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Abstract: This paper also organizes the hypotheses and discussions for the computational experi-
ments.This Note is a note for discussion and organization of computational experiments and meth-
ods.This note examines a new game-theoretic model for analyzing strategic interactions among news
providers in the context of fake news dissemination and fact-checking efforts, integrating Bonacich
centrality and Trembling Hand Perfect Equilibrium (THPE) concepts are integrated to explore how
information providers, modeled as players in a network game with imperfect information, make
strategic decisions regarding the publication of news and the verification of information. Bonacich
centrality is employed to quantify the relative influence of each information provider in the network,
highlighting the role of central nodes in shaping the flow of information; THPE accounts for the
possibility of suboptimal behavior due to errors and uncertainty and to explain the strategies em-
ployed by information providers Used for. The analysis reveals the conditions under which a network
reaches a pairwise stable state where two providers cannot mutually benefit from a change in strategy.
The model highlights the complex dynamics of news diffusion and the key factors that influence the
effectiveness of fact-checking initiatives. The experimental design of this paper should contribute
to policymakers, media organizations, and fact-checkers striving to combat the spread of fake news
and promote the dissemination of accurate information. It will also examine strategic responses to
non-cooperative behavior and their impact on the network as a whole through the implementation of
tight-trigger and grim-trigger strategies.

Keywords: Fact-checking, Peer Effects, Bonacich Centrality, Game Theory, Non-Complete Infor-
mation Games, Non-Cooperative Games, Network Analysis, Informational Health, Digital Health,
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1. Introduction
This paper also organizes the hypotheses and discussions for
the computational experiments.This Note is a note for dis-
cussion and organization of computational experiments and
methods. In game-theoretic network analysis, the combina-
tion of Bonacich centrality and trembling hand perfect equi-
librium (THPE) plays a crucial role in capturing the dynamic
relationship between the influence and strategic behavior of
news providers in informational and digital health contexts.
This approach allows us to identify key players in the dissem-
ination of health information, understand the impact of their
actions on the network as a whole, and develop strategies to
effectively curb fake news and misinformation and promote
accurate health information.

In the introduction to this study, we introduced an ap-
proach that combines game theory and network analysis to

Fig. 1: Network with Cooperative (Skyblue) and Non-
cooperative (Salmon) Agents
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Fig. 2: In-degree, Out-degree

analyze strategic interactions among news providers in the
context of fake news and fact checking. This approach uses
Bonacich centrality and the perfect equilibrium of trembling
hands (THPE) to explore the dynamics of information distri-
bution and its impact on informational and digital health. In
addition, by introducing grim-trigger and tight-trigger strate-
gies, we consider strategic responses to non-cooperative be-
havior and their impact on the network as a whole.

In this context, building a network model among agents is
an important step to better understand the interactions of non-
cooperative and cooperative agents. through the analysis of
In-degree and Out-degree distributions, the sources of agents’
influence and and their role in the network. The extraction of
k-core networks also allows us to identify important commu-
nities and clusters within the network and to identify bases of
information propagation and trust.

The implementation of this model provides a foundation
for understanding how agents’ behavior in the distribution
and reception of information affects phenomena such as the
spread of fake news and the effectiveness of fact-checking,
among others. By analyzing the impact of the behavior of
non-cooperative and cooperative agents on the overall health
of the network, we aim to contribute to the development of
strategies that support informational and digital health.

Through the construction and analysis of such a network
model, we will be able to take steps toward developing new
insights and strategies for informational health. Specific
computational processes and model implementations will use
tools such as Python’s NetworkX library and R’s igraph pack-
age, which will enable the construction and analysis of net-
works based on real data. Through these analyses, we will
seek to gain a better understanding of informational health
and public digital health in the digital information environ-
ment and how to address challenges related to fake news and
fact-checking.

In the introduction to this study, we propose an approach
that combines game theory and network analysis to analyze
strategic interactions among news providers in the context of
fake news and fact checking. With this approach, we explore
the dynamics of information distribution and its impact on
informational and digital health, aiming to better understand

the interactions between agents of noncooperative and coop-
erative behavior. Using Bonacich centrality and Trembling
Hand Perfect Equilibrium (THPE), we quantify information
distribution and its impact on the dynamics of interactions
between agents through the analysis of peer effects.

Furthermore, by building a network model among agents
and generating In-degree and Out-degree distributions of non-
cooperative and cooperative agents, as well as k-core network
graphs, the project reveals the agents’ roles in the network
and the sources of their influence This allows us to identify
information propagation and trust bases. In this way, we
aim to identify bases of information propagation and trust
and contribute to the formulation of strategies to support
informational and digital health.

