context of a non-cooperative game involving fake news and
fact-checking. The blue bars indicate the payoffs from inde-
pendent actions, while the orange bars represent the payoffs
from cooperative actions.

Fact Check Strategy

In both charts, the payoff for the ’Fact Check’ strategy is
higher for cooperative action than for independent action.
This suggests that coordination or sharing of information
among fact-checkers improves their effectiveness and thus
their payoff.



Fig. 31: Impact of Informal Cooperation on Payoffs

Fig. 32: Impact of Informal Cooperation on Payoffs

Ignore Strategy

In the first chart, the payoff for the ’Ignore’ strategy is nega-
tive for independent action and significantly less negative for
cooperative action. Even though ignoring is a less desirable
strategy (indicated by a negative payoff), cooperation miti-
gates the losses. In the second chart, the payoff for ’Ignore’
is much worse under cooperative action than independent ac-
tion. This could imply that in certain contexts, cooperation or
sharing information on what to ignore could lead to a group-
think effect, where bad decisions are reinforced, leading to
larger losses.

Impact of Informal Cooperation

The differences in payoff for the same strategy under indepen-
dent and cooperative actions indicate the impact of informal
cooperation. The exact nature of this cooperation isn’t spec-
ified but could include sharing of information, coordination
of efforts, or collective decision-making.

Game Theory Interpretation

The fact that cooperative actions generally have higher payoffs
for ’Fact Check’ aligns with the concept of superadditivity,
where the coalition’s value is greater than the sum of indi-
vidual efforts. However, the negative payoffs associated with
’Ignore’ in the second chart could suggest a violation of the
convexity property, where adding more players to a coalition
does not always yield an incremental benefit.

Strategic Implications for Players

For fact-checkers, these charts suggest that forming alliances
and sharing resources could be beneficial, especially when
directly combating the spread of fake news. The ’Ignore’
strategy’s varied results imply that the decision to overlook
certain information should be made with caution. Coopera-
tive action could either help avoid wasteful fact-checking or
exacerbate the negative consequences of ignoring significant
misinformation.

Contextual Factors

The change in payoffs between the two charts may be influ-
enced by the context, such as the prevalence of fake news, the
cost of fact-checking, the effectiveness of informal coopera-
tion, and the players’ ability to discern the truth.

In summary, these bar charts suggest that in a game in-
volving the spread of fake news and fact-checking, cooper-
ative actions can enhance the effectiveness of fact-checking
efforts, but the impact of such cooperation can vary based
on the strategy and the specific context. Decision-makers in
this space may use such analysis to design interventions or



Fig. 33: Impact of Informal Cooperation on Payoffs

Fig. 34: Impact of Informal Cooperation on Payoffs

policies that promote cooperation where it is beneficial and
guard against it where it may be harmful.

Summary in Fig.33-34

Fig.33-34 comparing the payoffs for two strategies, "Fact
Check" and "Ignore," under two conditions: Independent
Action and Cooperative Action. These illustrate the impact
of informal cooperation on the outcomes in a game theoretical
framework, specifically in the context of addressing fake news
and fact-checking.

Fact Check Strategy

In both images, the payoff for "Fact Check" under Cooperative
Action is lower than under Independent Action. This suggests
that while fact-checking is beneficial, there may be diminish-
ing returns or even negative consequences when fact-checkers
work together informally. This could be due to overlapping
efforts, miscommunication, or the dilution of responsibility.

Ignore Strategy

The first image shows that the payoff for "Ignore" is nega-
tive under Independent Action, which becomes even more
negative under Cooperative Action. This could indicate that
ignoring fake news is detrimental and that cooperative ignor-
ing exacerbates the problem, possibly through echo chambers
or reinforced biases. In contrast, the second image shows a
payoff that is negative under Independent Action but turns
positive under Cooperative Action. This implies that there
might be circumstances where collective ignoring, perhaps
by disengaging from the dissemination of fake news, can lead
to a better outcome than individual actors ignoring it.

Impact of Informal Cooperation

Informal cooperation seems to have a complex impact on pay-
offs. Cooperative Action does not always improve payoffs and
can sometimes lead to worse outcomes. This underscores the
importance of structured and well-coordinated efforts when
dealing with misinformation.

