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Abstract: Again, in this paper, when considering noncooperative games broadly in the framework
of incomplete information games in the context of fake news and fact checking, players do not have
complete information about the choices and types of other players (e.g., whether they are reliable
sources of information). An analysis based on expected payoffs is needed. In an era dominated
by the rapid spread of both information and misinformation, the strategic decisions made by news
providers regarding the quality of their content have far-reaching implications for society. This
paper introduces a novel approach by integrating the Cournot model, traditionally used for analyzing
quantity competition in oligopolistic markets, with the complex dynamics of prisoner’s dilemma
and non-complete information games in the realm of media. We focus on the pivotal role of
expected payoff functions in shaping the strategies of news providers, amidst the dual challenges of
combating fake news and ensuring rigorous fact-checking. The adaptation of the Cournot model to
accommodate the qualitative aspect of information, coupled with the strategic uncertainty inherent in
non-complete information scenarios, lays the groundwork for a comprehensive analysis. By delving
into the intricacies of expected payoff functions and their influence on the strategic choices of news
providers, this study aims to shed light on the emergent competitive equilibria and the potential
for cooperative outcomes that align with societal welfare. Through this exploration, we seek to
unravel the conditions under which news providers might find themselves in a prisoner’s dilemma,
forced to choose between short-term gains and the long-term trust and reliability of their content.
Through a computational experiment informed by numerical simulations, this study aims to uncover
the Nash equilibria that define the competitive equilibrium among news providers and to scrutinize
the conditions under which the societal optimum—Pareto optimality—is achievable. In doing so, we
illuminate the potential prisoner’s dilemma scenarios that may arise, offering profound insights into
the optimal strategies news providers can adopt to enhance public welfare in the face of fake news
and fact-checking challenges.

Keywords: Game Theory, Ultimatum Game, Cournot Model, Prisoner’s Dilemma, Bertrand Com-
petition, Fake News, Fact-Checking, Non-Complete Information Game, Nash Equilibrium, Pareto
Optimality, Information Quality, Media Strategy, Public Interest

1. Introduction

In this paper, we introduce the Cournot model and the pris-
oner’s dilemma for further discussion. When considering
noncooperative games in the context of fake news and fact-
checking broadly within the framework of incomplete in-
formation games, players do not have complete information
about the choices and types of other players (e.g., whether they
are reliable sources of information). An analysis based on
expected payoffs is needed. We propose a computational ex-
periment using the Cournot model to analyze the competitive
dynamics of information quality among news providers un-
der the framework of noncomplete information games, with a

particular focus on the interaction between fake news and fact
checking. By adapting the traditional Cournot model, which
is often used to analyze quantity competition in oligopolis-
tic markets, to the media context, we explore the strategic
behavior of news providers and its impact on public welfare.
The model considers news providers as players who strategize
about the level of quality of information they provide, which
in turn affects public welfare. The expected payoff function
is defined in terms of information quality, taking into account
both the market’s valuation of information quality and the cost
of producing such quality. Through numerical simulations,
we aim to derive Nash equilibria and examine conditions for
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Pareto optimality to highlight potential prisoner’s dilemma
scenarios. While the Cournot model has traditionally been
used to analyze quantitative competition in oligopolistic mar-
kets, it provides a unique framework for examining "quali-
tative competition" among news providers in the context of
fake news and fact checking. In this study, we extend the
Cournot model to the setting of a noncomplete information
game, where news providers, acting as players, develop strate-
gies over the quality of the information they disseminate. The
main objective is to explore how such strategies affect public
welfare and the emergence of a prisoner’s dilemma scenario.
By conceptualizing information quality as a quantifiable vari-
able, we establish a payoff function for each news provider
based on the quality of information in the overall market, the
public’s assessment of this quality, and the associated pro-
duction costs. Through this computational experiment, we
hope to provide insight into the strategic decisions that news
providers must make regarding information quality and their
impact on the public good, given the pervasive challenges
posed by fake news and the critical role of fact checking.

2. Experimental Plan: Analysis of Fake

News and Fact-Checking in the

Context of Incomplete Information

Games

In the context of incomplete information games, analyzing
fake news and fact-checking presents various challenges for
both the media (news providers) and recipients (information
receivers). These challenges primarily stem from informa-
tion gaps and communication deficiencies. This research
proposal suggests conducting computational experiments on
fake news and fact-checking in incomplete information games
based on models such as the Cournot model, the Prisoner’s
Dilemma, the Ultimatum Game, and Bertrand Competition.
The objective is to analyze competition regarding the quality
of information among news providers and its impact on the
public interest.

2.1 Challenges for the Media (News Providers)

2.1.1 Assessing the Authenticity of Information

Media outlets may struggle to accurately assess the authentic-
ity of information, especially when there is a lack of trustwor-
thy information sources or when false information is cleverly
crafted.

2.1.2 Bias in Reporting

Individual media outlets with specific perspectives or ideolo-
gies may unintentionally or intentionally introduce bias into
their reporting, making it challenging for recipients to fully
trust the information.

2.1.3 Competitive Pressure

Competition among media outlets can incentivize the pro-
vision of sensational and attention-grabbing content, which
may lead to bending the truth or disseminating unverified
information.

2.1.4 Challenges for Recipients (Information Receivers)

2.1.5 Evaluating the Credibility of Information Sources

Recipients may struggle to distinguish information from var-
ious sources and determine which sources are credible. The
oversaturation of information and a lack of authenticity fur-
ther complicate this challenge.

2.2 Cognitive Bias

Individuals tend to be drawn towards information that rein-
forces their existing beliefs or opinions. This confirmation
bias facilitates the spread of misinformation, including fake
news.

2.2.1 Information Overload

Information overload increases the risk of recipients missing
important information or accepting inaccurate information as
truth.

2.2.2 Dilemmas and Nash Equilibrium

In such situations, media outlets and recipients make interde-
pendent strategic decisions. Media outlets anticipate the ex-
pectations and reactions of recipients, while recipients spec-
ulate about the intentions and credibility of media outlets.
This interdependence leads to the formation of dilemmas and
Nash equilibria.

2.2.3 Dilemma

Media outlets aim to build trust by providing high-quality
information, but the temptation of market competition and
sensational content can hinder this goal. On the other hand,
recipients seek reliable information but face the risk of accept-
ing misinformation due to information overload and cognitive
bias.

2.2.4 Nash Equilibrium

The Nash equilibrium in this game is a state where media
outlets and recipients choose their optimal strategies, and
there are no gains to be made by changing their strategies. In
reality, this equilibrium may involve media outlets pursuing
a certain level of sensationalism, and recipients maintaining
a certain level of skepticism. This suggests that the problem
of fake news may not be completely resolved, and some form
of misinformation may persist in society.



2.2.5 Analysis of Incomplete Information Games

The analysis of such incomplete information games can help
us understand the strategic interactions between media out-
lets and recipients. It may also assist in developing more
effective approaches to address the issues of fake news and
fact-checking.

2.2.6 Players

Player A: News provider A

Player B: News provider B

2.3 Strategies

Level of information quality @� for Player A

Level of information quality @⌫ for Player B

2.4 Payoff Functions

News provider A: ⇧�(@�, @⌫) = %(&)@�⇠ (@�)
News provider B: ⇧⌫ (@�, @⌫) = %(&)@⌫⇠ (@⌫)

Here, & = @� + @⌫ represents the total quality of infor-
mation in the market, %(&) is the public evaluation of infor-
mation quality, and ⇠ (@) is the cost of providing information
quality.

2.4.1 Expected Payoff Functions

News provider A: ⇢ [⇧�] = %(⇢ [&])@�⇠ (@�)
News provider B: ⇢ [⇧⌫] = %(⇢ [&])@⌫⇠ (@⌫)

Here, ⇢ [&] is the expected value of the total information
quality in the market.

2.4.2 Research Methodology

2.4.3 Maximization of Payoff Functions

Each news provider derives the information quality levels
@� and @⌫ that maximize their respective expected payoff
functions.

2.4.4 Calculation of Nash Equilibrium

The Nash equilibrium is calculated from the optimal response
functions of both news providers, determining the information
quality levels.

2.4.5 Analysis of Pareto Optimality and the Prisoner’s

Dilemma

A comparison is made between the situation where news
providers cooperate to provide high-quality information and
the situation under non-cooperation strategies to examine the
Prisoner’s Dilemma scenario.

In this computational experiment, numerical analysis soft-
ware is used to solve the maximization problem of the stated
payoff functions and expected payoff functions. Numerical
simulations are performed to determine Nash equilibria and
Pareto-optimal states.

2.4.6 Expected Outcomes

Through this computational experiment, we expect to gain
insights into what strategies news providers should adopt re-
garding information quality and how these strategies may
impact the public interest. Additionally, we hope to derive
results that can serve as the basis for policy recommendations
to prevent the spread of fake news.

3. Non-Complete Information Games

and Game Theory Developments

In this paper, we will first organize some game theory solution
examples and the computational experimental design of the
development of the application to this problem. First, we will
discuss the prisoner’s dilemma.

3.1 Prisoner’s Dilemma

The Prisoner’s Dilemma is a fundamental model in game
theory that situations where individual rational choices lead
to collectively irrational outcomes.