The analysis of peer effects is particularly important for
understanding chain reactions of behavior among agents and
their impact on each other. We will provide a detailed defi-
nition and computational process of peer effects and analyze
their impact on information diffusion and credibility by quan-
titatively capturing the chain reaction of behavior among news
providers. This analysis allows us to take steps toward devel-
oping new insights and strategies for information integrity.

By introducing peer effects into the
analysis of the digital information

environment
By introducing peer effects into the analysis of the digital in-
formation environment, it is possible to better understand the
effects of fact-checking and fake news pollution on informa-
tional health and public digital health. This section describes
the expected contributions of this approach through a the-
oretical framework of analysis using peer effects, specific
mathematical formulas, and examples of the computational
process.

Peer effects in the digital information environment refer
to the impact of the actions of individual news providers and
users on others. In particular, it is important to analyze how
the fact-checking behavior of one agent or the spread of fake
news affects the behavior of other agents in the network. This
influence alters the dynamics of information trust, acceptabil-
ity, and diffusion, which in turn affects the overall health of
the digital information environment.

The following formula is used to calculate the peer effect

𝑃𝐸𝑖 𝑗 = Δ𝑃 𝑗 |𝑖

where 𝑃𝐸𝑖 𝑗 represents the peer effect of agent 𝑖s action
on agent 𝑗 , and Δ𝑃 𝑗 |𝑖 indicates how much the action of agent
𝑖 changes the probability of agent 𝑗s action.

As an example of the computational process, we consider
the peer effect on agent 𝐵 when agent 𝐴 takes action to spread
fake news. Suppose that originally the probability of 𝐵 shar-



ing truthful information was 0.8, but after 𝐴 spread fake news,
the probability of 𝐵 sharing fake news increased to 0.4. In
this case, the peer effect can be computed as

𝑃𝐸𝐴𝐵 = 0.4 − 0.2 = 0.2

This calculation allows us to quantify the impact of fake
news diffusion in 𝐴 on the behavior of 𝐵. This peer effect
propagates to other agents in the network, affecting the cred-
ibility and soundness of the information.

Through the analysis of the peer effect, it is possible
to identify how positive actions of fact-checking propagate
within the network and potentially reduce the spread of fake
news. It also allows us to understand how the spread of fake
news can affect the behavior of other agents in the network and
potentially undermine their informational health. This anal-
ysis provides insight for developing strategies to maximize
the effectiveness of fact-checking and minimize the spread of
fake news.

Thus, peer effects analysis provides an effective approach
for promoting informational health and public digital health
in the digital information environment. Combining network
analysis with game theory allows us to better understand the
dynamics of information distribution and reception and to
explore new strategies to address challenges related to fake
news and fact-checking.

When considering peer effects using Bonacich central-
ity in game theory, the general formula and computational
process is assumed to be expressed as follows.

Bonacich centrality
The Bonacich centrality 𝐵𝑖 of a node𝑖 in the network is defined
using the adjacency matrix𝐴 as follows

𝐵𝑖 =

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 +𝛼
𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑎𝑖 𝑗𝑎 𝑗𝑘+𝛼2
𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝑎𝑖 𝑗𝑎 𝑗𝑘𝑎𝑘𝑙+· · ·

where 𝑎𝑖 𝑗 is the edge weight from node𝑖 to node 𝑗 , 𝛼 is
the attenuation factor, and 𝑛 is the total number of nodes in
the network.

Peer Effects
The peer effect 𝑃𝐸𝑖 𝑗 that the action of news provider 𝑖 has on
the action choices of other news providers 𝑗 is caused by the
change in the probability of the action taken by 𝑗 due to the
action of 𝑖.

𝑃𝐸𝑖 𝑗 = 𝑃after
𝑗 |𝑖 − 𝑃before

𝑗

where 𝑃after
𝑗 |𝑖 is the probability that 𝑗 takes a particular ac-

tion after 𝑖 takes a particular action and 𝑃before
𝑗

is the basic

probability that 𝑗 takes that action regardless of the action of
𝑖.

We construct the adjacency matrix 𝐴 of the network. For
each node (news provider), assign a set of actions and a base
probability of taking those actions. Calculate the centrality
of each news provider using the Bonacich centrality formula
above.

For each news provider 𝑖, compute the change that would
occur in the action choice probabilities of the other news
providers 𝑗 if they took a particular action. The change in the
action probability of 𝑗 due to the action of 𝑖 is calculated as
the peer effect𝑃𝐸𝑖 𝑗 .

The above calculations are performed for all news
provider pairs to analyze the peer effect for the entire net-
work. We pay particular attention to the impact of the behav-
ior of news providers with high Bonacich centrality on the
peer effect.

