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Abstract: This paper summarizes the discussion of a hypothetical computational experiment.We
propose a hypothetical model to simulate the effects of filter bubbles and cocktail party effects on
the trading of misinformation in the context of information auctions. In particular, we focus on
situations in which inappropriate information is traded at high prices and the resulting social and
economic consequences. The model hypothesizes how the quality of information and its valuation
can be distorted by filter bubbles and how the cocktail party effect affects participants’ decisions.
Furthermore, we apply the Meek method to redistribute bids based on misinformation and explore
the feasibility of healthier information markets. The model provides new insights into information
valuation and reallocation mechanisms, and provides insights into the impact of filter bubbles and
cocktail party effects on information markets. We develop a theoretical model that analyzes the
optimal bidding strategy employed by bidders to maximize their expected utility, taking into account
the private valuation of information and the probability of winning. In the first-price auction model,
bidders adjust their bids by estimating the behavior of their competitors. In the second price auction,
on the other hand, the dominant strategy emerges as bidding one’s true valuation, unaffected by the
bidding behavior of others. The existence of filter bubbles adds further complexity because bidders’
valuations can be influenced by biased information flows, leading to suboptimal bidding and market
inefficiencies. Our findings consider the disparities among auction types dealing with information
asymmetries and the pivotal role of market design in facilitating fair and efficient information
transactions.
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1. Introduction
We apply incomplete information game theory to explore
the strategic behavior of bidders in the context of shielded
bid auctions.In particular, we focus on the mechanism by
which bidders determine their bids based on their private
value and the resulting derivation of Nash equilibria.Bidders’
gains are defined by the difference between the valuation and
the winning bid price for an item, and through an equivalent
bidding strategy, each bidder determines the bid amount that
maximizes its own gains.

In this process, we examine the effects of external infor- Fig. 1: Effect of Misinformation and Adjustment
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Fig. 2: ’Information market dynamics

Fig. 3: Payoffs in the Information Market

mation manipulation and changes in valuations over time on
bidders’ beliefs and strategies. Nash equilibrium calculations
are used to analyze the stable state reached by the market
when bidders act on the basis of each other’s optimal strate-
gies. The aim of this study is to improve our understanding of
uncertainty in auction theory and to support decision making
in actual auction design and policy making. This text focuses
on defense matching games and second-order information
auction games in information markets. In particular, it uses
a probabilistic approach to analyze market instability and dy-
namics in perfect and non-perfect information scenarios. The
text describes defense matching strategies, the value and cost
of information, and ways to deal with market instability. It
also discusses auction game theory and how the reliability
of information affects market competition and the value of
information.

We also provide a theoretical analysis of the defense
matching game and the second-order information auction
game in the information market. In particular, we use a
stochastic approach to model and analyze instability and mar-
ket dynamics in perfect and non-perfect information scenar-
ios. In the defense matching game, we will examine how
information reliability is valued and affects market dynam-
ics through the interaction between defense counsel and the
information market. We will also analyze the impact of in-
formation credibility and its increasing value on intra-market
competition in auction games. The study will explore the
impact of Bonacich centrality, trembling hand perfect equi-
librium (THPE), entanglement, and peer effects on market
participants’ strategies and their contribution to knowledge
sharing and trust building in information markets. The re-
sults of this study will also add insights into understanding
the impact of information uncertainty on markets and pro-
moting efficient information sharing and market stability.

2. The Effects of Filter Bubbles and
Cocktail Party Effects on the Diffusion
and Valuation of Misinformation in

Information Auctions
We also examine the filter bubble and cocktail party effect in
information auctions with respect to an analysis to simulate
the impact of the filter bubble on the diffusion of misinforma-
tion and the evaluation of value. The filter bubble refers to a
condition in which information is filtered based on personal
interests and beliefs, resulting in increased exposure to spe-
cific information and perspectives. The cocktail party effect,
on the other hand, refers to the ability to direct attention to
specific information or voices among a lot of noise, and in this
context refers to the phenomenon of paying attention to spe-
cific information or trends in a noisy information environment
and making behavioral decisions based on them.



2.1 Filter Bubble and Cocktail Party Effect
This analytical approach analyzes how bidders’ individual
valuations of information are affected by filter bubbles and
how the cocktail party effect affects bidders’ bidding strate-
gies amidst the noise and chaos during auctions. In particular,
we examine how the quality of information and its soundness
affect bidders’ valuations and bids, and we express the impact
of filter bubbles and cocktail party effects on information val-
uations and bidding strategies through a mathematical model.

The concept of a Nash equilibrium in a shielded bid auc-
tion is defined as each bidder predicts the strategies of other
bidders and chooses his optimal strategy based on them. In
an auction model in a non-complete information game, the
bidder must take uncertainty into account. This includes un-
certainty about the valuations of other bidders and changes in
valuations due to external manipulation of information. Bid-
ders adopt strategies to maximize their own expected gains
in light of this uncertainty, reaching Nash equilibrium in the
process. By incorporating the effects of time variation and ex-
ternal information into the model, the dynamics of real-world
auctions and information markets can be captured more accu-
rately. Factors such as filter bubbles and information manip-
ulation affect bidders’ beliefs and valuations, and strategies
that take these into account are necessary.

We also analyzed theoretically the impact of temporal
variation and associated cognitive errors in information mar-
kets on information choices and decisions. In particular, we
explored the effects of the introduction of the Grim Trig-
ger Strategy, the Tight Trigger Strategy, and the Trembling
Hand Perfect Equilibrium (THPE) on market dynamics and
how Bonacich centrality and peer effects can be enhanced or
suppressed by these strategies. The analysis showed that in-
formation choices and decisions under uncertainty caused by
cognitive errors and misplaced "shortest cost paths" can have
serious consequences for the health and efficiency of infor-
mation markets. While the Grim Trigger and Tight Trigger
strategies provide incentives for information providers to fo-
cus on accuracy and build long-term trusting relationships,
the THPE concept emphasizes the importance of allowing
for small unintentional errors. The study also examined the
magnitude of the impact of the behavior of highly Bonacich-
centric players on the overall market and the role that peer
effects play in the acceptance and diffusion of information.

In filter bubbles, the phenomenon in which information is
customized based on an individual’s past behavior and prefer-
ences. This effect makes bidders more exposed to information
that is consistent with their beliefs and interests, and reduces
their exposure to diverse and opposing information. The
cocktail party effect is the ability to focus on specific voices
or information in a noisy environment. In the context of an
auction, it indicates that a bidder may overreact to the actions
of other bidders or specific information and deviate from his

or her original valuation. In the expected gain intended here,
the profit a bidder expects to gain from bidding. The model
analyzes how expected gains vary with information quality,
filter bubbles, and cocktail party effects.

This study provides a theoretical framework for under-
standing the impact of filter bubbles and cocktail party effects
in the context of information auctions and provides insight
into how misinformation may affect valuations and bidding
strategies. It also discusses the impact of information sound-
ness on market dynamics. We analyze a bidder’s strategy in
a shielded bid auction by applying non-perfect information
game theory in the context of first-price and second-price
auctions. In first-price auctions, the bidder must guess the
behavior of other bidders and adjust his bid to maximize
his expected gain. In the second-price auction, on the other
hand, the optimal strategy is for the bidders to bid their own
true valuation. The document also mentions that information
distortions caused by filter bubbles can affect the bidders’
valuations, which can lead to market inefficiencies. The doc-
ument also describes the process by which bidders update
their own beliefs based on auction results and calculate their
expected gain in the next auction. It also discusses how the
Meek method can be applied to information auction games to
optimize the distribution of correct information.