3.2 Game Setup

Players: Two prisoners, A and B
Strategies: Confess (Defect, D) or Remain Silent (Cooperate,
C)

3.3 Payoff Table

The payoffs in the Prisoner’s Dilemma are typically repre-
sented in a table like the one below:

�\⌫ Cooperate (C) Defect (D)
Cooperate (C) (�1,�1) (�3, 0)

Defect (D) (0,�3) (�2,�2)

Here, the numbers in each cell represent the first number
as Player A’s payoff and the second number as Player B’s
payoff.

3.4 Mathematical Model

Let *� be the payoff function for Player A, and *⌫ be the
payoff function for Player B. This game can be expressed
mathematically as follows:



*�(⇠,⇠) = *⌫ (⇠,⇠) = �1 (1)
*�(⇠,⇡) = �3, *⌫ (⇠,⇡) = 0 (2)
*�(⇡,⇠) = 0, *⌫ (⇡,⇠) = �3 (3)
*�(⇡,⇡) = *⌫ (⇡,⇡) = �2 (4)

3.5 Calculation Process

In the Prisoner’s Dilemma, it is common to find the Nash
equilibrium, a state where no player can increase their payoff
by changing their strategy.

3.5.1 Player A’s Optimal Strategy

Assuming that B cooperates, the optimal strategy for A is
to defect (*�(⇡,⇠) > *�(⇠,⇠)). Similarly, if B defects,
the optimal strategy for A is also to defect (*�(⇡,⇡) >
*�(⇠,⇡)).

3.5.2 Player B’s Optimal Strategy

Assuming that A cooperates, the optimal strategy for B is
to defect (*⌫ (⇠,⇡) > *⌫ (⇠,⇠)). Similarly, if A defects,
the optimal strategy for B is also to defect (*⌫ (⇡,⇡) >
*⌫ (⇡,⇠)).

Therefore, the Nash equilibrium in this game is both A
and B defecting (D, D).

Through this calculation process, it is demonstrated that
in the Prisoner’s Dilemma, individual rational choices (de-
fecting) lead to collectively irrational outcomes (both players
defecting and receiving lower payoffs).

3.6 Prisoner’s Dilemma in the Context of Fake

News

In the context of fake news and fact-checking, we can con-
sider the Prisoner’s Dilemma as an incomplete information
game, where news providers have uncertain information about
whether their counterparts will provide fake news or report
the truth. This game aims to explore what strategies each
news provider should adopt under this uncertainty through a
computational experiment.

3.7 Game Setup

- Players: News provider A and B - Strategies: Provide truth-
ful information (C: Cooperation) or provide fake news (D:
Defection)

3.8 Payoff Table

In an incomplete information game, each player’s payoffs
depend not only on their opponent’s strategy but also on their
own beliefs about that strategy. Let’s consider the following

payoff table, but actual payoffs may vary based on player
beliefs:

�\⌫ Cooperate (C) Defect (D)
Cooperate (C) (3, 3) (0, 5)

Defect (D) (5, 0) (1, 1)

3.9 Expected Payoff Functions

The expected payoff for Player A depends on the probability
? that they believe B will cooperate (C) and the probability
1 � ? that they believe B will defect (D):

When A cooperates: ⇢ [*�(⇠)] = 3? + 0(1 � ?) = 3?
When A defects: ⇢ [*�(⇡)] = 5? + 1(1 � ?) = 5? + 1 � ?

A similar expected payoff function can be established for
Player B, assuming that B believes A will cooperate with
probability @.

3.10 Calculation Process

1. Deriving Optimal Strategies for Each Player: Find
the strategies that maximize the expected payoffs for each
player. For example, if Player A believes that B is likely
to cooperate (? is high), there is a higher probability that
⇢ [*�(⇡)] > ⇢ [*�(⇠)], favoring the defection strategy.
2.Identifying Nash Equilibrium: Look for strategy combina-
tions where both players have chosen their optimal strategies
based on their beliefs about the opponent’s strategy. This
is the Nash equilibrium. 3. Updating Beliefs: In practice,
players can obtain additional information about their oppo-
nent’s strategy during the game, so it’s essential to consider
the process of updating beliefs ? and @.

Applying this analysis to the context of fake news and
fact-checking can help us understand how news providers
make decisions about their strategies and under what con-
ditions they may engage in cooperative or non-cooperative
actions. Additionally, considering the process of belief up-
dating, insights into improving information quality and the
effectiveness of policies to prevent the spread of fake news
can be gained.

4. Non-Full information game and

Prisoner’s Dilemma in the context of
Fake News and Fact-Checking

In the context of Fake News and Fact-Checking in a non-
full information game, let’s consider the application of the
concepts of superadditivity and convexity to the Prisoner’s
Dilemma using formulas and the calculation process. The
Prisoner’s Dilemma illustrates a classic game theory scenario
where cooperation would benefit the overall outcome, but
individual incentives promote non-cooperation.



4.1 Game Setup

Players: News Provider (Player 1) and Fact-Checker
(Player 2).

Strategies: Cooperation (C) or Non-Cooperation (D).
For News Provider, cooperation means providing true
news, while non-cooperation means providing fake
news. For Fact-Checker, cooperation means fact-
checking, and non-cooperation means not fact-checking.

4.2 Utility Functions

We define utility functions as follows:

*1 (⇠,⇠) : News Provider cooperates.
*1 (⇠,⇡) : News Provider cooperates, Fact-Checker doesn’t
*1 (⇡,⇠) : News Provider doesn’t cooperate, Fact-Checkers
*1 (⇡,⇡) : News Provider doesn’t cooperate.
*2 (⇠,⇠) : Fact-Checker cooperates.
*2 (⇠,⇡) : Fact-Checker cooperates, News Provider doesn’t
*2 (⇡,⇠) : Fact-Checker doesn’t cooperate, News Provider cooperates.
*2 (⇡,⇡) : Fact-Checker doesn’t cooperate.

4.3 Application of Superadditivity and Convex-

ity

4.3.1 Superadditivity

Superadditivity refers to the property where the gains from
cooperation are greater than the sum of individual gains
achieved by acting independently. In this game, superad-
ditivity can be expressed through the following inequality:

*1 (⇠,⇠) +*2 (⇠,⇠) >

max(*1 (⇠,⇡) +*2 (⇠,⇡),*1 (⇡,⇠) +*2 (⇡,⇠))

4.3.2 Convexity

Convexity refers to the property where the additional gains
from the cooperation of more players increase significantly. In
this game, assuming that the highest social welfare is achieved
when all players cooperate, convexity conditions are automat-
ically satisfied.

(1) Calculating payoffs for each strategy: Based on the
given utility functions, compute the payoffs for all pos-
sible combinations of strategies.

(2) Verifying superadditivity: Use the above superadditiv-
ity inequality to determine if cooperation yields a better
outcome than individual actions.

(3) Identifying Nash Equilibrium: Each player selects a
strategy that maximizes their utility, considering the
strategies chosen by other players. If this selection is
a best response to others’ choices, the combination of
strategies is a Nash equilibrium.

Through this calculation process, we can understand play-
ers’ strategic choices and their consequences in the context of
a non-full information game concerning Fake News and Fact-
Checking. The concepts of superadditivity and convexity are
employed to emphasize the importance of cooperation and its
societal benefits.

5. Full information game and Prisoner’s

Dilemma in the context of Fake News
and Fact-Checking

In the context of fake news and fact-checking, we will explore
the application of the concepts of superadditivity and convex-
ity to the prisoner’s dilemma problem when considering both
complete information games and non-cooperative games in
an extensive form. In this scenario, the primary players are
news providers (referred to as Player A) and fact-checkers
(referred to as Player B).

6. Game Setup

6.1 Players and Strategies

Player A can disseminate true news (T) or fake news (F).

Player B can choose to verify (V) or not verify (N) the
news.

Both players’ payoffs depend on each other’s choices,
but all information is known at all stages of the game
(complete information game).

6.2 Payoff Table

The following table shows the payoffs based on the combi-
nations of actions by each player. The values are based on
assumptions.

AB Verify (V) Not Verify (N)
True (T) (3, 2) (2, 1)
Fake (F) (-1, 3) (4, -1)

Here, each payoff pair is interpreted as (Player A’s payoff,
Player B’s payoff).

6.3 Verification of Superadditivity

Superadditivity refers to the property where the gains from
cooperation are greater than the sum of individual gains
achieved by acting independently. However, in this case,
since we are dealing with a non-cooperative game, the direct



application of superadditivity is challenging. Instead, the
goal is to find the combination of strategies where both play-
ers maximize their benefits (for example, Player A providing
true news, and Player B verifying).

6.4 Verification of Convexity

Convexity refers to the property where the additional gains
from the cooperation of more players increase significantly
as the size of the player set grows. However, in this scenario,
there are only two players, and directly applying the concept
of convexity is not possible.

6.5 Relation to the Prisoner’s Dilemma

When likening this scenario to the prisoner’s dilemma, the
choice of both Player A and B not to cooperate (Player A
providing fake news, and Player B not verifying) could lead
to undesirable outcomes (the spread of fake news), similar to
the situation in the prisoner’s dilemma where both prisoners
pursuing self-interest results in the worst possible outcome.

6.6 Identification of Nash Equilibrium

Find combinations where each player’s strategy is the optimal
response to the other player’s strategy. In this example, (F,
N) could be a Nash equilibrium.

6.7 Maximization of Social Welfare

Examine combinations of strategies where the sum of players’
payoffs is maximized. In this example, (T, V) results in a
socially desirable outcome. Through this analysis, insights
into the issue of fake news and fact-checking can be gained,
and an understanding of strategic interactions in the context
of information dissemination and the role of media can be
obtained.