We analyze how the probability that other news providers
in the network believe and spread fake news changes when
the news provider 𝐵 takes action to spread fake news. If the
Bonacich centrality of 𝐴 is high, then the actions of 𝐴 may
have a large peer effect on many news providers, including
𝐵. Through this analysis, we can consider the importance
of fact-checking and measures to prevent the spread of fake
news.

By combining game theory and network analysis in this
way, we expect to understand the dynamics of information
propagation and peer effects, which will be useful for main-
taining a healthy digital information environment.

Finally, the introduction of grim-trigger and tight-trigger
strategies into the game-theoretic framework provides a de-
tailed understanding of the interactions among news providers
and their impact on informational and digital health. The
tight-trigger strategy is one in which the news provider re-
sponds to the other’s cooperation with cooperation and con-
tinues to respond with non-cooperation once there is non-
cooperation. This allows us to model how news providers
respond to fake news proliferation and misinformation correc-
tion, and continued cooperation improves information quality
and deepens our consideration of the health of the information
environment.

2. Discussion:Analysis by Introducing
Tight Trigger Strategies and Peer

Effects in Bonacich Centrality
Introducing tight-trigger strategies into a game-theoretic
framework allows for a more detailed understanding of the
interactions between news providers and their impact on in-
formational and digital health. The tight-trigger strategy is a
strategy in which news providers respond to cooperative be-
havior by cooperating with their counterparts and continue to
respond with non-cooperation once there is non-cooperative



behavior. This strategy is particularly useful for modeling
the behavior of news providers in spreading fake news and
correcting misinformation.

Modeling the Interaction between News
Providers
By employing a tight-trigger strategy, we can model how
news providers react to the actions of other providers. For
example, if one provider publishes a fact-checking article to
correct misinformation, other providers may follow suit and
share quality information.

Assessing the Impact on the Information Envi-
ronment
Evaluate the impact on the information environment of the
actions of news providers who take a tight-trigger strategy.
As long as cooperative behavior continues, the sharing of
high-quality, reliable information will be promoted and infor-
mational health will improve.

Relevance to Bonacich Centrality
We will analyze how news providers’ tight-trigger strategies
affect their Bonacich centrality, or influence within the net-
work. Adoption of this strategy by particularly influential
providers may positively influence other providers and im-
prove the quality of information as a whole.

Assessing Equilibrium with THPE
We analyze how the behavior of news providers who take a
tight-trigger strategy contributes to the equilibrium state in
THPE. Cooperative behavior in equilibrium may help main-
tain a healthy information environment.

The introduction of tight-trigger strategies can promote
the sharing of quality information among news providers and
reduce the spread of misinformation and fake news. This
in turn is expected to improve the accuracy and reliability
of information and overall informational and digital health.
Quantitative analysis of how these strategic actions affect
the information environment through the Bonacich-Centricity
and THPE frameworks will enable the development of more
effective information management and anti-misinformation
approaches.

Definition of Tight-Trigger Strategy
Let’s assume there are two possible actions for a news provider
𝑖: cooperation 𝐶 and non-cooperation 𝐷, and that the Tight-
Trigger strategy is adopted. In this strategy, the news provider
initially chooses cooperation 𝐶 and continues to cooperate
as long as the opponent also cooperates. However, if the
opponent chooses non-cooperation 𝐷 even once, the news
provider will choose non-cooperation thereafter.

Calculation of Bonacich Centrality
Bonacich centrality is calculated using the following formula:

𝐵𝑖 =

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 + 𝛼

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑎𝑖 𝑗𝑎 𝑗𝑘

Here, 𝑎𝑖 𝑗 represents the weight of the edge from news
provider 𝑖 to 𝑗 , and 𝛼 is the attenuation coefficient.

Calculation of Expected Payoff
The expected payoff 𝐸 [𝑈𝑖 (𝑎)] for news provider 𝑖 taking
action 𝑎 ∈ {𝐶, 𝐷} is calculated considering the Tight-Trigger
strategy as follows:

𝐸 [𝑈𝑖 (𝐶)] =
∑︁
𝑗≠𝑖

𝐵 𝑗 × (𝑈𝐶,𝐶 −𝑈𝐶,𝐷)

𝐸 [𝑈𝑖 (𝐷)] =
∑︁
𝑗≠𝑖

𝐵 𝑗 × (𝑈𝐷,𝐶 −𝑈𝐷,𝐷)

Here, 𝑈𝐶,𝐶 , 𝑈𝐶,𝐷 , 𝑈𝐷,𝐶 , 𝑈𝐷,𝐷 are the payoffs when
news providers choose cooperation or non-cooperation.