In first-price and second-price auctions, these auction for-
mats require different approaches to the bidder’s strategy. In
first-price auctions, bidders typically use shading (the strat-
egy of bidding less than one’s true valuation), whereas in
second-price auctions there is an incentive to bid the true
valuation The Meek method is a redistribution method usu-
ally used in the context of elections, with an excess number
of votes redistributes votes from candidates to runners-up,
leading to fairer results. This document applies this concept
to the context of information auctions to explore the proper
allocation of information. Through these analyses, we can
understand the strategic behavior of the bidders in auction
games under non-perfect information and its impact on the
market. We also discuss the impact of filter bubbles on bid-
ders’ valuations and how market efficiency can be improved
through the proper allocation of information.

In this thesis, we consider four initial hypotheses con-
cerning information commerce. In particular, we delve into
the scenarios of misperceptions over time and the spread of
misinformation within the market.

(1) A dilemma where a market with high reliability loses
trust as a result of spreading misinformation.

(2) A case where a market considered unreliable actually
has a high rate of correct information and gradually
gains trust from the market.

(3) A scenario where one is swayed by incorrect information
midway, leading to a dilemma.



(4) A situation where one is intentionally swayed by incor-
rect information midway and is incited by others to enter
a dilemma state.

This scenario poses a highly complex problem within
the context of information markets and filter bubbles. The
process of determining the truthfulness of information may
change over time or based on the reliability of specific sources.
Below, we present theoretical explanations and considerations
based on the proposed scenarios.

(1) The Dilemma of a Reliable Market Losing Trust
If a reliable source spreads incorrect information, it may

lose its reliability, potentially damaging the overall credibility
of the market. This dilemma highlights the difficulty for in-
formation providers in balancing accuracy with promptness.

Consideration Points

Verifying information requires time and resources, and
especially for urgent information, the verification pro-
cess may not keep up.

Once a source loses trust, it is difficult to recover, po-
tentially having a long-term impact on consumers’ in-
formation selection biases.

(2) An Unreliable Market Gaining Trust
A market considered unreliable may gradually gain trust

by continuously providing accurate information over time.
This process can overcome consumers’ confirmation biases
and prompt a reevaluation of the information source.

Consideration Points

Information markets are dynamic, and should be evalu-
ated based on the current quality of information provi-
sion, not just past reputation.

Trust can be fostered by increasing transparency from
information providers and acknowledging and correcting
mistakes.

(3) Being Swayed by Incorrect Information
A market or individual may make decisions based on

incorrect information midway, leading to a dilemma. This
scenario illustrates how the initial acceptance of information
can affect subsequent perceptions and decision-making.

Consideration Points

The initial acceptance of misinformation can inhibit the
acceptance of accurate information in later stages.

Acceptance or rejection of information is often based
on individuals’ existing beliefs and values, potentially
exacerbating the dilemma.

(4) Being Intentionally Swayed by Incorrect Informa-
tion

There may be situations where incorrect information is
intentionally spread by specific actors, leading markets or

individuals into a dilemma. Such scenarios are often seen as
strategies in information warfare or propaganda.

Consideration Points

Information manipulation can be used to advance spe-
cific agendas, threatening the health of information mar-
kets.
It’s crucial for consumers and market participants to con-
sider the motivations and backgrounds of information
sources, making critical thinking indispensable.

Additional Consideration Ideas

Information Overload: A situation where an abundance
of information makes it difficult for consumers to judge,
facilitating the spread of misinformation.
Echo Chambers: A situation where only similar opinions
or information circulate, reinforcing incorrect informa-
tion by excluding different perspectives.
Lack of Digital Literacy: When consumers lack the skills
to judge the veracity of information, they are more sus-
ceptible to being influenced by misinformation.

In each scenario, accurately assessing the truthfulness of
information and maintaining a healthy information market
requires the education and literacy improvement of both in-
formation providers and consumers, strengthening the infor-
mation verification process, and access to diverse information
sources.

By considering misperceptions and recognition errors
over time as "mistakes in the shortest cost path" and applying
this to the repeated prisoner’s dilemma model, interesting in-
sights can be gained, especially in situations where random
occurrences or certain groups continue to overestimate that
information as fact.

Mistakes in the Shortest Cost Path
The "shortest cost path" refers to the perceived path of

least effort or cost when acquiring information. Mistakes in
this path can lead to the easy spread of incorrect information
or misperceptions. These misrecognitions can occur ran-
domly or may be maintained intentionally or unconsciously
by specific groups.

The Model of Repeated Prisoner’s Dilemma
The repeated prisoner’s dilemma is a model in game the-

ory where participants make the same choices repeatedly.
Each participant chooses between cooperation (sharing the
truth) or betrayal (spreading misinformation), with rewards
based on their choices. In this model, betrayal may provide
benefits in the short term, but cooperation leads to mutual
benefits in the long term.

Scenario Analysis

(1) Random Recognition Errors: Random recognition er-
rors can cause temporary information confusion, poten-
tially negatively impacting individual decision-making.



(2) Overconfidence by Specific Groups: Overconfidence in
certain information by specific groups can promote the
spread of misinformation within the group, giving be-
trayal an advantage over cooperation.

In conclusion, mistakes in the "shortest cost path" that
lead to recognition errors can be considered within the con-
text of the repeated prisoner’s dilemma in information mar-
kets. Both random errors and overconfidence can promote
betrayal actions (spread of misinformation) in the short term,
but there are incentives to shift to cooperative actions (shar-
ing of truth) in the long term. This dynamic change offers
important insights into maintaining the health and efficiency
of information markets.

The analysis of recognition errors and mistakes in the
"shortest cost path" using submodular and Metzler functions
in the context of repeated prisoner’s dilemma models allows
for an exploration of changes in information ownership rates
and market interactions.

Application of Submodular Functions
Submodular functions are used to model the increase in

utility when new information is added to the information set.
In the information market, they are suitable for assessing
how the addition of specific information (true or fake news)
changes the utility of the market.

Examples of Consideration

Random Misrecognition: In the case of random mis-
recognition, submodular functions make the impact of
information addition on market utility irregular. The
addition of incorrect information to the market might
temporarily increase utility, but it could harm the mar-
ket’s health in the long term.
Misrecognition Based on Overconfidence: If a group
overestimates certain information as factual, their strat-
egy of adding information might consistently have a
positive or negative impact on market utility. Using
submodular functions, we can evaluate how the addi-
tion of information based on overconfidence affects the
market.

Application of Metzler Functions
Metzler functions are used to model the impact of in-

formation dissemination on the interactions among market
participants. These functions allow for the analysis of how
the spread of new information affects the relationships with
other information and the overall market interactions.

Examples of Consideration

Changes in Interaction Due to Random Misrecogni-
tion: Random misrecognition can destabilize interac-
tions among market participants. Using Metzler func-
tions, we can analyze how random information dissemi-
nation affects market interactions. Increased uncertainty
may reduce market efficiency.

Changes in Interaction Due to Overconfidence: If a
group’s overconfidence in certain information makes it
easier for that information to spread throughout the mar-
ket, Metzler functions can be used to assess the long-
term impact of such information dissemination on mar-
ket interactions. Information dissemination based on
overconfidence could either improve market efficiency
or harm market health.

Conclusion
Analyzing changes in information ownership rates and

market interactions due to recognition errors and mistakes in
the "shortest cost path" using submodular and Metzler func-
tions provides insights into information market dynamics.
Random misrecognition and misrecognition based on over-
confidence affect the market differently, and these impacts
are significant for the health and efficiency of information
markets.

Considering misperceptions and recognition errors over
time as "mistakes in the shortest cost path" within the frame-
work of repeated prisoner’s dilemma models and auction
games is a valuable approach to understanding the dynam-
ics in information markets.