7. Both complete information games and

Cooperative games and Prisoner’s

Dilemma in the context of Fake News
and Fact-Checking

both complete information games and cooperative games In
the context of fake news and fact-checking, let’s consider the
framework of both complete information games and coop-
erative games and explore the application of the concepts
of superadditivity and convexity to the prisoner’s dilemma
problem, along with some example scenarios.

7.1 Game Setup

7.2 Players and Strategies

Players: News providers A and B. Strategies: Provide true
news (⇠: cooperate) or provide fake news (⇡: deceive).

7.3 Payoff Table

The typical payoff table for the prisoner’s dilemma is as fol-
lows, but in this context, cooperation (⇠) means providing
true news, and deception (⇡) means providing fake news.

⇠ ⇡
⇠ (3, 3) (0, 5)
⇡ (5, 0) (1, 1)

Here, payoffs are shown in the form (�’s payoff, ⌫’s
payoff). For example, if both cooperate (provide true news),
each receives a payoff of 3.

7.4 Verification of Superadditivity

Superadditivity refers to the property where the total gains
from cooperation are greater than the sum of individual gains
achieved by acting independently. In this scenario, when
both players cooperate (provide true news), the total payoff
is 6, which is greater than the sum of payoffs from any other
combination of strategies. Therefore, superadditivity holds.

7.5 Verification of Convexity

Convexity is the property where the additional gains from the
cooperation of more players increase as the size of the coop-
erating group grows. In this context, since only cooperation
(⇠) is considered, there is no direct application of convexity.
However, from the perspective that cooperation results in the
most desirable outcome for the entire society, the value of
cooperation is emphasized.

7.6 Relation to the Prisoner’s Dilemma

In the prisoner’s dilemma, there is a paradox where individual
optimal strategies (⇡: providing fake news) lead to an un-
desirable outcome (1, 1) for the entire group. In the context
of a cooperative game, the presence of superadditivity sug-
gests that players have an incentive to cooperate (provide true
news), potentially maximizing the overall welfare of society.

7.7 Calculation Process

1. Calculate the payoffs for each strategy combination. 2.
To verify superadditivity, compare the total payoffs when
cooperating. 3. Identify Nash equilibria by considering each
player’s optimal strategy.

8. Introduction of Cournot Models and

Cournot-Nash in Game Theory

8.1 Cournot Model: Analysis of Quantity Com-

petition

The Cournot model is an economic model used to analyze
quantity competition among firms in an oligopoly market.



In Cournot competition, each firm determines the quantity it
will produce, taking into account the quantities provided by
other firms, in order to maximize its own profits. Here, we
will also touch upon the Cournot Nash equilibrium.

8.2 Basic Setup of the Cournot Model

Firms produce the same product and supply it to the market.
The objective of each firm is to maximize its own profit. Firms
independently determine their production quantities without
affecting each other’s production quantities.

8.3 Mathematics and Calculation Process

8.3.1 Market Demand Function

%(&) = 0 � 1& - %(&) is the market price, 0 and 1 are
constants, and & is the total market supply (& = @1 + @2 +
... + @=).

8.3.2 Profit Function

⇧8 = %(&)@8 � ⇠8 (@8) - ⇧8 is the profit of firm 8, @8 is the
production quantity of firm 8, and ⇠8 (@8) is the cost function
of firm 8.

Deriving the Best Response Function: Differentiate the
profit function of firm 8 with respect to @8 and find the points
where the first derivative equals zero. - m⇧8

m@8
= m(% (&)@8 )

m@8
�

m⇠8 (@8 )
m@8

= 0
Calculating the Cournot Nash Equilibrium: Solve for the

production quantities of each firm in the Cournot Nash equi-
librium by setting up and solving the simultaneous best re-
sponse functions of all firms.

The Cournot model is one of the game theory models
used to analyze quantity competition among firms. Cournot
competition involves each firm determining its quantity of
production, taking the production quantities of other firms
as given. This model is primarily applied in the analysis of
competition in oligopoly markets.

Market Demand Function: The market price % is ex-
pressed as a function of the total production quantity &, often
represented using the linear demand function %(&) = 0�1&,
where 0 and 1 are positive constants.

Firm’s Profit Function: The profit ⇧8 of firm 8 depends
on its own production quantity @8 and the total production
quantity & of all firms. Profit is calculated as the difference
between revenue %(&) ⇥ @8 and cost ⇠8 (@8). In other words,
⇧8 (@8 ,&) = %(&) ⇥ @8 �⇠8 (@8). ion Quantity: & =

Õ=
8=1 @8 ,

where = is the total number of firms in the market.
Derivation of Each Firm’s Best Response Function: Each

firm 8 determines the quantity @8 that maximizes its profit,
taking the production quantities of other firms as given. To
find this, the profit function ⇧8 is differentiated with respect

to @8 , and the result is set to zero, i.e.,

m⇧8

m@8
=

m (%(&)@8)
m@8

� m⇠8 (@8)
m@8

= 0

Calculation of Cournot Nash Equilibrium: After obtain-
ing the best response functions for all firms, the Cournot Nash
equilibrium in terms of production quantities for each firm is
determined by solving this system of equations. This repre-
sents a state where all firms are taking optimal strategies with
respect to each other.

Consider a situation with two firms competing in the mar-
ket. The market demand function is %(&) = 100 � &, and
both firms have cost functions ⇠1 (@1) = ⇠2 (@2) = 20@.

The profit function for firm 1 is⇧1 = (100� (@1+@2))@1�
20@1. This is differentiated with respect to @1, and the result
is set to zero to solve for @1.

Similarly, the profit function for firm 2 is ⇧2 = (100 �
(@1 + @2))@2 � 20@2. This is differentiated with respect to @2,
and the result is set to zero to solve for @2.

By solving the resulting best response functions as a sys-
tem of equations, the production quantities for each firm in
the Cournot Nash equilibrium can be determined.

Using the Cournot model in this way allows for the anal-
ysis of quantity competition among firms, particularly in
oligopoly markets.

8.4 Case Study

Consider a market with two firms. The market demand func-
tion is %(&) = 120 � &, and the cost functions for firms 1
and 2 are ⇠1 (@1) = 40@1 and ⇠2 (@2) = 40@2, respectively.

1. The profit function for firm 1 is ⇧1 = (120 � (@1 +
@2))@1�40@1, and for firm 2, it is ⇧2 = (120� (@1+@2))@2�
40@2. 2. To derive the best response function for firm 1,
differentiate ⇧1 with respect to @1 and set it equal to zero.
Similarly, do the same for firm 2. 3. Solve the resulting
system of equations to find the production quantities for each
firm in the Cournot Nash equilibrium.

When applying this model to the context of fake news
and fact-checking, one can consider news providers as firms
and model the "quality" of information as production quanti-
ties. The market demand function can represent how the total
quality of information affects the public interest or viewer
trust. Each news provider aims to maximize its profit by
determining the quality of information it provides.

9. Deployment of Non-Cooperative

Games: Context of Fake News and
Fact-Checking within the Framework

of Perfect Information Games

The proliferation of fake news and the counteracting role of
fact-checking have become central concerns in the informa-
tion age. This paper examines these phenomena through



the lens of non-cooperative game theory, specifically focus-
ing on the strategic implications of information completeness
and the potential for informal cooperation among rational
actors. In the realm of non-cooperative games, particularly
those with perfect information, all participants are fully aware
of the game’s structure, including the strategies and payoffs
available to their opponents. This section delves into how
these concepts apply to the dissemination of fake news and
the efforts to combat it through fact-checking, employing the
principles of superadditivity and convexity to discuss poten-
tial informal cooperation strategies.

9.1 Consideration of Superadditivity and Con-

vexity

The concepts of superadditivity and convexity are crucial
in understanding the potential for cooperative behavior in a
non-cooperative setting. Superadditivity suggests that the
combined effort of two or more players can lead to greater
gains than if they acted independently, while convexity indi-
cates that the marginal benefit of adding more participants to
a coalition increases with its size.

9.1.1 Superadditivity

Superadditivity is illustrated when the collective action
of players, through strategies like information sharing,
leads to better outcomes than individual efforts. The
formal representation is given by:

⇢ [E(� [ ⌫)] � ⇢ [E(�)] + ⇢ [E(⌫)] (5)

where � and ⌫ are distinct sets of players, and ⇢ [·]
denotes the expected value.

9.1.2 Convexity

Convexity becomes relevant when the incremental ben-
efits of adding a new player to a coalition surpass the
benefits of the existing coalition size. This is mathemat-
ically expressed as:

⇢ [E(⌫ [ {8})] � ⇢ [E(⌫)] � ⇢ [E(� [ {8})] � ⇢ [E(�)]
(6)

signifying the growing advantage of coalition expansion.

9.1.3 Non-Cooperative Games in Extensive Form: In-

complete Information in Fake News and Fact-

Checking

Transitioning to extensive-form games under incomplete in-
formation, we encounter a scenario where players lack full
knowledge about others’ actions or types, such as the relia-
bility of information sources. This uncertainty necessitates a
focus on expected payoffs to navigate the strategic landscape
effectively.

9.1.4 Superadditivity in Incomplete Information Games

In the context of incomplete information, superadditivity im-
plies that the expected payoff from collaboration exceeds the
sum of individual efforts, even when full knowledge of other
players’ strategies is not available. The characteristic func-
tion E((), representing the maximum expected payoff for a
coalition (, underpins this analysis.