Derivation of THPE
In THPE, each news provider selects a strategy that max-
imizes their expected payoff. The optimal strategy 𝜎∗

𝑖
for

news provider 𝑖 is determined as follows:

𝜎∗
𝑖 =

{
𝐶 if 𝐸 [𝑈𝑖 (𝐶)] > 𝐸 [𝑈𝑖 (𝐷)]
𝐷 if 𝐸 [𝑈𝑖 (𝐷)] > 𝐸 [𝑈𝑖 (𝐶)]

If all news providers adopt the Tight-Trigger strategy, the
equilibrium state of the entire network is determined by the
following conditions:

(1) If all players choose cooperation 𝐶 and 𝐸 [𝑈𝑖 (𝐶)] >

𝐸 [𝑈𝑖 (𝐷)] holds for all players, a cooperative equilib-
rium is established.

(2) If non-cooperation 𝐷 is chosen even once, all players
transition to a non-cooperative equilibrium.

For example, let’s consider two news providers, 𝐴 and
𝐵, where 𝐴 chooses cooperation 𝐶 and 𝐵 also cooperates.
Assuming 𝐴’s Bonacich centrality is 𝐵𝐴 = 1.5, 𝐵’s Bonacich
centrality is 𝐵𝐵 = 1.2, and the payoffs are𝑈𝐶,𝐶 = 3, 𝑈𝐶,𝐷 =

1,𝑈𝐷,𝐶 = 2,𝑈𝐷,𝐷 = 0, the expected payoffs for 𝐴 and 𝐵 can
be calculated as follows:

𝐸 [𝑈𝐴(𝐶)] = 1.2 × (3 − 1) = 2.4

𝐸 [𝑈𝐴(𝐷)] = 1.2 × (2 − 0) = 2.4

Similarly, we calculate for 𝐵 and determine which action
is optimal. Thus, incorporating the Tight-Trigger strategy
into the model allows for a more detailed analysis of the
interactions between news providers and their outcomes.



Let’s consider the analysis of Bonacich centrality and
Trembling Hand Perfect Equilibrium (THPE) when introduc-
ing the Grim Trigger strategy in game theory.

Definition of Grim Trigger Strategy
Let’s assume there are two possible actions for a news provider
𝑖: cooperation 𝐶 and non-cooperation 𝐷, and that the Grim
Trigger strategy is adopted. In this strategy, the news provider
initially chooses cooperation 𝐶 and continues to cooperate
as long as the opponent also cooperates. However, if the
opponent chooses non-cooperation 𝐷 even once, the news
provider will choose non-cooperation thereafter.

Calculation of Bonacich Centrality
Bonacich centrality is calculated using the following formula:

𝐵𝑖 =

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 + 𝛼

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑎𝑖 𝑗𝑎 𝑗𝑘

Here, 𝑎𝑖 𝑗 represents the weight of the edge from news
provider 𝑖 to 𝑗 , and 𝛼 is the attenuation coefficient.

Calculation of Expected Payoff
The expected payoff 𝐸 [𝑈𝑖 (𝑎)] for news provider 𝑖 taking
action 𝑎 ∈ {𝐶, 𝐷} is calculated considering the Grim Trigger
strategy as follows:

𝐸 [𝑈𝑖 (𝐶)] =
∑︁
𝑗≠𝑖

𝐵 𝑗 × (𝑈𝐶,𝐶 −𝑈𝐶,𝐷)

𝐸 [𝑈𝑖 (𝐷)] =
∑︁
𝑗≠𝑖

𝐵 𝑗 × (𝑈𝐷,𝐶 −𝑈𝐷,𝐷)

Here, 𝑈𝐶,𝐶 , 𝑈𝐶,𝐷 , 𝑈𝐷,𝐶 , 𝑈𝐷,𝐷 are the payoffs when
news providers choose cooperation or non-cooperation.

Derivation of THPE
In THPE, each news provider selects a strategy that max-
imizes their expected payoff. The optimal strategy 𝜎∗

𝑖
for

news provider 𝑖 is determined as follows:

𝜎∗
𝑖 =

{
𝐶 if 𝐸 [𝑈𝑖 (𝐶)] > 𝐸 [𝑈𝑖 (𝐷)]
𝐷 if 𝐸 [𝑈𝑖 (𝐷)] > 𝐸 [𝑈𝑖 (𝐶)]

For example, let’s consider two news providers 𝐴 and
𝐵, where 𝐴 chooses cooperation 𝐶 and 𝐵 also cooperates.
Assuming 𝐴’s Bonacich centrality is 𝐵𝐴 = 1.5, 𝐵’s Bonacich
centrality is 𝐵𝐵 = 1.2, and the payoffs are𝑈𝐶,𝐶 = 3, 𝑈𝐶,𝐷 =

1,𝑈𝐷,𝐶 = 2,𝑈𝐷,𝐷 = 0, the expected payoffs for 𝐴 and 𝐵 can
be calculated as follows:

𝐸 [𝑈𝐴(𝐶)] = 1.2 × (3 − 1) = 2.4

𝐸 [𝑈𝐴(𝐷)] = 1.2 × (2 − 0) = 2.4

Similarly, we calculate for 𝐵 and determine which action
is optimal. Thus, incorporating the Grim Trigger strategy
into the model allows for a more detailed analysis of the
interactions between news providers and their outcomes.