Strategic Implications

The results suggest that simply increasing the number of fact-
checkers or encouraging them to cooperate may not always
be the best strategy. Effective coordination and clear commu-
nication channels are crucial. The variability in the impact of
the "Ignore" strategy underlines the need to understand when
it is beneficial to engage with fake news and when it is better
to ignore it.

Contextual Dependence

The differences between the two images indicate that the con-
text significantly influences the outcomes. The right strategy
in one situation may not apply universally.

In conclusion, these bar charts suggest that in the fight
against fake news, the effectiveness of fact-checking and the
decision to ignore certain information are contingent upon the
nature of cooperation between the parties involved. Informal
cooperation can lead to better or worse outcomes, depending
on how it is implemented and the specific circumstances of the
game scenario. These insights can be valuable for designing
interventions and policies to combat misinformation.

Summary in Fig.35

Fig.35 shows the payoffs for two strategies—Fact Check and
Ignore—under two different modes of action: Independent
and Cooperative. The blue bars represent payoffs from actions
taken independently, while the orange bars show payoffs when
actions are coordinated or cooperative.



Fig. 35: Impact of Informal Cooperation on Payoffs

Fact Check Strategy

Cooperative action yields a higher payoff than independent
action for fact-checking. This suggests that when fact-
checkers collaborate, perhaps by sharing information or meth-
ods, they are more effective than when they work alone.

Ignore Strategy

In contrast, the payoff for ignoring fake news is positive when
done independently but turns negative with cooperative ac-
tion. It may indicate that when players independently decide
to ignore fake news, there is no loss in payoff. However, when
this decision is made cooperatively, it could potentially lead
to a groupthink situation where important news is overlooked,
leading to a negative payoff.

Implications of Informal Cooperation

The chart demonstrates that informal cooperation can signif-
icantly impact payoffs in both positive and negative ways,
depending on the strategy. For fact-checking, this impact
is positive, implying that cooperative systems or networks
for sharing verified information could be beneficial. For ig-
noring, the negative impact suggests that cooperative efforts
to ignore fake news without a systematic approach can be
detrimental, possibly spreading misinformation or failing to
contain it.

Contextual Interpretation

These results are consistent with a scenario where fact-
checking efforts require the pooling of resources or expertise
to be effective, while ignoring fake news is an individual’s
passive response that doesn’t benefit from cooperation.

Fig. 36: Impact of Informal Cooperation on Payoffs

Game Theory and Policy Implications

The program mentioned in the explanation might simulate
these scenarios to analyze the benefits and drawbacks of co-
operation among players with different strategies. It could
guide policymakers or social media platforms in designing
mechanisms to encourage beneficial cooperation among fact-
checkers and discourage harmful collective ignoring.

Summary in Fig.36

Fig.36 shows the payoffs for two strategies, "Fact Check"
and "Ignore," under conditions of Independent Action and
Cooperative Action.

Fact Check Strategy

The Cooperative Action for fact-checking is significantly
more beneficial than Independent Action. This large positive
difference indicates that collaboration among fact-checkers
(and possibly with news providers) greatly increases the ef-
fectiveness and thus the payoff of their actions.

Ignore Strategy

Conversely, the payoff for ignoring fake news under Coop-
erative Action is vastly negative, while it is less so under
Independent Action. This suggests that when entities choose
to ignore fake news cooperatively, it could lead to a more
substantial negative impact, possibly due to the amplification
of misinformation or the failure to mitigate its spread.

Implications for Strategy Implementation

The results underscore the importance of collaboration when
combating fake news. Cooperative efforts in fact-checking
can lead to better outcomes in terms of payoff. The detri-
mental effects of ignoring fake news are exacerbated when
there is a cooperative approach to ignoring it. It could imply



Fig. 37: Impact of Informal Cooperation on Payoffs

that an organized disregard for misinformation may not be a
viable strategy and could harm the parties involved.

Game Theory and Policy

These observations can be translated into policy implica-
tions. Encouraging and facilitating cooperation among fact-
checkers might be a more effective strategy than promoting
independent action. The negative payoff associated with the
cooperative ’Ignore’ strategy could be a warning against col-
lective negligence in the face of fake news. It suggests that
active engagement may be necessary to combat misinforma-
tion effectively.