Misperceptions and Recognition Errors in Repeated
Prisoner’s Dilemma

In a repeated prisoner’s dilemma, players (information
providers or recipients) choose between cooperation (provid-
ing or accepting accurate information) or betrayal (providing
fake news or crediting it) in each round. As time progresses,
players adjust their strategies based on the past actions of
others, pursuing optimal response strategies. However, when
misperceptions and recognition errors arise due to "mistakes
in the shortest cost path," players may fail to accurately assess
the intentions or reliability of others, leading to suboptimal
strategies that were believed to be optimal.

Information Reliability and Value in Auction Games
In the context of auction games, the higher the reliability

of information, the more valuable it is considered. Players
compete to acquire high-reliability information, prepared to
pay prices commensurate with the value of the information.
This process leads to an increase in demand for reliable in-
formation in the information market, resulting in an auction
game state.

Impact of Recognition Errors on Auction Games
When recognition errors occur, players may misjudge the

true value of information, leading to overbidding due to over-
valuation or missing valuable information due to undervalu-
ation. Especially when "mistakes in the shortest cost path"
are present, players risk paying a higher price than the ac-
tual value due to underestimation of information acquisition
costs. Additionally, if a group overestimates certain infor-
mation as factual, excessive demand for that information can
arise, leading to market price distortions.



Theoretical Considerations

Information Asymmetry: Misperceptions and "mistakes
in the shortest cost path" lead to information asymme-
try. Differences in the quality and quantity of infor-
mation available between information providers and re-
ceivers can result in inaccurate information being traded
as valuable.

Market Instability: Actions based on recognition errors
can cause market instability, leading to short-term price
fluctuations and potential long-term declines in market
credibility.

Self-Reinforcing Cycle: Overestimation of certain in-
formation by the market can lead to a self-reinforcing
cycle, where other players also overvalue the informa-
tion, potentially leading to bubble formation or collapse.

Recognition errors and "mistakes in the shortest cost
path" over time complicate the dynamics of repeated pris-
oner’s dilemma and auction games in information markets,
affecting players’ strategies, market stability, and information
value assessment mechanisms, with significant implications
for overall market efficiency and health.

The introduction of the grim trigger strategy in an infor-
mation market, where players’ choices and judgments fluctu-
ate over time, leading to uncertainty, significantly impacts the
interactions among players. The grim trigger strategy entails
that if a player ever takes a betraying action, they will con-
tinue to betray indefinitely. This strategy shifts players’ focus
from pursuing short-term gains to maintaining long-term co-
operative relationships. Incorporating Bonacich centrality,
Trembling Hand Perfect Equilibrium (THPE), entanglement,
and peer effects into this context provides further insights.

Grim Trigger Strategy and the Information Market
The implementation of a grim trigger strategy implies

severe consequences for players in the information market
who disseminate incorrect information even once, leading to
a permanent loss of trust from others. Consequently, players
become more cautious in assessing the accuracy and reliabil-
ity of information, avoiding the risk of spreading inaccurate
data.

Bonacich Centrality and the Grim Trigger Strategy
Players with high Bonacich centrality hold significant in-

fluence in the information market, and their actions greatly
impact the entire market. Under the grim trigger strategy,
the risk associated with these central players disseminating
incorrect information is particularly severe, as once trust is
lost, it is challenging to regain. As a result, players with high
centrality pay extra attention to the verification and accuracy
of information, potentially improving the overall quality of
information in the market.

Trembling Hand Perfect Equilibrium (THPE) and Un-
certainty

THPE considers the possibility of players inadvertently
making mistakes ("trembling hand") in their strategies. In
the information market, players make decisions under uncer-
tainty, but under the grim trigger strategy, minor mistakes can
lead to significant long-term consequences. This realization
prompts players to recognize the importance of careful infor-
mation handling and verification processes, contributing to
the improvement of the market’s overall information quality.

Entanglement and Peer Effects
Entanglement and peer effects indicate the degree of inter-

action and interdependence among players. The introduction
of the grim trigger strategy makes players more sensitive to
others’ actions, enhancing the peer effect that encourages co-
operative behavior. However, this also carries the risk that
once non-cooperative actions occur among players, the effects
can ripple through the entire market, creating a long-term
non-cooperative environment.

Theoretical Considerations
The introduction of the grim trigger strategy in the infor-

mation market may lead players to prioritize the maintenance
of long-term trust and improve the overall quality of informa-
tion. High Bonacich centrality players, considering their mar-
ket influence, will be particularly cautious about information
accuracy and reliability. However, the possibility of minor
mistakes leading to significant outcomes ("trembling hand")
emphasizes the importance of verification and confirmation
processes. Entanglement and peer effects strengthen players’
interactions, contributing to a cooperative market environ-
ment, but also pose a risk of falling into a non-cooperative
spiral.

Focusing on information reliability and value in the con-
text of auction games can elucidate how players’ behaviors
change in the information market. As demand for reliable in-
formation increases, competition among players intensifies,
and the value of information surges. Exploring how Bonacich
centrality, Trembling Hand Perfect Equilibrium (THPE), en-
tanglement, and peer effects relate in this situation provides
valuable insights.

Bonacich Centrality and Auction Games
Players with high Bonacich centrality wield significant

power in the information market. By acquiring highly re-
liable information, these players enhance the value of that
information and strengthen their position in the market. In
auction games, central players strategically bid to maximize
the value of information, securing an advantageous position
over other players.

Trembling Hand Perfect Equilibrium (THPE) and In-
formation Value

THPE accounts for the possibility of players inadvertently
making bidding mistakes. In auction games, there is a risk of
overpaying due to these errors, highlighting the importance of
strategic bidding to minimize losses from "trembling hand"



errors.
Entanglement and Peer Effects
Entanglement among players in the information market

significantly influences the perception of information relia-
bility and value. Stronger interactions among players facil-
itate the sharing of high-reliability information, enhancing
its value. Peer effects, where players imitate others’ actions,
can lead to increased collective focus on reliable informa-
tion, intensifying competition for valuable information and
accelerating auction game dynamics.

Theoretical Considerations
The increase in information reliability and value in auc-

tion games intensifies market competition and affects players’
strategies. High Bonacich centrality players reinforce their
leadership in the market, while THPE emphasizes cautious
bidding strategies. Entanglement and peer effects heighten
collective attention to reliable information, improving over-
all information value in the market. This process promotes
knowledge sharing and trust-building in the information mar-
ket, contributing to a healthier market environment.

In this scenario, in addition to the auction game formed
based on the reliability of information, a secondary infor-
mation auction game emerges, featuring a matching game
of advocates for markets holding dubious information. The
uniqueness of this game lies in the uncertainty surrounding
whether the advocates possess complete or incomplete infor-
mation. This uncertainty significantly influences the game’s
strategies, leading to the following theoretical considerations:

Advocate Matching Game in the Information Market
The matching game involves advocates who may have ac-

cess to either complete or incomplete information regarding
the dubious information held by the market. The uncertainty
regarding the advocates’ information level introduces a com-
plex layer to the game’s strategies, as players must navigate
this ambiguity while making bidding decisions in the auction
game.

Impact of Information Asymmetry
Information asymmetry becomes a critical factor in this

secondary auction game. When advocates possess complete
information, they can strategically influence the market by
validating or debunking the dubious information. However,
if the advocates have incomplete information, their actions
may inadvertently contribute to the spread of misinformation,
further complicating the market dynamics.

Strategies Under Uncertainty
Players in the information market must develop strategies

that account for the uncertainty surrounding the advocates’
information. Risk-averse strategies may involve cautious bid-
ding and reliance on information from trusted sources, while
risk-tolerant players might engage in speculative bidding,
hoping to capitalize on potential misinformation arbitrage
opportunities.

Theoretical Implications
The introduction of a matching game for advocates hold-

ing dubious information underlines the complexities inherent
in information markets, especially when compounded by un-
certainty. The strategies adopted by players in response to
this uncertainty can lead to diverse outcomes, ranging from
market stabilization through the validation of accurate infor-
mation to increased volatility due to the spread of misinfor-
mation.