CGrim Trigger Strategies and Informational
Health
An analysis by Bonacich Centrality and Trembling Hands Per-
fect Equilibrium (THPE) of the introduction of Grim Trigger
Strategies in Game Theory is a discussion of the contribution
to informational and digital health in the context of fake news
and fact checking.

CGrim Trigger Strategy and Informational
Health
According to the Grim Trigger Strategy, news providers ini-
tially act cooperatively (e.g., share accurate information) and
continue to cooperate as long as the other party is also cooper-
ative, but if the other party acts uncooperatively (e.g., spreads
fake news), the behavior shifts to non-cooperative for the rest
of the day. Through this strategy, it is hoped that interactions
among news providers will be directed toward sharing accu-
rate information and promoting fact-checking. This would
increase the reliability and transparency of information and
contribute to informational health.

CBonacich-Centricity and Digital Health
News providers with high Bonacich centrality have signifi-
cant influence within their networks. Maintaining a cooper-
ative strategy among these influential providers is expected
to improve the quality of information across the network and
reduce the spread of fake news. This will make it easier for
the public to access reliable information and contribute to
digital health.

CTHPE and the Stabilization of the Information
Environment
THPE represents an equilibrium in which each news provider
chooses an optimal strategy relative to the strategies of other
providers. A THPE analysis incorporating a Grim Trigger
strategy shows that once a cooperative environment is formed,
the entire system is more likely to remain cooperative in the
face of small perturbations (e.g., the spread of fake news
by some providers). This could increase the stability and re-
silience of the digital information environment and contribute
to informational health.

3. Discussion:Strategy and Peer Effect
from the Perspective of Entanglement

1. Tit-for-Tat Strategy:



In the Tit-for-Tat strategy, if provider 𝑖 detects any in-
stance of non-cooperative behavior from the opponent
provider, it indicates that all subsequent actions will
transition to non-cooperation.

Mathematically expressed as:

Tit-for-Tat Strategy = Transition to non-cooperation for all subsequent actions if the opponent exhibits non-cooperative behavior at least once

2. Entanglement Metric:

Introduce a metric to measure entanglement between
news providers.

This could include factors such as the speed and relia-
bility of information propagation.

1. Introduction of Tit-for-Tat Strategy:

Apply the Tit-for-Tat strategy to each provider 𝑖.

That is, transition to non-cooperation for all subsequent
actions if the opponent exhibits non-cooperative behav-
ior at least once.

2. Calculation of Entanglement:

Evaluate the entanglement between news providers us-
ing Bonacich centrality and THPE.

Compute the entanglement metric and analyze the char-
acteristics of information propagation between news
providers.

Mathematical techniques and simulations may be em-
ployed, similar to the evaluation of Bonacich centrality
and derivation of THPE.

Example Scenario

Scenario:

– If the Tit-for-Tat strategy is adopted, it is ex-
pected that all subsequent actions will transition
to non-cooperation if the opponent exhibits non-
cooperative behavior at least once.

Analysis:

– Utilize the entanglement metric to evaluate the
characteristics of information propagation between
news providers and analyze the impact of the Tit-
for-Tat strategy on information diffusion and relia-
bility.

Through these equations and calculation processes, it is
possible to understand the effects of the Tit-for-Tat strategy
on Bonacich centrality and THPE, as well as the nature of
entanglement between news providers.

Detailed explanation of entanglement in
Bonacich centrality and THPE when

introducing the Grim Trigger strategy
in game theory

Equations
1. Grim Trigger Strategy:

Let the probability of transitioning from provider 𝑖 to the
opponent’s non-cooperative behavior be 𝑝defect.

In the Grim Trigger strategy, if provider 𝑖 detects the
opponent’s non-cooperation, all subsequent strategies
transition to non-cooperation.

2. Entanglement Metric:

Introduce indicators related to information propagation
throughout the network to evaluate the entanglement
between news providers.

For example, these indicators can quantitatively evalu-
ate factors such as the speed and range of information
propagation.

1. Introduction of Grim Trigger Strategy:

Define strategies for each provider 𝑖 based on the Grim
Trigger strategy.