9.1.5 Convexity in Incomplete Information Games

Convexity, within the framework of incomplete information,
suggests an increasing return on the inclusion of additional
players into a coalition, emphasizing the value of expanding
participant numbers in the face of strategic uncertainty.

9.2 Dynamic and Static Best Response Dynam-

ics in Fake News and Fact-Checking

The interplay between dynamic and static best response strate-
gies offers a rich vein of analysis in the study of fake news and
fact-checking. This section explores how players adapt their
strategies over time in response to the evolving tactics of their
opponents, seeking equilibrium states that balance individual
and collective interests.

9.3 Dynamic Best Response Dynamics

Dynamic best response dynamics highlight the iterative pro-
cess of strategy adaptation, where each player continuously
refines their approach based on the observed actions of oth-
ers, aiming for a Nash equilibrium where no player has an
incentive to deviate unilaterally.

9.4 Pareto Optimality and Social Welfare

The concept of Pareto optimality provides a benchmark for
evaluating the efficiency of strategy combinations, identify-
ing scenarios where any improvement for one player would
necessitate a loss for another. This principle guides the search
for socially optimal outcomes that balance the spread of ac-
curate information against the need to counteract fake news.

This paper has explored the application of non-
cooperative game theory to the challenges posed by fake
news and fact-checking, highlighting the nuanced interplay
between strategic behavior, information asymmetry, and the
potential for informal cooperation. Through the lens of per-
fect and incomplete information games, we gain insights into
the mechanisms that drive the dissemination of information
in the digital age and the collective efforts to safeguard the
integrity of public discourse.



10. Application of Bertrand

Competition in Game Theory

Bertrand Competition is a game-theoretic model used to ana-
lyze price competition among firms. In this model, each firm
determines the price of its product with knowledge of the
pricing of other firms and usually assumes that the products
are perfect substitutes. The fundamental feature of Bertrand
competition is that the price can be only slightly lower than
marginal cost to capture the full market demand. This in-
creases price competition, resulting in convergence to the
price in a perfectly competitive market, i.e., marginal cost.

10.1 Setup of Model

Players: Firms A and B Strategy: Price of the product set by
each firm ?� and ?⌫ Gain function: The profit of each firm
depends on the difference between the price and marginal
cost and the volume of sales.

10.2 Setup of the formula

Profit function for firm A: ⇧� = (?��2)⇥@� Profit function
for firm B: ⇧⌫ = (?⌫ � 2) ⇥ @⌫

where 2 is the marginal cost and @� and @⌫ are the quan-
tities of products sold by firms A and B, respectively. The
model assumes that the firm that sets the lower price will
capture all market demand because its product is a perfect
substitute. That is, if ?� < ?⌫ then @� > 0 and @⌫ = 0;
similarly, if ?⌫ < ?� then @⌫ > 0 and @� = 0. If prices
are equa?� = ?⌫, assume that the market is equally divided
between the two firms.

10.3 Computational Process

Derivation of Nash Equilibrium

Firms A and B each set their prices so as to maximize their
profits. In the Nash equilibrium, both firms will set prices
equal to their marginal costs, and profits will be zero (?=�?

=
⌫2).

Equilibrium Stability Analysis

In the Bertrand equilibrium, there is always an incentive for
one of the firms to try to gain the entire market by lowering
its price slightly. However, this is because the other firm has
an incentive to lower its price as well, so both firms settle at
a price that converges to the marginal cost.

10.4 example

If the marginal costs of firms A and B are 2� = 10 and
2⌫ = 10, respectively, then in Nash equilibrium both firms
set a price of ?=�?

=
⌫10. With this pricing, neither firm can

earn a profit.

The key insight of this model is that price competition is
likely not profitable for the firms. Therefore, in real markets,
competition is often driven by factors other than price (e.g.,
brand value, product differentiation, etc.).

11. Application of Game Theory:

Ultimatum Game

The Ultimatum Game is one of the commonly used games in
experimental economics within the field of game theory. This
game involves two players and is a simple bargaining game
that analyzes how rational individuals allocate resources.

11.1 Game Rules

(1) There are two players: the Proposer and the Responder.

(2) The Proposer suggests how to divide a sum of money
(e.g., 10 dollar) between themselves and the Responder.
For example, the Proposer may propose to keep 6dollar)
for themselves and offer 4dollar) to the Responder.

(3) The Responder chooses to either "accept" or "reject" the
proposal.

If they choose "accept," the money is divided as
proposed.
If they choose "reject," both players receive noth-
ing.

11.2 Mathematical Setup

Proposer’s payoff: *% = - � %

Responder’s payoff: *' = %

Here, - represents the total amount of money, and % is the
amount proposed to the Responder.

(1) Proposer’s Strategy: The Proposer aims to maximize
their own payoff *% while considering the minimum
amount %<8= that the Responder would accept. In the-
ory, the Proposer can propose the lowest possible amount
as long as the Responder accepts it to maximize their
payoff.

(2) Responder’s Strategy: In practice, the Responder not
only considers the amount but also factors in notions of
fairness and the possibility of retaliation. Consequently,
very unfair proposals are often rejected by the Respon-
der. Hence, the Proposer needs to make a "fair" proposal
that the Responder is likely to accept.

11.3 Example

Let - =10 and suppose the Proposer suggests % =1
for the Responder. In this case, the Proposer’s payoff



is *% =9 and the Responder’s payoff is *' =1. How-
ever, many experiments have shown that such unequal
proposals are often rejected by the Responder.

Empirical studies have found that proposals offering
the Responder approximately 40% to 50% of the total
amount are generally considered "fair" and are typically
accepted by the Responder.

The Ultimatum Game illustrates that people not only seek
to maximize their self-interest but also place importance on
fairness and social norms, highlighting aspects of human
behavior that cannot be fully explained by pure economic
theory.

12. Application of Bertrand

Competition Model to Information

Reliability

In the context of fake news and fact-checking, one can ap-
ply the Bertrand Competition Model to analyze the strategic
interaction among news providers, considering "information
reliability" as a form of competition analogous to price com-
petition.

12.1 Model Setup

There are two news providers, A and B, each determining
the reliability of the information they provide.

Consumers (viewers) choose news providers based on
the reliability of the information provided.

Higher information reliability is assumed to come at
higher costs.

News providers do not have complete information about
the information reliability of other providers (imperfect
information game).

12.2 Equations and Computational Process

12.2.1 Profit Functions

The profit functions for News Providers A and B are expressed
as follows:

⇧� = A� · ⇡�(A�, A⌫) � ⇠ (A�)

⇧⌫ = A⌫ · ⇡⌫ (A�, A⌫) � ⇠ (A⌫)

Here, ⇡� and ⇡⌫ represent the number of viewers (mar-
ket share) each news provider attracts.

12.2.2 Best Response Functions

Each news provider selects the information reliability that
maximizes their own profit, taking into account the other’s
information reliability. In an imperfect information game,
each news provider has probabilistic expectations regarding
the other’s information reliability and calculates the best re-
sponse based on this.

12.2.3 Nash Equilibrium

The Nash equilibrium is found where the best response func-
tions of each news provider intersect. It signifies a state where
neither news provider can unilaterally change their strategy
to increase their profit.

12.2.4 Computational Process

Specific market share functions ⇡� and ⇡⌫, and cost func-
tions ⇠ (A) need to be defined. For example, higher infor-
mation reliability may lead to a larger market share but also
increasing costs to maintain that reliability. These functions
are then substituted into the profit functions, and the infor-
mation reliability levels A� and A⌫ that maximize the profit
functions are determined. In this process, expectations or
probability distributions regarding the other’s information re-
liability are considered, and information reliability levels that
maximize expected profits are calculated.

By applying the Bertrand Competition Model in this con-
text, it becomes possible to analyze how news providers strate-
gically compete in terms of information reliability. The com-
putational process, especially considering the characteristics
of an imperfect information game, allows for a more accurate
reflection of the complexity of the real media market.

13. Bertrand Competition Model in the

Context of Fake News and
Fact-Checking

When considering the Bertrand Competition as a complete
information game among news providers in the context of
fake news and fact-checking, it is assumed that each news
provider has full knowledge of the strategies of other news
providers. In this scenario, news providers compete in terms
of the "price" of information, which corresponds to the level
of reliability or accuracy. As a complete information game,
each provider knows how much reliability others offer and is
expected to decide their strategies accordingly.

13.1 Game Setup

Players: News Provider A and B

Strategies: Levels of information reliability (analogous
to price), ?� and ?⌫



Payoff Functions: The profit earned by news providers
depends on the level of reliability and the extent to which
that reliability is accepted by the market.

13.2 Payoff Functions

The profit of news providers is determined by the level of
information reliability they provide and the extent to which
that reliability is accepted by the market. The payoff functions
are set as follows:

Profit of News Provider A: ⇧�(?�, ?⌫) = ⇡�(?�, ?⌫) · ?� � ⇠�(?�)
Profit of News Provider B: ⇧⌫ (?�, ?⌫) = ⇡⌫ (?�, ?⌫) · ?⌫ � ⇠⌫ (?⌫)

Here, ⇡�(?�, ?⌫) and ⇡⌫ (?�, ?⌫) are the demand func-
tions of the market for the information provided by News
Providers A and B, respectively. ⇠�(?�) and ⇠⌫ (?⌫) rep-
resent cost functions for maintaining the reliability levels ?�

and ?⌫.