Conclusion
The secondary information auction game, characterized

by the matching of advocates to markets holding dubious
information under uncertain conditions, adds a layer of com-
plexity to the information market dynamics. Players must
navigate this uncertainty, balancing the potential rewards of
acquiring valuable information against the risks posed by
misinformation. Theoretical exploration of this scenario pro-
vides insights into the strategies players might employ and
the potential impact on the overall health and efficiency of
the information market.

3. Discussion:Advocate Matching Game
(1) Role and Motivation of Advocates: Advocates play a

role in either enhancing the credibility of dubious in-
formation held by markets or mitigating the impact of
such information. The motivation of advocates lies in
profitability, aiming to match with the optimal market
for a reward.

(2) Completeness and Incompleteness of Information:
When advocates have complete information, they can
accurately assess the truthfulness and market value
of the information, enabling effective matching strate-
gies. Conversely, with incomplete information, advo-
cates must make decisions amidst uncertainty, poten-
tially significantly impacting the game’s outcome.

(3) Secondary Information Auction Game: The match-
ing between advocates and markets holding dubious in-
formation functions as a secondary information auction
game. In this game, advocates compete in strategies to
enhance information reliability, accompanied by risks
due to information incompleteness.

Game Strategies and Outcomes
(1) Complete Information Game: With complete infor-

mation, advocates can understand the value of infor-
mation and market needs precisely, selecting optimal
matches. Here, game outcomes are determined by ratio-
nal choices based on information value.

(2) Incomplete Information Game: With incomplete in-
formation, decision-making is influenced by uncertainty
and risk. In this scenario, advocates determine their



market matches based on expected values or probabilis-
tic judgments, with outcomes significantly swayed by
unpredictable elements.

Conclusion
In this scenario, auction games based on information reliabil-
ity and advocate matching games complicate the dynamics of
information markets. The uncertainty between complete and
incomplete information significantly influences game strate-
gies and outcomes, affecting the equilibrium and stability of
information markets. This theoretical framework provides a
valuable perspective for understanding information reliability
and market dynamics.

This scenario is elaborated using detailed formulas and
computation processes, focusing on the auction game based
on information reliability and the matching game involving
advocates within it.

Modeling the Scenario
(1) Definition of Participants:

Set of news providers: % = {?1, ?2, . . . , ?<}
Set of consumers: ⇠ = {21, 22, . . . , 2=}
Set of advocates: ! = {;1, ;2, . . . , ;:}

(2) Types of Information:

Fake news: �
True news: )

(3) Auction Game Settings:

Price of fake news: %�

Price of true news: %)

(4) Setting for the Advocate Matching Game:

Price for the reliability enhancement service pro-
vided by advocates: %!

Expression in Formulas
(1) Supply and Demand Functions:

Supply function for fake news: (� (%�)
Demand function for fake news: ⇡� (%�)
Supply function for true news: () (%) )
Demand function for true news: ⇡) (%) )

(2) Calculation of Equilibrium Prices and Quantities:

Equilibrium price for fake news: %⇤
� where

(� (%⇤
�) = ⇡� (%⇤

�)
Equilibrium price for true news: %⇤

) where
() (%⇤

) ) = ⇡) (%⇤
) )

(3) Advocate Matching Game:

The equilibrium price for the reliability enhance-
ment service provided by advocates: %⇤

! , at which
price advocates offering the service match with the
market.

Computation Process
(1) Derivation of Equilibrium Prices:

Represent supply and demand functions as equa-
tions and solve for %⇤

� and %⇤
) .

Example: %⇤
� = 0�2�

1�
, where 0� , 1� , 2� are pa-

rameters related to the supply and demand of fake
news.

(2) Derivation of Advocate Service Price:

Considering supply and demand for advocates’ ser-
vices, solve for %⇤

! .
Example: %⇤

! = 0!2!
1!

, where 0! , 1! , 2! are pa-
rameters related to the advocate’s services.

Interpretation of Results
In this scenario, the prices %⇤

� and %⇤
) for fake and true news

reflect the reliability and value of information in the market.
The price %⇤

! for advocates’ services indicates how much
value the market places on enhancing information reliability.
The uncertainty between complete and incomplete informa-
tion is a crucial element that affects the matching strategies
and market equilibrium. This model provides a useful frame-
work for understanding the reliability of information and mar-
ket dynamics.

4. Discussion:Advocate Matching Game
(Continued)

Droop Quota
The Droop Quota is a method used to define the minimum
number of votes required for a candidate to be elected, partic-
ularly in Single Transferable Vote (STV) systems or propor-
tional representation systems. The aim is to reflect the will of
the voters as efficiently as possible while minimizing wasted
votes.

Calculation of the Droop Quota

The Droop Quota is calculated using the formula:

Droop Quota =
�

Total Valid Votes
Number of Seats to be Filled + 1

⌫
+ 1

Where,



Total Valid Votes is the total number of valid votes cast
in the election.

Number of Seats to be Filled is the number of candidates
that need to be elected.

b·c denotes the floor function, which returns the largest
integer less than or equal to a given number.

Explanation of the Formula

The purpose of this calculation is to define the minimum
number of votes needed for a candidate to be elected fairly for
the available seats. By using the Droop Quota, excess votes
(surplus votes) can be transferred to other candidates, reflect-
ing the secondary preferences of the voters in the election
results.

Example of the Calculation Process

For instance, if the Total Valid Votes are 10,000 and the Num-
ber of Seats to be Filled is 4, the Droop Quota is calculated
as follows:

Droop Quota =
�
10, 000
4 + 1

⌫
+ 1 = b2, 000c + 1 = 2, 001

This implies that each candidate needs to secure at least
2,001 votes to be elected. Surplus votes of a candidate who
has exceeded this quota are transferred to the next preferred
candidates.

Conclusion
The use of the Droop Quota aims to make the election results
more fair and efficient. By ensuring that the will of the voters
is respected to the maximum extent and minimizing wasted
votes, it becomes easier for the diverse preferences of voters
to be reflected in the election outcomes.

Modeling the Scenario
In the context of information markets, the advocate matching
game and the secondary information auction game unfold
based on the reliability of information and market dynamics.
Below, this scenario is theoretically explained, using formulas
and computation processes.

Modeling the Advocate Matching Game

(1) Definition of Advocates and Markets Let % =
{?1, ?2, . . . , ?<} be the set of advocates, and " =
{<1,<2, . . . ,<=} be the set of markets. Let '?8 be
the reliability of information held by advocate ?8 , and
'< 9 be the reliability of information held by market < 9 .

(2) Value and Cost of Information: Let+ denote the value
of information, which depends on its reliability '. For
instance,+ (') = 0'+1 where 0 and 1 are constants. Let
⇠ denote the cost of providing information, which also
depends on its reliability '. For example, ⇠ (') = 2',
where 2 is a constant.

(3) Matching Strategy Advocate ?8 aims to match with
the optimal market < 9 considering their information’s
reliability '?8 . The success of matching is higher when
the difference in reliability between the advocate and the
market |'?8'< 9 | is smaller.

Expression in Formulas

(1) Utility Function for Matching Let *?8 ,< 9 denote the
utility from matching advocate ?8 with market < 9 . This
utility is calculated as the difference between the value
of information + ('?8 ) and its cost ⇠ ('?8 ).

*?8 ,< 9 = + ('?8 )⇠ ('?8 )

(2) Condition for Optimal Matching The optimal market
<⇤

9 for advocate ?8 is the market that maximizes the
utility *?8 ,< 9 .