For instance, the probability of transitioning to non-
cooperation for all subsequent actions if provider 𝑖 de-
tects the opponent’s non-cooperation is 𝑝defect.

2. Calculation of Entanglement:

Evaluate the entanglement between news providers us-
ing Bonacich centrality and THPE.

Compute the entanglement metric and analyze the
characteristics of information propagation between
providers.

Mathematical techniques, simulations, similar to the
evaluation of Bonacich centrality and derivation of
THPE, are utilized in this calculation process.

Example Scenario

Possible scenarios include:

– Adopting the Grim Trigger strategy between news
providers, transitioning to non-cooperation for all
subsequent actions if the opponent exhibits non-
cooperative behavior.

– Using the entanglement metric to evaluate the
speed and range of information propagation and
analyze the impact of the Grim Trigger strategy on
information diffusion and reliability.



Through these equations and calculation processes, it is
possible to understand the effects of the Grim Trigger strategy
on Bonacich centrality and THPE, as well as the nature of
entanglement between news providers.

Detailed examples of equations and
calculation processes related to the peer

effect
1. Definition of Peer Effect:

Define the impact of provider 𝑖’s actions on peer 𝑗 as the
peer effect 𝑃𝐸𝑖 𝑗 , indicating how provider 𝑗’s strategic
choices change based on provider 𝑖’s actions.

2. Calculation Formula for Peer Effect:

The peer effect between providers 𝑖 and 𝑗 is calculated
based on provider 𝑖’s strategy 𝜎𝑖 and influence 𝐵𝑖 𝑗 (in-
fluence from 𝑖 to 𝑗 , based on Bonacich centrality).

𝑃𝐸𝑖 𝑗 = 𝜆 × 𝐵𝑖 𝑗 × (𝜎𝑖 − 𝜎𝑗 )

Where:

𝜆 is a parameter indicating the sensitivity of the peer
effect, showing how much a news provider is influenced
by the actions of their peer.

𝐵𝑖 𝑗 represents the influence of provider 𝑖 on provider 𝑗

based on Bonacich centrality.

𝜎𝑖 and 𝜎𝑗 are the strategies of providers 𝑖 and 𝑗 respec-
tively.

Example of Calculation Process
Consider a situation where provider 𝑖 adopts a strategy of
spreading fake news (𝜎𝑖 = 1) while provider 𝑗 adopts a strat-
egy of spreading true information (𝜎𝑗 = 0). Let 𝐵𝑖 𝑗 be known
as the influence from provider 𝑖 to 𝑗 , and let 𝜆 be predeter-
mined as the sensitivity of the peer effect.

1. Calculation of Peer Effect:

Calculate the peer effect from provider 𝑖 to provider 𝑗

using the above equation.

𝑃𝐸𝑖 𝑗 = 𝜆 × 𝐵𝑖 𝑗 × (1 − 0) = 𝜆 × 𝐵𝑖 𝑗

2. Impact of Peer Effect on Strategy:

Evaluate whether provider 𝑗 changes their strategy based
on the peer effect. For instance, if 𝑃𝐸𝑖 𝑗 exceeds a certain
threshold, provider 𝑗 might transition to a strategy of
spreading fake news.

3. Re-evaluation of Equilibrium State of the Entire
Network:

Consider the impact of provider 𝑗’s strategy change on
other providers and re-evaluate the equilibrium state of
the entire network. In this step, use the concept of THPE
to derive a new equilibrium state.

Through this example of a calculation process, it is pos-
sible to quantitatively analyze how the peer effect influences
strategic actions and information propagation between news
providers.

Strategies and Peer Effects from the
Perspective of Entanglement

To analyze the peer effects in Bonacich centrality and Trem-
bling Hand Perfect Equilibrium (THPE) when introducing
the Tit-for-Tat strategy, we propose the following equations
and calculation processes.

Equations
Tit-for-Tat Strategy

Define the Tit-for-Tat strategy for provider 𝑖, denoted as
𝜎TT (𝑖), where if provider 𝑖 detects the opponent’s non-
cooperative behavior at least once, it transitions to non-
cooperation for all subsequent actions.

𝜎TT (𝑖)

represents provider 𝑖’s response to the opponent’s non-
cooperative behavior.

Peer Effect

The peer effect represents the influence of provider 𝑖’s ac-
tions on its peers (other providers). Define the peer ef-
fect between provider 𝑖 and its peer 𝑗 as PE𝑖 𝑗 , where
PE𝑖 𝑗 = 𝑓 (𝜎TT (𝑖), 𝜎TT ( 𝑗)).