The bar chart provides a clear visual representation of
how cooperative and independent actions can vary in their
impact on strategies addressing the spread of fake news. It
also emphasizes the need for strategic cooperation in fact-
checking and caution against cooperative actions in ignoring
fake news.

Summary in Fig.37

Fig.37 shows payoffs for two different strategies—Fact Check
and Ignore—under two conditions: Independent Action and
Cooperative Action.

Fact Check Strategy

The payoff for independent action is positive, indicating that
there is a benefit to fact-checking even when done alone. The
payoff for cooperative action is higher than for independent
action, but not as significantly as one might expect. This
suggests that while there is a benefit to cooperation among
fact-checkers, it may not be as large as anticipated or there
may be diminishing returns with increased collaboration.

Ignore Strategy

The payoff for independent action when ignoring fake news
is slightly negative, which suggests a small cost or penalty
for ignoring fake news on one’s own. However, the payoff
for cooperative action in ignoring fake news is significantly
negative, far worse than for independent action. This indicates
that when entities collaborate to ignore fake news, the negative
consequences are amplified, possibly leading to widespread
misinformation or the missed opportunity to correct false
narratives.

Implications for Informal Cooperation

Informal cooperation has a different impact on the payoffs
of different strategies. In fact-checking, cooperation seems
to be beneficial, though not overwhelmingly so. In contrast,
for ignoring, informal cooperation seems highly detrimental.
This could imply that coordinated efforts to ignore fake news
may lead to harmful outcomes, such as the normalization or
acceptance of misinformation.

Contextual Factors

The results could be influenced by the specific context of
the game, such as the prevalence and impact of fake news,
the effectiveness of fact-checking efforts, and the societal
consequences of ignoring misinformation.

Strategic Considerations

These findings could be particularly relevant for organiza-
tions and platforms that combat fake news. They suggest that
while promoting collaborative fact-checking can have posi-
tive effects, encouraging a collective stance of ignoring fake
news can be harmful.

The chart thus highlights the nuanced effects of coop-
erative versus independent strategies in the context of mis-
information and suggests that the best approach may vary
significantly depending on the chosen strategy.

Summary in Fig.38

Fig.38 shows the payoffs of two strategies, "Fact Check" and
"Ignore," in the context of dealing with fake news. The blue
bars represent Independent Action, where players act on their
own, while the orange bars represent Cooperative Action,
where players coordinate or collaborate in some way.

Fact Check Strategy

The Independent Action has a negative payoff, which could
indicate that individual efforts to fact-check are not only inef-
fective but may also incur a cost (like time or resources spent).
However, Cooperative Action leads to a positive payoff, albeit
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not extremely high. This suggests that when fact-checkers
work together, they can overcome the individual costs and
achieve better outcomes.

Ignore Strategy

The Independent Action for ignoring has a moderately neg-
ative payoff, suggesting that choosing to ignore fake news
without coordination can lead to some negative consequences,
possibly allowing the misinformation to spread unchallenged.
Cooperative Action for ignoring results in a very high nega-
tive payoff, drastically worse than independent ignoring. This
could imply that coordinated efforts to ignore fake news can
significantly backfire, perhaps by creating a larger void for
misinformation to fill or by making it seem as though the fake
news is being tacitly endorsed.

Implications for Decision-Making

The chart suggests that coordinated fact-checking is beneficial
and can turn the tide against the costs of combatting misin-
formation. On the other hand, there’s a stark warning against
cooperative ignoring. This might reflect a scenario where
such a strategy allows misinformation to become normalized
or unchecked, exacerbating its negative impacts.

Game Theory and Policy

From a game theory perspective, the chart demonstrates the
concept of superadditivity, where the combined effort of play-
ers (fact-checkers) leads to greater benefits than summing
their individual efforts. In terms of policy, the chart sug-
gests that encouraging collaboration among fact-checkers is
more effective than encouraging individual efforts. However,
it also indicates that policies should discourage any form of
collaborative ignoring of fake news.

Strategic Considerations

The findings could be particularly relevant for social media
platforms and news organizations determining how to handle
fake news. Encouraging collaborative fact-checking initia-
tives could be beneficial, while mechanisms to discourage
collective ignoring might be necessary.

In conclusion, the chart indicates that cooperation has
complex effects on strategy effectiveness, particularly high-
lighting the potential dangers of collaborative inaction in the
face of fake news.