<⇤
9 = arg max

< 9 2"
*?8 ,< 9

Analysis of Instability and Randomness

In a complete information scenario, the reliabilities '?8

and '< 9 are known constants, making the matching out-
come deterministic. In contrast, in an incomplete infor-
mation scenario, the randomness in '?8 and '< 9 intro-
duces uncertainty in the matching outcome, potentially
leading to market instability. This model offers a use-
ful framework for understanding the role and strategic
choices of advocates in information markets.

Game Strategy and Outcomes

Complete Information Game:

When advocates possess complete information, they can
accurately assess the veracity and market value of their
information, enabling them to select the most optimal
match. In this scenario, the game outcome is determined
by rational choices based on the value of information.

Incomplete Information Game:

When advocates operate under incomplete information,
decision-making is influenced by uncertainty and risk.



In this scenario, advocates base their market matching
decisions on expected values and probabilistic judg-
ments, leading to outcomes that are significantly im-
pacted by unpredictable factors.

Conclusion

In this scenario, the auction game based on information
reliability and the advocate matching game introduce
complexity to the dynamics of the information market.
The uncertainty between complete and incomplete infor-
mation scenarios significantly influences game strategies
and outcomes, playing a crucial role in the equilibrium
and stability of the information market. This theoretical
framework provides a valuable perspective for under-
standing the reliability of information and market dy-
namics.

Modeling the Scenario

This scenario focuses on an auction game based on in-
formation reliability and the advocate matching game
within it. We will explore this scenario using detailed
mathematical formulas and computational processes.

Modeling the Advocate Matching Game

(a) Participants’ Definition:

Set of news providers: % = {?1, ?2, . . . , ?<}
Set of consumers: ⇠ = {21, 22, . . . , 2=}
Set of advocates: ! = {;1, ;2, . . . , ;:}

(b) Types of Information:

Fake News: �
True News: )

(c) Auction Game Setup:

Price of fake news: %�

Price of true news: %)

(d) Advocate Matching Game Setup: The price
of reliability-enhancing services offered by advo-
cates: %!

Expression in Formulas

(a) Supply and Demand Functions:

Supply function of fake news: (� (%�)
Demand function of fake news: ⇡� (%�)
Supply function of true news: () (%) )
Demand function of true news: ⇡) (%) )

(b) Calculation of Equilibrium Price and Quantity:
The equilibrium price of fake news, %⇤

� , where
(� (%⇤

�) = ⇡� (%⇤
�), and the equilibrium price of

true news, %⇤
) , where () (%⇤

) ) = ⇡) (%⇤
) ).

(c) Advocate Matching Game: The equilibrium
price for the reliability-enhancing services offered
by advocates, %⇤

! , is determined where this price
matches advocates providing the service with mar-
kets purchasing it.

Computation Process

(a) Deriving Equilibrium Prices: Set up equations
representing the supply and demand functions and
solve for %⇤

� and %⇤
) .

Example: %⇤
� = 0� ·2�

1�
, where 0� , 1� , 2� are

parameters related to the supply and demand
of fake news.

(b) Deriving the Price of Advocate Services: Con-
sider the supply and demand for advocates’ ser-
vices and solve for %⇤

! .
Example: %⇤

! = 0! ·2!
1!

, where 0! , 1! , 2! are
parameters related to the services offered by
advocates.

Interpretation of Results

In this scenario, the equilibrium prices %⇤
� and %⇤

) reflect
the reliability and value of information in the market.
The price of advocates’ services, %⇤

! , indicates the mar-
ket’s valuation of enhancing information reliability. The
uncertainty inherent in complete and incomplete infor-
mation scenarios plays a significant role in determining
advocate matching strategies and market equilibrium,
providing a useful framework for understanding infor-
mation reliability and market dynamics.
The Droop Quota is a method for defining the mini-
mum number of votes required for a candidate to be
elected in an election. It is particularly used in Single
Transferable Vote (STV) systems and proportional rep-
resentation elections. The aim of using the Droop Quota
is to efficiently reflect the will of the voters and minimize
wasted votes.

Calculation of the Droop Quota

The Droop Quota is calculated using the formula:

Droop Quota =
�

Total Valid Votes
Number of Seats to be Filled + 1

⌫
+ 1

Where,



Total Valid Votes is the total number of valid votes
cast in the election.
Number of Seats to be Filled is the number of
candidates to be elected in the election.
b·c denotes the floor function, which returns the
greatest integer less than or equal to the given num-
ber.

Explanation of the Formula

The purpose of this calculation is to define the minimum
number of votes required for a candidate to be elected
fairly for the available number of seats. By using the
Droop Quota, it is possible to redistribute the surplus
votes of a candidate who has exceeded this quota to
other candidates based on the next preferences of the
voters.

Example of Calculation Process

For instance, if the total number of valid votes is 10,000
and there are 4 seats to be filled, the Droop Quota would
be calculated as follows:

Droop Quota =
�
10, 000
4 + 1

⌫
+ 1 = b2, 000c + 1 = 2, 001

This means that each candidate needs to secure at least
2,001 votes to be elected. Surplus votes of a candidate
who has more than this quota are transferred to other
candidates based on the next preferences indicated by
the voters.

Conclusion

The use of the Droop Quota aims to make the election
results more fair and efficient. It ensures that the will
of the voters is maximally respected and that wasted
votes are minimized, making it more likely for the di-
verse preferences of the electorate to be reflected in the
election results.

In this scenario, the dynamics of the information market
and the strategic choices of advocates are theoretically
analyzed using the model of the repeated dilemma game,
considering the expected payoff functions for each player
(advocates and the market) based on the actions they can
take (whether to provide information, choose true infor-
mation or fake news, etc.). In the repeated dilemma
game, decisions in each round affect future rounds, re-
quiring strategies different from those in a single-round
dilemma game.

Setting Up the Expected Payoff Functions

Let 0?8 represent the action of advocate ?8 , and 0< 9

represent the action of market < 9 . 0?8 and 0< 9 can
each choose from {provide, not provide}, {choose true
information, choose fake news}, respectively.

Mathematical Expression of the Expected
Payoff Functions

The expected payoff function ⇢ [*?8 ,< 9 ] can be ex-
pressed as follows:

⇢ [*?8 ,< 9 ] =
’

0?8 ,0<9

%(0?8 , 0< 9 )·* (0?8 , 0< 9 , '?8 , '< 9 )

Where, %(0?8 , 0< 9 ) is the probability that actions 0?8

and 0< 9 are chosen. * (0?8 , 0< 9 , '?8 , '< 9 ) is the payoff
function for specific actions and levels of reliability.

Specific Expression of the Payoff Function*

The payoff function can be set as follows:

* (0?8 , 0< 9 , '?8 , '< 9 ) =

8>>>>>>>>><
>>>>>>>>>:

+ ('?8 )⇠ ('?8 ), if 0?8 = provide
^ 0< 9 = true

�+ ('?8 ), if 0?8 = provide
^ 0< 9 = fake news

0, if 0?8 = not provide

Consideration of Instability and Random-
ness

In a complete information scenario, '?8 and '< 9 are
known constants, so the expected payoff can be calcu-
lated deterministically. In contrast, in an incomplete
information scenario, the randomness of '?8 and '< 9

introduces uncertainty into the expected payoff. Incor-
porating randomness into the model allows for an anal-
ysis of market instability.

Computation Process

The computation of the expected payoff function in-
volves calculating the payoff and its probability for each
combination of actions, and then summing all these val-
ues. When considering randomness, values for '?8 and
'< 9 are sampled from a probability distribution (e.g.,
normal distribution), and these values are used to calcu-
late the expected payoff.



This model enables a theoretical analysis of the dynam-
ics of the information market and the strategic decisions
of advocates, offering insights into how to address mar-
ket instability.

Auction Games in the Context of Informa-
tion Reliability

Auction games, a subfield of game theory, analyze the
process where multiple competitors (bidders) bid for
limited goods or services. Various formats of auctions
exist, but we focus on a simple sealed-bid auction here,
explaining its mathematical formulation and computa-
tion process.