Introduction of Tit-for-Tat Strategy

Define the Tit-for-Tat strategy for all providers in the network
and set the probability of transitioning to non-cooperation for
provider 𝑖 after detecting the opponent’s non-cooperation.

Calculation of Bonacich Centrality

Calculate the Bonacich centrality 𝐵𝑖 for each provider 𝑖 us-
ing the network’s adjacency matrix, representing provider 𝑖’s
influence within the network.

Evaluation of Peer Effect

Evaluate the peer effect PE𝑖 𝑗 between provider 𝑖 and its peer 𝑗 .
This considers how provider 𝑖’s Tit-for-Tat strategy influences
the actions of peer 𝑗 . Calculate PE𝑖 𝑗 using the strategies
𝜎TT (𝑖) and 𝜎TT ( 𝑗) of providers 𝑖 and 𝑗 , and their respective
Bonacich centralities 𝐵𝑖 and 𝐵 𝑗 .



Derivation of THPE

Taking into account the peer effects, derive the optimal strate-
gies for all providers in the network and calculate THPE. This
process includes providers adapting their strategies based on
their peers’ actions.

Scenario
Consider a scenario where news provider A spreads fake
news, and news provider B, upon detecting this, transitions to
non-cooperation based on the Tit-for-Tat strategy. Calculate
the Bonacich centrality of providers A and B and evaluate the
peer effect A’s actions have on B. Through this analysis, one
can consider the impact of fake news propagation on network
interactions and information reliability.

Definition of Peer Effect

Define the peer effect 𝑃𝐸𝑖 𝑗 as the impact of news provider 𝑖’s
actions on the action selection of news provider 𝑗 . It indicates
how provider 𝑗’s action probabilities change due to provider
𝑖’s actions.

Formula for Peer Effect Calculation

The peer effect 𝑃𝐸𝑖 𝑗 between providers 𝑖 and 𝑗 is calculated
based on provider 𝑖’s strategy 𝜎𝑖 and influence 𝐵𝑖 𝑗 (influence
from 𝑖 to 𝑗 based on Bonacich centrality).

𝑃𝐸𝑖 𝑗 = 𝜆 × 𝐵𝑖 𝑗 × (𝜎𝑖 − 𝜎𝑗 )

Here: - 𝜆 is a parameter indicating the sensitivity of the
peer effect, showing how much a news provider is influenced
by their peer’s actions. - 𝐵𝑖 𝑗 represents the influence of
provider 𝑖 on provider 𝑗 based on Bonacich centrality. - 𝜎𝑖

and 𝜎𝑗 are the strategies of providers 𝑖 and 𝑗 respectively.
Consider a situation where provider 𝑖 adopts a strategy

of spreading fake news (𝜎𝑖 = 1), and provider 𝑗 adopts a
strategy of spreading true information (𝜎𝑗 = 0). Let 𝐵𝑖 𝑗 be
the influence from provider 𝑖 to 𝑗 , and let 𝜆 be predetermined
as the sensitivity of the peer effect.

Calculate the peer effect from provider 𝑖 to provider 𝑗

using the above equation.

𝑃𝐸𝑖 𝑗 = 𝜆 × 𝐵𝑖 𝑗 × (1 − 0) = 𝜆 × 𝐵𝑖 𝑗

Impact of Peer Effect on Strategy

Evaluate whether provider 𝑗 changes their strategy based on
the peer effect. For instance, if 𝑃𝐸𝑖 𝑗 exceeds a certain thresh-
old, provider 𝑗 might transition to a strategy of spreading fake
news.

Consider the impact of provider 𝑗’s strategy change on
other providers and re-evaluate the equilibrium state of the

entire network. In this step, use the concept of THPE to
derive a new equilibrium state.

These equations and calculation processes provide insight
into how peer effects influence strategic actions and informa-
tion propagation between news providers.

Definition of Peer Effect
The action of news provider 𝑖 influences the action selection
of another news provider 𝑗 , denoted as the peer effect 𝑃𝐸𝑖 𝑗 .
It measures how provider 𝑗’s strategy choices change due to
provider 𝑖’s actions.

Formula for Peer Effect Calculation
The peer effect 𝑃𝐸𝑖 𝑗 is computed as the change in the prob-
ability of provider 𝑗 transitioning from cooperation to defec-
tion due to provider 𝑖’s actions.

𝑃𝐸𝑖 𝑗 = 𝑃defect, 𝑗 |𝑖 − 𝑃cooperate, 𝑗

Where:

𝑃defect, 𝑗 |𝑖 is the probability of provider 𝑗 defecting given
provider 𝑖 defects.

𝑃cooperate, 𝑗 is the probability of provider 𝑗 cooperating
regardless of provider 𝑖’s actions.