13.3 Calculation of Nash Equilibrium

To find the Nash equilibrium, we look for strategies that max-
imize the profit functions of each player. This corresponds to
solving the following optimization problems:

max
?�

⇧�(?�, ?⌫) for ?⇤�

max
?⌫

⇧⌫ (?�, ?⌫) for ?⇤⌫

The solutions to the optimization problems must satisfy
the first-order conditions (FOC):

m⇧�(?�, ?⌫)
m?�

= 0

m⇧⌫ (?�, ?⌫)
m?⌫

= 0

13.4 Consideration of Entanglement

In this scenario, entanglement arises due to the fact that the
strategies of news providers depend on each other. That is,
the choice of reliability level ?� by A affects the payoff of B,
and vice versa. This interdependence is expressed through
the demand functions ⇡�(?�, ?⌫) and ⇡⌫ (?�, ?⌫).

13.5 Specific Example of Equations and Com-

putational Process

Specific demand functions and cost functions need to be de-
fined. For instance, assuming linear demand functions and
linear cost functions would simplify the calculations. How-
ever, to more accurately reflect real market dynamics and
news provider strategies, more complex functional forms are

often adopted. As for solving the optimization problem, both
analytical and numerical methods are possible approaches,
depending on the complexity of the problem.

To apply the Bertrand Competition Model effectively, one
should carefully choose the appropriate functions and meth-
ods to analyze the competition among news providers in terms
of information reliability within the context of fake news and
fact-checking.

14. Application of Game Theory:

Ultimatum Game in the Context of
Fake News and Fact-Checking

In the context of fake news and fact-checking, one can con-
sider the interaction between news providers as a game of
incomplete information using the framework of the Ultima-
tum Game. In this scenario, the participants in the game are
news providers (Proposers) and the public (Responders). In
this setting, news providers decide how much "truthful infor-
mation" to provide to the public (or how much to reduce fake
news), and the public decides whether to "accept" or "reject"
that information.

14.1 Game Setup

Player 1: News Provider (Proposer)

Player 2: Public (Responder)

Proposal: The level of truthfulness of the information
provided by the news provider (e.g., ranging from 0% to
100%)

14.2 Mathematical Setup

News Provider’s Payoff: *#% = + � ⇠ ())
Public’s Payoff: *% = )

Here,) represents the level of truthfulness of the provided
information, + is the benefit received by the news provider
(e.g., viewership, advertising revenue), and ⇠ ()) represents
the cost of providing truthful information.

14.3 Computational Process

(1) News Provider’s Strategy: The news provider predicts
the minimum level of truthfulness )<8= that the public
would accept and chooses the level of truthfulness )⇤

that maximizes their own payoff *#% . Here, the news
provider may seek to maximize their profit by providing
information (including fake news) at a lower cost, but
they must consider whether the public will accept the
information.

(2) Public’s Strategy: The public evaluates the truthfulness
of the provided information and decides whether to "ac-
cept" or "reject" it. If the truthfulness of the information



falls below a threshold )C⌘A4B⌘>;3 , the public may reject
the information and consider it as fake news.

14.4 Example

Suppose the news provider offers information with a
truthfulness level of ) = 70%, + = 100 units, and
⇠ (70%) = 50 units of gain. In this case, the news
provider’s payoff is *#% = 100 � 50 = 50 units.

If the public has set )C⌘A4B⌘>;3 = 60%, they will accept
this offer, and the public’s payoff will be *% = 70%.

This application example analyzes the strategic interac-
tion between news providers’ incentives to reduce fake news
and provide truthful information, and the public’s demand
for truthfulness. It also considers the incentives for news
providers to incur costs to provide truthful information and
the public’s decision to accept or reject information. This
analysis can provide insights into strategies and policies to
prevent the spread of fake news.

15. Application of Game Theory:

Understanding Perfect Information

Games

When considering a perfect information game among news
providers in the context of fake news and fact-checking, the
participants in the game are multiple news providers. It is
assumed that they know the level of truthfulness of the in-
formation they provide to each other. In this scenario, each
news provider strives to enhance public trust and their own
reputation by reducing fake news and offering more truthful
information, but they may also try to avoid increasing costs
simultaneously.

15.1 Game Setup

Players: News Provider A, B (other news providers can
also be considered)

Strategies: Level of truthfulness of the information they
provide )�, )⌫ (ranging from 0% to 100%)

15.2 Mathematical Setup

Let:

*� = +�()�,)⌫) � ⇠�()�)
*⌫ = +⌫ ()�,)⌫) � ⇠⌫ ()⌫)

where +�()�,)⌫) and +⌫ ()�,)⌫) represent the benefits
received by News Providers A and B, respectively, depending
on the truthfulness level of the information they provide and
the truthfulness level of information provided by competing
firms. ⇠�()�) and ⇠⌫ ()⌫) represent the costs of providing
truthful information.

15.3 Computational Process

(1) Definition of Payoff Functions: Define payoff functions
for each news provider. The payoff functions depend on
the truthfulness level of the information they provide, the
truthfulness level of information provided by competing
firms, and the cost of providing truthful information.

(2) Derivation of Nash Equilibrium: Search for the combi-
nation of strategies that arises when each news provider
chooses strategies that maximize their own payoffs. This
combination is known as the Nash equilibrium.

(3) Calculation of Optimal Strategies: To find the Nash
equilibrium, calculate the optimal truthfulness levels )⇤

�
and )⇤

⌫ that maximize the payoff functions for each news
provider.

15.4 Example

Suppose News Providers A and B provide information with
truthfulness levels )� and )⌫ and have linear cost functions,
⇠�()�) = :�)� and ⇠⌫ ()⌫) = :⌫)⌫. Additionally, as-
sume profit functions are +�()�,)⌫) = 0�)� + 1�)⌫ and
+⌫ ()�,)⌫) = 0⌫)� + 1⌫)⌫. In this case, to find the Nash
equilibrium, you need to solve the following optimization
problems:

A’s optimization problem: max
)�

(0�)� + 1�)⌫ � :�)�)

B’s optimization problem: max
)⌫

(0⌫)� + 1⌫)⌫ � :⌫)⌫)

Solving these problems will yield the optimal truthfulness
levels )⇤

� and )⇤
⌫ for each news provider.

This approach provides insights into the strategic interac-
tions among news providers in the context of fake news and
fact-checking and their impact on the public. Specifically, it
can analyze how much truthfulness each news provider should
offer and how that affects the strategies of competing firms.

16. Applications of Game Theory and

Inter-Connectivity

16.1 Incorporating Interconnectivity in the

Prisoner’s Dilemma

When considering "interconnectivity" or mutual interdepen-
dence in the context of the Prisoner’s Dilemma, it is necessary
to express how the strategies of players influence each other
through mathematical formulas. Let’s explore the formula-
tion and computational process of a model that incorporates
this concept into the framework of the Prisoner’s Dilemma.

16.2 Basic Setting of the Prisoner’s Dilemma

The Prisoner’s Dilemma is usually represented by a payoff
table like this:



Cooperate (C) Defect (D)
Cooperate (C) (', ') ((,))

Defect (D) () , () (%, %)

Here, - ' represents "Reward" when both cooperate,
which is the payoff. - ( represents "Sucker’s Payoff" when one
cooperates and the other defects. - ) represents "Temptation"
when one defects and the other cooperates. - % represents
"Punishment" when both defect.

16.3 Introduction of Interconnectivity

To consider interconnectivity, additional parameters are in-
troduced to represent how the strategies of players affect each
other’s expected payoffs. To express this interdependence,
interaction terms are added to the payoff functions.

For example, the expected payoff function for Player A
would look like this:

⇢ [⇧�] = ?� · (*�(⇠,⇠) + U ·*⌫ (⇠,⇡))
+ (1 � ?�) · (*�(⇡,⇠) + U ·*⌫ (⇡,⇡)) (7)

Here, ?� is the probability of Player A cooperating. U is
the interaction parameter indicating the degree to which oth-
ers’ choices affect one’s own payoffs. *�(- ,. ) and*⌫ (- ,. )
are the payoff functions for Player A and B, respectively,
where - and . represent the choices of Player A and B (Co-
operate C or Defect D).

A similar expected payoff function can be defined for
Player B.

16.4 Computational Process

To find the Nash equilibrium, it is necessary to find the strate-
gies that maximize the expected payoffs of each player. This
corresponds to solving for probabilities ?� and ?⌫ that max-
imize each player’s expected payoff function.

1. Differentiate the expected payoff functions of Player
A and B with respect to ?� and ?⌫, respectively. 2. Set the
derivatives to zero and solve for ?� and ?⌫. 3. The obtained
values ?⇤� and ?⇤⌫ represent the Nash equilibrium.

16.5 Example

Using actual parameters of the Prisoner’s Dilemma and the
interaction parameter U, specific numerical values are substi-
tuted, and calculations are performed. For example, assuming
' = 3, ( = 0, ) = 5, % = 1, and U = 0.5, you can follow the
steps mentioned above to find the Nash equilibrium.

Through this computational process, you can analyze how
interdependence influences strategic choices. Higher inter-
connectivity would mean that players’ choices are signifi-
cantly influenced by the choices of others.