Setting of a Sealed-Bid Auction

There is one item up for auction, and = bidders
participate.
Each bidder has their own valuation of the item
(private value), denoted as E8 for bidder 8.
Each bidder submits their bid 18 in a sealed manner.
The bids of other participants are not known.
The bidder with the highest bid wins the item. The
purchase price is set to the highest bid.

Bidding Strategy Formulation

The objective of each bidder is to maximize their gain,
defined as the difference between the valuation of the
item and the purchase price if they win. The gain D8 of
bidder 8 is expressed as:

D8 =

(
E818 , if 8 is the highest bidder
0, otherwise

Derivation of Equilibrium Bidding Strategy

Bidders determine their optimal bidding strategy based
on the actions of others. In an equivalent bidding strat-
egy, bidders decide their bid amount as a function of
their valuation. The bid 18 of bidder 8 is expressed as a
function of E8:

18 = 5 (E8)

Here, 5 represents the strategy function of the bidder.

Calculation of Nash Equilibrium

In sealed-bid auctions, the Nash equilibrium is a state
where, knowing the strategies of others, no bidder wants
to change their strategy. To find the Nash equilibrium,
calculate the optimal bid amount for every bidder given
the strategies of others.

The specific computation process depends on the distri-
bution of the bidders’ valuations. For example, assuming
valuations follow a uniform distribution, the equivalent
bidding strategy can be derived as:

5 (E8) = UE8

Here, U is a constant dependent on the distribution of
valuations and the number of bidders. Using this equiv-
alent function, the optimal bid for each bidder can be
calculated.

Conclusion

The mathematical formulation and computation process
in auction games depend significantly on the bidders’
valuations, bidding strategies, and the rules of the auc-
tion. In the model of a sealed-bid auction, the aim is to
find the optimal bidding strategy for each bidder, thereby
deriving the auction’s Nash equilibrium as a whole.



In this scenario, the dynamics of the information market
are further complicated by the introduction of an advo-
cate’s matching game and a secondary information auc-
tion game, based on the reliability of information. The
uncertainty between complete and incomplete informa-
tion scenarios is modeled using a probabilistic approach
to analyze the issue.

Modeling the Scenario

Advocates’ set: % = {?1, ?2, . . . , ?<}
Market’s set: " = {<1,<2, . . . ,<=}
Reliability of information held by advocate ?8: '?8

Reliability of information held by market < 9 : '< 9

Value function of information: + (') = 0' + 1

Cost function of providing information: ⇠ (') =
2'

Introduction of Randomness

Model the reliability of information '?8 and '< 9 held by
advocates and markets as random variables to introduce
randomness into the reliability of information. For ex-
ample, assume '?8 and '< 9 follow normal distributions
# (`?8 ,f

2
?8 ) and # (`< 9 ,f

2
< 9

), respectively.

Utility Function for Matching

Calculate the expected utility of matching advocate ?8
with market < 9 :

⇢ [*?8 ,< 9 ] = ⇢ [+ ('?8 )]⇢ [⇠ ('?8 )]

Here, the expected values ⇢ [+ ('?8 )] and ⇢ [⇠ ('?8 )]
are the expected values of the information value function
and the cost function, respectively.

Condition for Optimal Matching

Select the market <⇤
9 that maximizes the expected utility

for advocate ?8:

<⇤
9 = arg max

< 9 2"
⇢ [*?8 ,< 9 ]

Analysis of Instability

In a complete information scenario, the reliability '?8

and '< 9 are known constants, making the expected pay-
off deterministic. In contrast, in an incomplete infor-
mation scenario, randomness in '?8 and '< 9 introduces

uncertainty into the expected payoff. This uncertainty
can lead to dynamic changes in the market and the cir-
culation of information, potentially causing market in-
stability.

Using this model, it is possible to theoretically analyze
the differences between complete and incomplete infor-
mation scenarios and the resulting market instability,
providing insights into the impact of information uncer-
tainty on the market.

5. Discussion:Auction Games in
Incomplete Information Settings

In the context of auction games under incomplete in-
formation, we consider a scenario where bidders do not
have complete information about the valuation of other
bidders. In this setting, bidders decide on their bidding
strategies based on their beliefs (probability distribu-
tions) about the valuations of other bidders. Below, we
present a general model and calculation process for an
incomplete information auction game.

Sealed-Bid Auction with Incomplete
Information

Let there be = bidders. Each bidder 8 has a valuation
E8 for the item, which is private knowledge to the
bidder itself.
The valuation E8 of each bidder is assumed to be
determined randomly according to a certain proba-
bility distribution, known to all bidders as common
knowledge.

Bidding Strategy and Expected
Utility

The bid 18 of bidder 8 is determined based on their
own valuation E8 and the belief about the valuations
of other bidders.
The expected utility ⇢ [D8] of bidder 8 is repre-
sented by the probability of winning the item and
the expected gain (the difference between the val-
uation and the payment) in such an event.

Calculation of Nash Equilibrium

The Nash equilibrium in an incomplete informa-
tion game is a state where all bidders, considering
their beliefs and the strategies of other bidders,
choose their optimal bidding strategies.



To find the Nash equilibrium, the optimal bidding
amount that maximizes each bidder’s expected util-
ity needs to be determined.

Mathematical Representation

The expected utility of bidder 8 is calculated as follows:

⇢ [D8 (18 , E8)] =
π E8

0
(E818) · %(win|18 , ��8) 35 (E�8)

where,

%(win|18 , ��8) is the probability that bidder 8 wins
the item by submitting a bid 18 , dependent on the
distribution of bids ��8 from other bidders.
5 (E�8) is the probability density function of the
valuations of other bidders.

Calculation Process

(a) Calculate the probability %(win|18 , ��8) that bid-
der 8 wins the item by submitting a bid 18 , based
on the distribution of bids ��8 from other bidders.

(b) Based on the expected utility formula above, de-
termine the optimal bid 1⇤8 that maximizes the ex-
pected utility for each bidder.

(c) Perform the above calculation for all bidders to
determine each one’s optimal bid. The set of bid-
ding strategies at this point constitutes the Nash
equilibrium.

Through this calculation process, it is possible to derive
the optimal bidding strategies for bidders in an auction
game under incomplete information and the overall equi-
librium of the market.

Extended Analysis under Filter
Bubbles

In the context of information trading influenced by fil-
ter bubbles, the incomplete information game theory
applied to sealed-bid auctions becomes more complex.
Bidders’ valuations are uncertain and may fluctuate over
time due to external information manipulation or the
effects of filter bubbles.

Model Setup

Each bidder possesses a valuation E8 for the infor-
mation, which is known only to them but can be
influenced by the filter bubble or external informa-
tion manipulation.

Each bidder decides on their bid 18 based on their
current valuation E8 , taking into account the poten-
tial fluctuations in valuation due to time or external
influences.

Bidding Strategy Formulation

The expected utility function for a bidder incorporates
the potential for valuation changes over time or due to ex-
ternal influences, modifying the traditional utility func-
tion to:

D8 (C) =
(
E8 (C)18 (C), if 8 is the highest bidder at time C
0, otherwise

Derivation of Equilibrium Bidding Strategy

Bidders need to consider their valuation’s fluctuation
over time or due to external information when determin-
ing their optimal bidding strategy. The strategy 18 (C) is
expressed as a function of the valuation E8 (C), incorpo-
rating the effects of time and external information:

18 (C) = 5 (E8 (C), C, external information)

Nash Equilibrium Calculation

The dynamic environment necessitates that bidders pre-
dict each other’s strategies while considering their own
valuation changes and external influences. The process
of reaching a Nash equilibrium in this context becomes
dynamic, adapting to time changes and external infor-
mation manipulation.