15. Conclusion:From the Perspective of

Information Dissemination,From the

Perspective of the Media

(1) Impact of Superadditivity: According to the princi-
ple of superadditivity, cooperation among players (such
as news providers, fact-checkers, and users) can be ex-
pected to surpass the cumulative effect of individual
efforts in identifying and preventing the spread of fake
news. This suggests the importance of collaboration
among media organizations and fact-checking entities
to ensure the accuracy of information.

(2) Impact of Convexity: Convexity suggests that as the
network of cooperation to ensure information accuracy
grows, its effectiveness is expected to increase. In other
words, the more media organizations and fact-checkers
collaborate, the stronger their ability to counteract fake
news.

(1) Enhancing the Role of the Media: The concepts of su-
peradditivity and convexity emphasize the crucial role
of media organizations in identifying and preventing the
spread of fake news. The media can mitigate the im-
pact of fake news by providing accurate information and
raising public awareness.

(2) Cooperation Among Media Outlets: The principle of
convexity suggests that cooperation among media or-
ganizations enhances defense against fake news. Col-
laborative fact-checking efforts and sharing criteria for
reliable sources can improve the quality of information
provided by the media.

Expanding the Discussion

In light of this scenario, when engaging in discussions aimed
at suppressing fake news, it is essential to consider the fol-
lowing:

How media organizations and fact-checkers can collab-
orate to ensure information accuracy and prevent the
spread of fake news.



The role of the media in enhancing public awareness and
education in the context of information dissemination.

The importance of establishing common criteria among
media organizations to guarantee the quality of informa-
tion.

These discussions help in understanding the significance
of the roles played by media organizations and fact-
checkers when devising strategies to combat fake news.
Additionally, these considerations regarding information
dissemination and the role of the media may serve as
a foundation for formulating specific measures to curb
fake news. Further refinement of the model may be
necessary.

Analyzing Fake News and

Fact-Checking as an Extensive-Form

Perfect Information Game

When analyzing the issue of fake news and fact-checking as an
extensive-form perfect information game, valuable insights
can be gained regarding information dissemination and the
role of the media. By utilizing game settings and expected
payoff functions, it becomes possible to examine the strategies
of each player and their societal impact.

From the Perspective of Information Dissemi-

nation

(1) Expected Payoff Functions and Information Dissemi-

nation: Expected payoff functions can be used to predict
the outcomes of strategies that news providers and fact-
checkers can adopt. For example, it can be determined
that effective intervention by fact-checkers (*� (�,+) >
*� (�, #)) is crucial when news providers have strong
incentives to spread fake news (*% (�, #) > *% () , #)).

(2) Dynamic Interaction and Information Quality:
Through the dynamic interaction of the game, it is
possible to examine how fact-checking activities influ-
ence the actions of news providers. If fact-checkers
can incentivize news providers to offer accurate infor-
mation through verification, the quality of information
improves.

From the Perspective of the Media

(1) Media Strategies and Societal Impact: It is crucial to
consider how media organizations combat fake news and
how their strategies contribute to the public interest. The
framework of a perfect information game provides the
foundation to understand the optimal strategies media
can adopt and their impact on information dissemination.

(2) Parato Optimality and Media Collaboration: Parato
optimality allows us to consider how collaboration

among media organizations contributes to societal wel-
fare. Cooperation among media organizations to ensure
information accuracy can help suppress the spread of
fake news and promote the delivery of reliable informa-
tion.

Proposals for Suppressing Fake News

(1) Enhancing Fact-Checking: Strengthening fact-
checking activities and incentivizing news providers to
offer accurate information is crucial. This includes
promptly and widely publishing the results of fact-
checking.

(2) Media Collaboration and Criteria Establishment:
Media organizations can effectively combat fake news
by setting common criteria for ensuring information ac-
curacy and cooperating based on these criteria.

(3) Raising Public Awareness and Education: Implemen-
tation of educational programs to enhance consumers’
ability to assess information quality and identify fake
news is necessary. This is expected to encourage con-
sumers to play a more active role in the information
dissemination process.

Through the analysis using the framework of an extensive-
form perfect information game, multiple strategies for sup-
pressing fake news become apparent. There is potential to
gain a deeper understanding of information dissemination and
the role of the media in this context.
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