16.6 Incorporating Interconnectivity in

Cournot model

When considering "interconnectivity" in the Cournot model,
which means taking into account the interdependence among
firms, it is necessary to express how the gains of each firm de-
pend on the production of other firms. In the Cournot model,
firms usually compete in a market where the market price
depends on the total production of their own and competing
firms. To emphasize interdependence, a parameter that indi-
cates how strongly the actions of one firm affect the others
can be introduced into the profit functions of firms.

16.7 Basic Setup of the Cournot Model

In the Cournot model, firms A and B compete in the market,
and the gains of each firm are defined as follows:

Profit of Firm A: ⇧� = %(&)@� � ⇠ (@�)
Profit of Firm B: ⇧⌫ = %(&)@⌫ � ⇠ (@⌫)

Here,

@� and @⌫ represent the production quantities of firms
A and B, respectively.

& = @� + @⌫ is the total market production.

%(&) is the market price, which is a function of the
production quantity &.

⇠ (@) represents production costs and is a function of the
production quantity @.

16.8 Introduction of Interconnectivity

To incorporate interdependence into the model, a parameter
V is introduced into the profit functions of firms, indicating
the degree to which a firm’s profit depends on the production
of other firms.

Modified Profit of Firm A: ⇧� = %(&)@� � ⇠ (@�) + V(@⌫ � @�)
Modified Profit of Firm B: ⇧⌫ = %(&)@⌫ � ⇠ (@⌫) + V(@� � @⌫)

16.9 Maximization of Profit Functions

Each firm seeks production quantities @⇤� and @⇤⌫ that maxi-
mize its profit function by setting the first derivatives of profit
functions with respect to @� and @⌫ equal to zero.

m⇧�

m@�
= 0

m⇧⌫

m@⌫
= 0

16.10 Derivation of Nash Equilibrium

Solving these equations yields the optimal production quan-
tities @⇤� and @⇤⌫ at the Nash equilibrium.



16.11 Case Study

As an example with specific numerical values, consider a
situation with a market price function %(&) = 0� 1& (where
0 and 1 are constants), a production cost function ⇠ (@) = 2@
(where 2 is a constant), and an interdependence parameter V.

(1) By taking the partial derivative of Firm A’s profit func-
tion with respect to @� and setting it to zero, the follow-
ing equation is obtained:

0 � 21@� � 1@⌫ � 2 + V = 0

(2) Similarly, for Firm B, the following equation is obtained:

0 � 21@⌫ � 1@� � 2 � V = 0

(3) These equations can be solved to find @⇤� and @⇤⌫.

Through this calculation process, the analysis can reveal
how interdependence affects the determination of firms’ pro-
duction quantities. The higher the interdependence, the more
firms may consider the actions of competing firms in their
decision-making process.

17. Interconnectivity in Cournot Model

for News Providers

In the context of fake news and fact-checking, considering a
complete information game among news providers and seek-
ing interconnectivity in the Cournot model, news providers
will compete for the "quality" of information. In this sce-
nario, higher-quality information increases the public interest
but also comes with a cost. Interconnectivity will illustrate
how news providers respond to the information quality of
their competitors.

17.1 Model Setup

Two news providers: A and B.
Quality of information provided by A and B: @� and @⌫,
respectively.
Public interest depends on total information quality: & =
@� + @⌫.
Market price for information quality (%(&)) and cost to
provide information quality (⇠ (@)) are considered.

17.2 Profit Functions

The profit functions for news providers are as follows:

Profit for news provider A: ⇧�(@�, @⌫)
= %(&)@� � ⇠ (@�) + V(@⌫ � @�)

Profit for news provider B: ⇧⌫ (@�, @⌫)
= %(&)@⌫ � ⇠ (@⌫) + V(@� � @⌫)

Here, V is a parameter representing interconnectivity, in-
dicating how sensitively news providers respond to the infor-
mation quality of their competitors.

17.3 Calculation Process

(1) Maximization of Profit Functions: Each news provider
seeks the optimal information quality @⇤� and @⇤⌫ that
maximize their respective profit functions.

m⇧�

m@�
= %0 (&)@� + %(&) � ⇠0 (@�) � V = 0

m⇧⌫

m@⌫
= %0 (&)@⌫ + %(&) � ⇠0 (@⌫) + V = 0

(2) Derivation of Nash Equilibrium: Solving the above
partial differential equations with respect to @� and @⌫
yields the optimal information quality levels @⇤� and @⇤⌫
at the Nash equilibrium.

17.4 Example

Consider a market price function %(&) = 0�1& (where 0 and
1 are positive constants) and a cost function for information
quality ⇠ (@) = 2@2 (where 2 is a positive constant). In this
case, the equations for maximizing profit are as follows:

0 � 1(@� + @⌫) � 22@� � V = 0
0 � 1(@� + @⌫) � 22@⌫ + V = 0

Solving these equations with respect to @� and @⌫ allows
us to determine the levels of information quality at the Nash
equilibrium. Through this calculation, we can understand
how news providers determine the level of information qual-
ity and how it affects the public interest in the context of fake
news and fact-checking. It is assumed that a higher intercon-
nectivity parameter V makes news providers more sensitive to
the information quality levels of their competitors, with this
sensitivity having a significant impact on their profits.

18. Non-Full Information Game between

News Providers in Ultimatum Game

In the context of fake news and fact-checking, considering a
non-full information game among news providers within the
framework of the Ultimatum Game, the game is set up as
follows:

18.1 Game Setting

(1) Player 1 (proposer) possesses information regarding the
"truthfulness" of news and decides to what extent to
disclose it. This "truthfulness" represents the degree to
which the information is either fake news or fact-checked
news.



(2) Player 2 (responder) does not have complete knowledge
of the truthfulness of the information provided by Player
1 but decides whether to accept or reject it.

(3) If Player 2 accepts the information, both players receive
rewards based on the truthfulness of the information. If
Player 2 rejects the information, neither player gains any
rewards (or receives a basic reward).

18.2 Mathematical Setting

@: The level of truthfulness of the information provided
by Player 1 (taking values between 0 and 1, where 1
represents completely truthful information).

'(@): Rewards obtained by Player 1 and Player 2 based
on the level of truthfulness @.

18.3 Utility Functions

Player 1’s utility: *1 = '(@) · B, where B is 1 if Player 2
accepts the information and 0 if Player 2 rejects it.

Player 2’s utility: *2 = '(@) · (1 � B).

18.4 Calculation Process

(1) Player 1’s Strategy: Player 1 determines the level of
"truthfulness" @⇤ that makes it most likely for Player 2
to accept. This is determined considering the trade-off
between Player 2’s acceptance threshold and Player 1’s
profit maximization.

(2) Player 2’s Expected Utility: Player 2 decides whether
to accept the provided information based on the level of
truthfulness @. Player 2 assesses based on the expected
value ⇢ [@] of @ and accepts the information if it is above
a certain threshold @C⌘.

(3) Derivation of Interconnectivity: The interconnectivity
between Player 1’s strategy @⇤ and Player 2’s acceptance
threshold @C⌘ can be determined by solving the optimiza-
tion problems of Player 2’s expected utility and Player
1’s utility function.

18.5 Case Study

Assuming that the level of truthfulness @ of the information
provided by Player 1 follows the reward function '(@) =
0@ � 1@2 (where 0 and 1 are positive constants), Player 1
selects @⇤ with the highest likelihood of being accepted by
Player 2. Player 2 accepts the provided information if it
exceeds a threshold @C⌘. This threshold is based on Player
2’s expectations and experiences regarding the truthfulness of
the information. Interconnectivity arises as Player 1 predicts
Player 2’s response and selects the optimal @⇤ based on that
prediction.

Through this analysis, we can gain insights into how in-
formation provisioning strategies are formed in the context of

fake news and fact-checking, and how they impact the pub-
lic interest. It is suggested that this is because it simplifies
the scenario’s solutions due to being a non-full information
game.

19. Full information game between news

providers in Ultimatum Game

In the context of fake news and fact-checking, considering
a complete information game among news providers in the
framework of the Ultimatum Game and seeking interconnec-
tivity, the game would be set up as follows:

19.1 Game Setup

News provider A (proposer) makes a proposal regarding
the "quality" of certain information (resource).

News provider B (responder) chooses whether to accept
or reject the proposal.

If the proposal is accepted, both parties benefit based on
the proposed information quality.

If the proposal is rejected, neither party benefits (or
receives a basic benefit).

19.2 Mathematical Modeling

Let @ represent the quality of the proposed information, with
0  @  1. *�(@) is the utility function for proposer A,
and*⌫ (@) is the utility function for responder B. Proposer A
gains a profit of 0@ based on the proposed information quality
@, while responder B gains a profit of (1 � @)1 (where 0 and
1 are positive constants representing the value of information
quality).

19.3 Considering Interconnectivity

We introduce the concept of the minimum acceptable qual-
ity @<8= for responder B. This reflects the minimum level of
information quality that B is willing to accept and incorpo-
rates B’s evaluation and expectations regarding information
quality. We introduce a parameter V to represent interconnec-
tivity, where a larger value indicates that proposer A is more
sensitive to responder B’s minimum acceptable quality.

19.4 Calculation Process

19.4.1 Derivation of Optimal Proposal by Proposer A

Proposer A selects a @ that maximizes their own profit 0@ but
must exceed the minimum quality @<8= that responder B is
willing to accept. If we define *�(@) = 0@ � V |@ � @<8= |
(where V represents interconnectivity), proposer A chooses
@⇤ that maximizes this utility.