Calculation Process

(a) Modeling Valuation Fluctuations: Define a
model for the time variation of each bidder’s valu-
ation, considering how external information might
influence it.

(b) Optimal Strategy Computation: Calculate each
bidder’s optimal bidding strategy, taking into ac-
count the valuation fluctuations and external infor-
mation.

(c) Deriving Nash Equilibrium: Confirm that the
computed strategies are mutually optimal for all
bidders, thereby achieving Nash equilibrium in a
dynamic setting.



Conclusion

Incorporating time variation and external information
manipulation into the complete information game theory
model for auctions allows for a more accurate analysis
of actual auction situations. However, this also com-
plicates the calculation process, necessitating a more
sophisticated approach to understanding bidders’ strate-
gies and the auction’s outcomes.

6. Non-Complete Information Game
Theory for Filter Bubble-Influenced
Information Trading in Sealed-Bid

Auctions

We present detailed formulas and computational pro-
cesses for sealed-bid auctions based on non-complete
information game theory, within the context of informa-
tion trading influenced by filter bubbles.

Model Setup

Set of bidders: 8 2 {1, 2, . . . , =}
Each bidder’s valuation: E8 , where E8 is a random
variable and private information for each bidder.
Bidding amount: 18
Bidder’s belief model considering fluctuations in
valuation due to filter bubbles and external infor-
mation manipulation: ⌫(E8)

Formula for Bidding Strategy

The expected utility ⇢ [D8] for each bidder is expressed
as follows:

⇢ [D8] = %(win) ⇥ (⇢ [E8]18)

Here, %(win) is the probability that bidder 8 is the high-
est bidder. This probability depends on the bidding
strategies of other bidders and the belief model ⌫(E8) of
bidder 8.

Derivation of Equivalent Bidding Strategy

To derive the equivalent bidding strategy 18 = 5 (E8) for
bidder 8, find 18 that maximizes ⇢ [D8]:

max
18

⇢ [D8] = max
18

%(win) ⇥ (⇢ [E8]18)

Calculation of Nash Equilibrium

The system reaches Nash equilibrium when all bidders
bid according to each other’s optimal strategies. In Nash
equilibrium, no bidder can increase their expected utility
by unilaterally changing their strategy.

(a) Define the belief model for bidders: Each bidder
has a belief model ⌫(E8) about the valuations of
other bidders, which is used to calculate %(win).

(b) Maximize expected utility: Each bidder uses their
belief model and expected valuation to find 18 that
maximizes ⇢ [D8].

(c) Derive Nash equilibrium: Find the point where
the strategies 18 = 5 (E8) of all bidders are the best
responses to each other, which constitutes the Nash
equilibrium.

Specific Form of Equations

To derive Nash equilibrium, specific information about
the belief model of bidders and the distribution of valua-
tions is required. For instance, if valuations are assumed
to follow a uniform distribution, the equivalent bidding
strategy might be calculated as follows:

18 = U⇢ [E8]

Here, U is a constant determined based on the bidding
strategies and belief models of other bidders.

Conclusion

The sealed-bid auction model based on non-complete
information game theory in the context of filter bubble-
influenced information trading optimizes bidding strate-
gies by considering the belief model of bidders and the
uncertainty in valuations. Calculating Nash equilibrium
requires specific information about the belief models and
distribution of valuations, and this information is used
to derive optimal strategies.

7. Incorporating First-Price and
Second-Price Auctions in the Context

of Filter Bubble-Influenced
Information Trading

We examine sealed-bid auctions based on non-complete
information game theory from the perspectives of first-
price and second-price auctions, considering the uncer-
tain valuations held by bidders due to filter bubbles, and
the potential fluctuations in valuations over time or due
to external information manipulation.



First-Price Auction

In a first-price auction, the highest bidder wins the item
and pays their bid amount.

Bidding Strategy

The goal of bidders is to win the item at a price be-
low their valuation, maximizing their gain. Bidder 8’s
bidding strategy 18 is based on their valuation E8 , but
also considers the uncertainty surrounding the actions
of other bidders.

The expected utility ⇢ [D8] for bidder 8 is given by:

⇢ [D8] = %8 (18) ⇥ (E818)

where %8 (18) is the probability that bidder 8 is the highest
bidder at time C.

Nash Equilibrium

Each bidder selects their bid amount to maximize their
expected utility, considering the strategies of other bid-
ders. In Nash equilibrium, no bidder can improve their
expected utility by unilaterally changing their strategy.

Second-Price Auction

In a second-price auction, the highest bidder wins the
item, but the price paid is the second-highest bid.

Bidding Strategy

Theoretically, it is optimal for bidders to bid an amount
equal to their true valuation E8 , as the winning price
depends not on their own bid but on the second-highest
bid.

Nash Equilibrium

In a second-price auction, the strategy of bidding one’s
true valuation E8 constitutes a Nash equilibrium for all
bidders.

Conclusion

In the context of filter bubble-influenced information
trading under non-complete information game theory,
the optimal bidding strategies differ between first-price
and second-price auctions. In a first-price auction, it
is necessary to consider the strategies of other bidders
when bidding, while in a second-price auction, bidding

one’s true valuation is the optimal strategy. Both auc-
tion formats are influenced by the uncertainty of bid-
ders’ valuations and the effects of external information
manipulation, requiring strategic decision-making under
incomplete information.

8. Calculating the Expected Utility
Function Based on the Outcome of a

First-Price Auction

This section explains the process of calculating the ex-
pected utility function using information obtained from
the results of a first-price auction. In this process, bid-
ders update their beliefs based on auction outcomes and
calculate their expected utility for subsequent auctions
based on these updated beliefs.

Updating Beliefs

Bidders update their beliefs about other bidders’ valua-
tions based on the outcomes of the first auction. This
update is typically done using Bayes’ theorem. The
belief update is expressed as:

⌫0 (E) = %(Outcome|E) ⇥ ⌫(E)
%(Outcome)

where, ⌫0 (E) is the updated belief. %(Outcome|E) is the
conditional probability of observing a specific auction
outcome given the bidder’s valuation E. ⌫(E) is the prior
belief (i.e., the belief before the auction outcome was
known). %(Outcome) is the probability of observing
the specific auction outcome.

Calculating Expected Utility

Based on the updated beliefs, bidders calculate their
expected utility for the next auction. The expected utility
in a first-price auction for a bidder is defined by the
difference between the valuation and the bid amount if
the bidder wins. The expected utility is expressed as:

⇢ [D8] =
’

all 9<8
%(8 is the highest bidder|E8 , E 9 ) ⇥ (E818)

where, ⇢ [D8] is the expected utility of bidder 8.
%(8 is the highest bidder|E8 , E 9 ) is the probability that
bidder 8 is the highest bidder given their valuation E8
and the valuations E 9 of other bidders. E8 is the valua-
tion of bidder 8. 18 is the bid amount of bidder 8.

In this calculation of expected utility, the probability of
winning for 8 against all other bidders is considered, and



the gain (E818) for each scenario is weighted accordingly.
This calculation should reflect the updated beliefs based
on the auction outcomes.

9. Discussion:Introducing the Meek
Method in Information Auction

Games

We describe the process of calculating the marginal con-
tribution using the Meek method in the context of in-
formation auction games. Originally used in electoral
contexts for redistributing votes, here it is analogously
applied to redistribute the value of information.

Application of the Meek Method

1. Initial Setup: Initial valuations E8 for each bidder are
given. Bidding amounts 18 are also determined.
2. Initial Distribution of Correct Information: Cor-
rect information is initially distributed among bidders
who possess it. This distribution is proportional to their
bidding amounts 18 .
3. Redistribution of Excess: Excess correct informa-
tion from bidders who have more than they need is re-
distributed to others. This is based on the marginal
contribution of each bidder.