Setting of Base Probabilities
Set the base probability 𝑃cooperate, 𝑗 for news provider 𝑗 to
cooperate. This could include behaviors such as not spreading
fake news or conducting fact-checking.

Evaluate how the probability of provider 𝑗 defecting
changes due to the influence of provider 𝑖’s non-cooperative
action (e.g., spreading fake news).

Calculation of Peer Effect
Use the probabilities above to calculate the peer effect 𝑃𝐸𝑖 𝑗 .
A positive value indicates that provider 𝑖’s non-cooperative
action encourages provider 𝑗 to defect.

Scenario
Let’s consider news providers 𝐴 and 𝐵. Suppose 𝐵 originally
has a cooperation probability of 0.7 (𝑃cooperate,𝐵 = 0.7). If
𝐴 takes a non-cooperative action (e.g., spreading fake news),
and this leads to an increase in 𝐵’s probability of defecting to
0.9 (𝑃defect,𝐵 |𝐴 = 0.9), the peer effect 𝑃𝐸𝐴𝐵 is calculated as:

𝑃𝐸𝐴𝐵 = 0.9 − 0.7 = 0.2

This calculation reveals that 𝐴’s non-cooperative action
has a peer effect of 0.2 on 𝐵, indicating a significant influence
on 𝐵’s likelihood of defecting. Such analysis helps understand



how interactions between news providers and peer effects
affect information propagation.

Experimental Design: Network Model
between Agents

To generate the distribution of In-degree and Out-degree of
non-cooperative and cooperative agents, as well as the k-
core network graph, considering a network model between
agents, the following steps can be envisioned. However, the
execution of specific code and visualization of graphs are not
supported on this platform, but conceptual explanations will
be provided.

Initialization of the Network
(1) Define the set of agents, where each agent becomes a

node.

(2) Define interactions between agents as edges. Edges rep-
resent the influence and flow of information between
agents.

Assignment of Agent Behaviors
(1) Assign non-cooperative or cooperative behaviors to each

agent randomly or based on specific criteria.

(2) These behaviors influence interactions between agents
(edges). For example, edges from non-cooperative
agents can be considered to have a negative impact on
receiving-side agents.

Computation of In-degree and Out-degree
(1) Calculate the In-degree of each agent (node), which is

the number of edges pointing towards that agent.

(2) Similarly, compute the Out-degree of each agent, which
is the number of edges leaving that agent.

Extraction of k-core Network
(1) A k-core network is the largest subnetwork where all

nodes have at least 𝑘 edges.

(2) To extract the k-core from the network, iteratively re-
move nodes with fewer than 𝑘 edges from the network
to obtain the k-core network.

Generation of Network Graph
(1) Visualize the overall network as a graph, where nodes

represent agents and edges represent interactions be-
tween agents.

(2) Display non-cooperative and cooperative agents in dif-
ferent colors, and clearly depict the distribution of In-
degree and Out-degree on the graph.

(3) Highlight the k-core network to illustrate important clus-
ters and communities within the network.

Through these steps, one can understand how the in-
fluence of non-cooperative and cooperative agents spreads
throughout the entire network and which agents play central
roles within the network.

4. Prospects for Computational
Experiments

By using game theory to analyze peer effects considering
Bonacich centrality, the following benefits may be expected
with respect to fact checking and information contamination.

Bonacich centrality can be used to identify the most in-
fluential agents (individuals or organizations) in a network.
Understanding whether these key players are actively involved
in fact-checking or, conversely, may spread information con-
tamination, is critical to assessing their impact on the overall
information environment.

Understanding Information Propagation Pat-
terns
Through the analysis of peer effects, we can understand the
dynamics of how information or fake news propagates within
a network. In particular, it will be possible to identify what
role highly influential agents play in information propagation.

Maximizing the Effectiveness of Fact-Checking
By identifying agents with high Bonacich centrality, it is
possible to focus fact-checking efforts on these agents. This
allows for efficient use of limited resources and maximizes
the effectiveness of fact-checking.

eveloping an Intervention Strategy
Understanding high-impact agents and their peer effects will
enable the development of intervention strategies to curb in-
formation pollution and promote a healthy information en-
vironment. Examples could include the provision of educa-
tional programs for high influence agents and campaigns to
promote the active sharing of fact-checking information.

Assessing the Health of the Information Envi-
ronment
Through analysis of Bonacich centrality and peer effects, the
overall health of the information environment can be assessed.
This can be used to understand what efforts are needed to
maintain the accuracy and quality of information, and to help
formulate long-term information policies and guidelines.

By combining game theory and network analysis, we hope
to realize these benefits and pioneer new approaches to pro-



tecting informational health and public digital health in the
digital age.
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