19.4.2 Determination of Responder B’s Minimum Ac-

ceptable Quality

Responder B decides whether to accept or reject the proposal
based on their own profit (1 � @)1 and their expectation of
@<8= for information quality. Responder B’s utility function is
defined as*⌫ (@) = (1�@)1�W(@<8=�@), where W represents
the level of dissatisfaction felt by B when deviating from the
minimum acceptable quality.

19.4.3 Derivation of Nash Equilibrium

By simultaneously considering the strategies of proposer A
and responder B, we seek the Nash equilibrium where both
parties’ benefits are maximized. To achieve this, we need to
find @⇤ and @<8= that maximize *�(@) and *⌫ (@).

Through the analysis of this game, we can understand how
the interaction and interdependence among news providers in
the context of fake news and fact-checking influence the de-
termination of information quality. Particularly, in cases with
high interconnectivity, proposers are likely to be sensitive
to the expectations of responders, resulting in a tendency to
provide higher-quality information.

20. Superadditivity and Convexity to the

Prisoner’s Dilemma Problem,

Setting of Cournot Model

In the context of fake news and fact-checking, let’s consider
the framework of both complete information games and co-
operative games and explore the application of the concepts
of superadditivity and convexity to the prisoner’s dilemma
problem, along with some example scenarios. In this case,
we model how news providers behave towards the market
(viewers) and how this behavior impacts the spread of fake
news.

20.1 Game Setup

Players: News providers A and B. Strategies: Provide true
news (C: cooperate) or provide fake news (D: deceive).

Let’s apply Cournot’s model to the context of fake news
and fact-checking, and combine the concepts of superaddi-
tivity and convexity with the prisoner’s dilemma problem.
Here, we model how news providers determine the quality of
information and how it affects the spread of fake news.

20.2 Basic Setting of Cournot Model

In the Cournot model, each firm (in this case, news provider)
optimally reacts to the quantity (in this case, the quality of
information) of other firms and maximizes its profit. Let’s
assume there are two news providers, A and B, and they repre-
sent the "quality" of information they provide with quantities
@� and @⌫, respectively.

20.3 Payoff Functions

The profit of news providers depends on the quality of the in-
formation they provide and the reaction of the market (view-
ers). The payoff functions are expressed as follows:

⇧�(@�, @⌫) = 0@�1@2
�2@�@⌫ ⇧⌫ (@�, @⌫) =

0@⌫1@2
⌫2@⌫@�

Here, 0, 1, and 2 are positive constants, where 0 represents
the viewers’ basic reaction to the quality of information, 1
represents the diminishing effect on revenue as the quality of
information increases, and 2 represents the negative impact
of a competitor’s information quality on one’s own revenue.

20.4 Best Response Functions

The quality of information @� that maximizes the profit of
news provider A is obtained by setting the derivative of ⇧�

with respect to @� equal to zero:

m⇧�

m@�
= 021@�2@⌫ = 0

Solving this, we get:

@=�
02@⌫
21

Similarly, for news provider B:

@=⌫
02@�

21

20.5 Nash Equilibrium

By solving the best response functions of news providers A
and B as a system of equations, we can determine the values
of @� and @⌫ for the Nash equilibrium.

@=�
02

02@�
21

21

@=⌫
02

02@⌫
21

21
Solving these equations yields the values of @� and @⌫ at

the Nash equilibrium.

20.6 Consideration of Superadditivity and Con-

vexity

While the direct application of the concepts of superadditivity
and convexity may be challenging in this context, they become
important when considering the overall societal welfare. For
instance, if both news providers cooperating and providing
true news results in the most socially desirable outcome, this
cooperation satisfies the condition of superadditivity. Also, if
the societal welfare increases as more news providers provide
true information, then the condition of convexity is met.



20.7 Calculation Process

1. Setting Up Payoff Functions: Consider the market’s re-
actions to each news provider’s actions to set up the payoff
functions. 2. Calculating Nash Equilibrium: Each player
selects the strategy that maximizes their own payoff while
considering the actions of others. In the Cournot model,
this involves seeking strategies that optimally respond to the
opponent’s actions.

21. Complete Information Games,

Cournot’s model and examine the
prisoner’s dilemma problem

In the context of fake news and fact-checking, we will consider
a non-cooperative game in the framework of complete infor-
mation games. We will apply the concepts of superadditivity
and convexity to Cournot’s model and examine the prisoner’s
dilemma problem. In this scenario, multiple news providers
(players) exist, and each must choose between spreading fake
news or providing news based on facts.

21.1 Game Setup

21.2 Players and Strategies

Players: News providers A and B.

Strategies: Provide fake news (F) or provide news based
on facts (T).

21.3 Payoff Table

We will consider a payoff table based on the typical payoff
table of the prisoner’s dilemma:

�\⌫ T F
T (3,3) (0,5)
F (5,0) (1,1)

Here, (3,3) represents the payoff when both providers
provide news based on facts, (0,5) represents the payoff when
A provides news based on facts and B provides fake news,
(5,0) represents the opposite case, and (1,1) represents the
payoff when both providers provide fake news.

21.4 Cournot Model Setup

In applying the Cournot model to the context of fake news and
fact-checking, we consider the concepts of superadditivity
and convexity. We will discuss the equations and calculations
when examining the prisoner’s dilemma problem. In this
scenario, we treat the "quality" of information provided by
news providers as a quantity and determine how much "news
based on facts" they choose to provide.

21.5 Basic Cournot Model Settings

There are two news providers (firms), each determining
the quality of information, represented as @� and @⌫.

The "quality" of information corresponds to reducing
the provision of fake news and increasing the provision
of news based on facts.

21.6 Payoff Functions

The profit of news providers depends on the quality of infor-
mation and can be modeled as follows:

News Provider A’s Profit: ⇧�(@�, @⌫) = 0@� � 1
2
1@2

� � 2@�@⌫

News Provider B’s Profit: ⇧⌫ (@�, @⌫) = 0@⌫ � 1
2
1@2

⌫ � 2@⌫@�

Here, 0 represents the fundamental impact of information
quality on profit, 1 represents the diminishing effect on profit
as information quality increases, and 2 represents the negative
impact of a competitor’s information quality on one’s own
profit.

21.7 Best Response Functions

21.8 News Provider A’s Best Response Function

News Provider A’s best response function is determined by
differentiating ⇧� with respect to @� and setting it equal to
zero:

m⇧�

m@�
= 0 � 1@� � 2@⌫ = 0

Solving for @�, we obtain the optimal information quality
for News Provider A:

@⇤� =
0 � 2@⌫

1

21.9 News Provider B’s Best Response Function

Similarly, for News Provider B:

@⇤⌫ =
0 � 2@�

1

21.10 Nash Equilibrium

By solving the best response functions of News Providers
A and B as a system of equations, we can determine the
Nash equilibrium. In this case, the system of equations is as
follows:

@⇤� =
0 � 2

0�2@⇤
�

1

1

@⇤⌫ =
0 � 2

0�2@⇤
⌫

1

1



Solving these equations yields the values of @⇤� and @⇤⌫ at
the Nash equilibrium.

21.11 Consideration of Superadditivity and

Convexity

In this scenario, while superadditivity and convexity are not
directly applied, they are relevant in the sense that both
providers offering news based on facts (high @� and @⌫)
leads to socially desirable outcomes. Reducing the provision
of fake news and increasing the provision of news based on
facts is expected to improve overall societal trust and infor-
mation quality.

21.12 Verification of Superadditivity and Con-

vexity

21.13 Superadditivity

In this context, superadditivity implies that the total or so-
cietal gains obtained by players cooperating (providing news
based on facts) are greater than the gains obtained by not
cooperating (providing fake news). This concept is similar
to the situation in the prisoner’s dilemma where cooperation
benefits the overall interest but individual incentives promote
non-cooperation.

21.14 Convexity

Convexity is not directly applicable in this context, but it
is related to the idea that increasing the number of news
providers offering news based on facts enhances societal trust
and leads to an increase in overall benefits.

21.15 Calculating Payoffs

Compute the payoffs corresponding to the choices of each
player based on the payoff table.

21.16 Determining Optimal Strategies

In the prisoner’s dilemma, each player chooses a strategy (in
this case, providing fake news) that maximizes their payoff
without considering the opponent’s choice. However, in the
context of a cooperative game, players must consider the
overall benefit (improving societal trust) when choosing their
strategies.

21.17 Identifying Nash Equilibrium

In this case, (F, F) constitutes the Nash equilibrium, which is
different from the socially desirable outcome (T, T).

22. Complete Information Game and a

Non-Cooperative g Game, Cournot’s

model and examine the prisoner’s

dilemma problem

In the context of fake news and fact-checking, we consider
the scenario of a complete information game and a non-
cooperative game, incorporating entanglement (mutual de-
pendence) using the Prisoner’s Dilemma. This example in-
volves two news providers, A and B, who must choose be-
tween spreading fake news (betrayal) or providing accurate
information (cooperation).

22.1 Game Setup

Players: News providers A and B

Strategies: Provide accurate information (Cooperation:
C) or spread fake news (Betrayal: D)

22.2 Payoff Table

We adapt the typical Prisoner’s Dilemma payoff table to the
context of fake news as follows:

Cooperation (C) Betrayal (D)
Cooperation (C) (3, 3) (0, 5)

Betrayal (D) (5, 0) (1, 1)

Here, the first element in each pair represents Player A’s
payoff, and the second element represents Player B’s payoff.

22.3 Payoff Functions and Entanglement

Entanglement refers to situations where the choices of one
player significantly affect the payoffs of the other player. In
this game, choosing betrayal by one player leads to substantial
variations in the other player’s payoffs.

A cooperates, B cooperates: *�(⇠,⇠) = 3, *⌫ (⇠,⇠) = 3
A betrays, B cooperates: *�(⇡,⇠) = 5, *⌫ (⇠,⇡) = 0
A cooperates, B betrays: *�(⇠,⇡) = 0, *⌫ (⇡,⇠) = 5
A betrays, B betrays: *�(⇡,⇡) = 1, *⌫ (⇡,⇡) = 1

22.3.1 Identifying Nash Equilibrium

Assuming that each player knows the other player’s choice
perfectly and seeks to maximize their own payoffs, the choice
of betrayal (D) by both players becomes the Nash equilibrium.

22.3.2 Determining Pareto Optimality

If both players cooperate (C), it results in the highest social
benefit for both, making it a Pareto optimal state.



22.3.3 Analysis of Entanglement

Entanglement arises from the fact that the choices of Player
A and Player B directly influence each other’s payoffs. If one
player chooses to cooperate while the other chooses betrayal,
the cooperator receives the lowest payoff. This represents
entanglement, where individual optimal strategies lead to a
situation different from the collective optimal solution in the
Prisoner’s Dilemma.

22.3.4 Representation of Entanglement in Formulas

Entanglement is expressed mathematically by the fact that
Player A’s payoff function *� changes based on B’s choices
(C or D), and similarly, Player B’s payoff function*⌫ changes
based on A’s choices.

Through this analysis, we gain an understanding of the
strategic choices and interactions between news providers in
the context of fake news and fact-checking, and how they
impact societal welfare.

23. Expected Payoff Functions by

Considering Entanglement (Mutual

dependence) in the Prisoner’s

Dilemma Problem

In the context of fake news and fact-checking, when com-
bining incomplete information games with non-cooperative
games, it is possible to develop payoff functions and expected
payoff functions by considering entanglement (mutual depen-
dence) in the Prisoner’s Dilemma problem. In this scenario,
news providers A and B must choose between spreading fake
news (betrayal, D) and providing true information (coopera-
tion, C). However, they do not possess complete information
about each other’s choices or intentions.

23.1 Game Setup

23.2 Players and Strategies

Players: News providers A and B

Strategies: Provide true information (Cooperation, C),
spread fake news (Betrayal, D)

23.3 Payoff Functions

We adjust the payoff table of the Prisoner’s Dilemma, taking
into account elements of incomplete information.

� \⌫ Cooperation (C) Betrayal (D)
Cooperation (C) (3, 3) (0, 5)

Betrayal (D) (5, 0) (1, 1)

23.4 Expected Payoff Functions

In incomplete information games, expected payoffs are calcu-
lated considering uncertainties related to players’ beliefs and
their opponents’ strategies.

A’s expected payoff: ⇢ [*�] = ? ·*�(⇠, ⌫) + (1 � ?) ·*�(⇡, ⌫)
B’s expected payoff: ⇢ [*⌫] = @ ·*⌫ (�,⇠) + (1 � @) ·*⌫ (�,⇡)

Here, ? represents the probability that Player B believes
A will cooperate, and @ represents the probability that Player
A believes B will cooperate.

23.5 Analysis of Entanglement

Entanglement refers to situations where one player’s strategy
affects the expected payoffs of the other player. To express
this mathematically, we analyze the changes in each player’s
expected payoffs based on the opponent’s strategy.

23.6 Calculation of Player B’s Expected Payoffs

⇢ [*⌫ |� = ⇠] = @ ·*⌫ (⇠,⇠) + (1 � @) ·*⌫ (⇡,⇠)
⇢ [*⌫ |� = ⇡] = @ ·*⌫ (⇠,⇡) + (1 � @) ·*⌫ (⇡,⇡)

23.7 Calculation of Player A’s Expected Payoffs

⇢ [*� |⌫ = ⇠] = ? ·*�(⇠,⇠) + (1 � ?) ·*�(⇠,⇡)
⇢ [*� |⌫ = ⇡] = ? ·*�(⇡,⇠) + (1 � ?) ·*�(⇡,⇡)

23.8 Derivation of Optimal Strategies

Players A and B select strategies that maximize their respec-
tive expected payoffs. This process involves determining their
optimal responses to the opponent’s choice.

23.9 Analysis of the Effect of Entanglement

We analyze how A’s strategy affects B’s expected payoffs
(and vice versa). For instance, we observe how B’s expected
payoffs change if A switches from cooperation to betrayal.

By expressing entanglement mathematically and outlin-
ing the calculation process, we gain insights into the in-
teraction between incomplete information games and non-
cooperative games in the context of fake news and fact-
checking within the framework of the Prisoner’s Dilemma. In
this scenario, news providers A and B choose between spread-
ing fake news and providing true information, while acknowl-
edging the uncertainty surrounding each other’s choices and
types (trusted or untrusted sources).



24. Summary

Situations that can occur in the real world are non-perfect
information game situations. We propose an analysis of non-
perfect information games on the topic of fake news and
fact-checking. A non-perfect information game is a situation
in which participants in the game do not have complete infor-
mation about the types and choices of other participants (e.g.,
the quality of information provided by other news providers).
This setting is very common in real-world media environ-
ments. Here we will focus on the challenges for the media
(news providers) and the recipients (information receivers)
and consider the Pareto optimum in terms of bias, missing
information and poor communication.

The analysis of fake news and fact-checking in the non-
perfect information game sheds light on the multiple chal-
lenges that arise between the media and the recipients. These
challenges are closely related to bias, missing information,
and poor communication. While taking these factors into
account, we will discuss the state of the Pareto optimum.

24.1 Media (news providers) challenges

24.1.1 Information Bias

The media may intentionally or unintentionally provide infor-
mation that reflects a particular viewpoint or ideology. This
means that recipients are not informed about all sides of the
story, resulting in information bias.

24.2 Missing Information

News providers may not have all relevant information to re-
port. This may be due to limited sources, press time con-
straints, or lack of resources to dig deeper.

24.3 Barriers to Communication

The media may struggle to effectively communicate infor-
mation to the public. This may be due to the use of jargon,
failure to simplify complex information, or disagreement with
the recipient’s existing perceptions.

24.4 Recipient (recipient of information) chal-

lenges

24.4.1 Evaluating information sources

Recipients have difficulty evaluating the reliability of avail-
able information sources. This is due to the sheer volume of
information and the obscurity of the information sources. 2.

24.4.2 Cognitive bias

Recipients tend to pay biased attention to information that
is consistent with their existing beliefs and opinions. This

increases the risk of unintentionally accepting fake news or
misinformation.

24.4.3 Information overload

Information overload causes recipients to either miss impor-
tant information or focus excessively on unimportant infor-
mation.

24.4.4 Consideration of Pareto Optimum

The Pareto optimum refers to a situation in which one player’s
situation can be improved while the other is not harmed by
it. When considering the Pareto optimum in the context of
fake news and fact-checking, the following points should be
considered

24.4.5 Mutual transparency and improved communica-

tion

Improving transparency and communication between the me-
dia and recipients is important to increase mutual understand-
ing and reduce the impact of misinformation and fake news.
This includes media clarifying the sources of information
and their verification processes, and recipients using critical
thinking in their consumption of information.

24.4.6 Promoting Information Literacy

Increasing recipients’ information literacy will help them bet-
ter assess the reliability of information sources and address
cognitive biases.

The description of this computational experimental de-
sign aimed to analyze the non-perfect information game be-
tween news providers in the context of fake news and fact
checking. The study applied the Cournot model to explore
what strategies news providers adopt with respect to informa-
tion quality and how these strategies affect the public interest.

24.4.7 The Media Approach

Media (news providers) treat information quality as a strategic
variable. Each media outlet influences the quality of infor-
mation in the market as a whole (Q through the quality of the
information it provides (q� and the quality of the information
it receives (q⌫. The media aims to maximize its own gain
function ⇧ and determines its strategy by considering the
cost of providing information quality ⇠ (@) and the public’s
evaluation of information quality %(&). Since the media act
under a non-complete information game, they do not have
complete information about the information quality of other
media and choose their strategies based on their expected gain
function⇢ [⇧].



24.4.8 Recipient Concept

Recipients (viewers or readers) evaluate the information pro-
vided by the media based on its quality. %(&) represents
the public’s evaluation of the total quality of information in
the market as a whole, which reflects the level of trust and
satisfaction that recipients have with the quality of informa-
tion. Recipients prefer high quality information, which in
turn affects media gains.

24.5 Game Dynamics in Prisoner’s Dilemma

In this computational experiment, competition among media
regarding the quality of information may create a prisoner’s
dilemma situation. Each media outlet seeks to maximize its
individual interests, but this does not necessarily coincide
with the interests of the group as a whole, i.e., the public in-
terest. The problem is that while it is in the best public interest
for the media to cooperate to provide high quality informa-
tion, there are incentives for individual media to maximize
their profits by providing lower quality information.

24.6 Expected Impact

Through this study, we expect to gain insight into the optimal
information provision strategies that media outlets should
take and the potential for policy interventions to promote
the provision of high quality information while curbing the
spread of fake news. It is also hoped that an understanding of
how strategic interactions among the media affect the public
interest will lay the groundwork for developing more effective
fact-checking approaches.
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