Calculating Marginal Contribution

The marginal contribution is defined as the additional
value provided by a bidder by contributing one more
unit of correct information. To calculate this:
1. Calculating Information Value for Each Bidder:
Calculate the value of information +8 for each bidder,
based on the amount and quality (reliability) of the cor-
rect information they possess.
2. Determining Marginal Contribution: Calculate the
increase in total information value when a bidder pro-
vides an additional unit of correct information. Denote
this as �+8 .
3. Executing Redistribution: Based on �+8 for each
bidder, redistribute the excess correct information to oth-
ers, thereby maximizing the total value of information.

Mathematical Representation

�+8 = + (E8 + X)+ (E8)

where,+ (E8) is the current value of the information held
by bidder 8. + (E8 + X) is the new value of information
when bidder 8 contributes an additional X units of correct
information. �+8 is the marginal contribution of the
information by bidder 8.

Conclusion

By applying the Meek method to information auction
games, it is possible to distribute correct information
appropriately and calculate its marginal contribution.
Calculating the marginal contribution of each bidder
allows for the optimal redistribution strategy that max-
imizes the value of information. This process aims to
accurately assess the value of information and redis-
tribute it appropriately to enhance overall informational
efficiency.

Simulation of Information
Distribution Considering

Information Ownership, Financial
Resources, and Social Trust

We propose formulas and a computational process for
a simulation to analyze the distribution of information,
taking into account the rate of information ownership,
financial resources, and social trustworthiness of partic-
ipants.

Model Setup

1. Definition of Participants: Define a set of par-
ticipants 8 as % = {?1, ?2, ..., ?=}. Each participant
possesses an information ownership rate �8 , financial re-
sources ,8 , and social trustworthiness )8 .

2. Value of Information: Model the value of informa-
tion+ (�8 ,)8) as a function of the information ownership
rate �8 and social trustworthiness )8 .

3. Information Distribution Function: Model the
appropriate distribution of information ⇡ (�8 ,,8 ,)8) as
a function of information ownership rate �8 , financial
resources ,8 , and social trustworthiness )8 .

Mathematical Representation

1. Value of Information:

+ (�8 ,)8) = 0 · �8 + 1 · )8

Here, 0 and 1 are constants representing the contribu-
tions of the information ownership rate and social trust-
worthiness, respectively.

2. Information Distribution:

⇡ (�8 ,,8 ,)8) = 2 · �8 + 3 ·,8 + 4 · )8

Here, 2, 3, and 4 are constants representing the con-
tributions of the information ownership rate, financial
resources, and social trustworthiness, respectively.



Computational Process

1. Calculate the Information Value for Each Par-
ticipant: For each participant, calculate the value of
information + (�8 ,)8).
2. Determine the Optimal Information Distribution:
Find the information distribution ⇡ (�8 ,,8 ,)8) that max-
imizes the total value of information for all participants.
This can be solved using linear programming or opti-
mization algorithms.

3. Evaluate the Overall Social Trustworthiness: Cal-
culate the total social trustworthiness )C>C0; =

Õ=
8=1 )8 ·

⇡ (�8 ,,8 ,)8) after distribution.

Execution of Simulation

Set initial values and generate �8 , ,8 , and )8 for each
participant either randomly or based on specified val-
ues. Execute the information distribution based on the
computational process described above. Evaluate the
total social trustworthiness )C>C0; and the information
value + (�8 ,)8) for each participant.

Conclusion

This simulation allows for understanding how informa-
tion ownership rate, financial resources, and social trust-
worthiness impact the value of information and its ap-
propriate distribution. It also provides a foundation for
strategizing towards maximizing social trustworthiness.

10. Modeling and Computational
Process of a Repeated Dilemma

Auction Game under Incomplete
Information

This section explains the modeling and computational
process of a repeated dilemma auction game under in-
complete information, where bidders participate in a se-
ries of auctions, and actions in one round can influence
future actions.

Model Setup

1. Definition of Bidders: Define a set of bidders 8 as
% = {?1, ?2, ..., ?=}. Each bidder has a private valuation
E8 and access to undisclosed information *8 .

2. Rounds of the Game: The game is repeated over )
rounds.

3. Bidders’ Strategies: A bidder’s strategy (8 (C) de-
fines the bidder’s action at time C.

4. Payoff Function: A bidder’s payoff depends on the
difference between the valuation and the bid price if they
win, but it also depends on undisclosed information *8

and past actions.

Mathematical Expression

1. Bidder’s Payoff Function:

⇧8 (C) =
(
E818 (C), if 8 wins at time C
0, otherwise

where 18 (C) is the bid amount of bidder 8 at time C.
2. Strategy Update: Bidders update their strategies
based on past rounds’ outcomes. This involves consid-
ering past payoffs and the actions of other bidders.

Computational Process

1. Setting Initial Strategies: Set initial strategies (8 (1)
for each bidder.
2. Determining Actions for Each Round: At each C,
bidders decide their bid amounts 18 (C) based on strategy
(8 (C).
3. Calculating Payoffs: At the end of each round,
determine the winner and their payoff, calculating ⇧8 (C).
4. Updating Strategies: Bidders update their strategies
for the next round (8 (C +1) based on past payoffs and the
actions of other bidders.
5. Repetition: Repeat the above steps for ) rounds.

Conclusion

In this repeated dilemma auction game, each bidder
needs to learn from past actions and outcomes to adapt
their future strategies. The presence of undisclosed in-
formation and the interdependence of actions across
rounds make this game highly dynamic. The compu-
tational process provides a foundation for understanding
bidders’ strategies, payoffs, and the impact of undis-
closed information, but actual strategies will heavily
depend on the specific game settings and participants’
behaviors.

11. Discussion:Calculating Expected
Payoff Functions and Marginal

Contributions in Auctions

To introduce the calculation process for expected payoff
functions and marginal contributions, it’s necessary to
quantify the expected payoff of bidders and the impact
of each bid on the overall payoff. The detailed process
is described below.



Expected Payoff Function

Setting the Distribution of Valuations

Define the probability distribution that bidder 8’s valua-
tion E8 follows. Common assumptions include uniform
or normal distributions.

Defining Expected Payoff

The expected payoff ⇢ [D8] for bidder 8 is defined as
the expected value of the payoff if the bidder wins the
auction:

⇢ [D8] = ⇢ [E8] � ⇢ [18] ⇥ %(winning)

Here, ⇢ [18] is the expected bid value of bidder 8, and
%(winning) is the probability of winning.

Calculating Winning Probability

The winning probability is calculated as the probability
that bidder 8’s bid is higher than all other bidders:

%(winning) = %(18 > 1 9 ,8 9 < 8)

Marginal Contributions

Defining Marginal Contribution

Calculate the impact of an increase in bidder 8’s bid 18
on the overall expected payoff ⇢ [*], i.e., the marginal
contribution.

Calculating Overall Expected Payoff

The overall expected payoff for the auction is calculated
as the sum of all bidders’ expected payoffs:

⇢ [*] =
=’
8=1

⇢ [D8]

Deriving Marginal Contribution

The impact of a small change in bidder 8’s bid 18 on the
overall expected payoff ⇢ [*] is calculated as the partial
derivative of ⇢ [*] with respect to 18:

m⇢ [*]
m18

=
m

m18
(⇢ [E8] � 18 ⇥ %(winning))

Introducing the Calculation Process

Based on the above equations, set specific probability
distributions and bidding strategies, and perform numer-
ical analysis or simulations to calculate expected payoffs
and marginal contributions. Statistical methods or nu-
merical optimization techniques are often used in these
calculations.

This process enables a quantitative evaluation of how
bidders should adjust their bids and how each bid con-
tributes to the overall auction results.

Modeling the Cocktail Party Effect
in Auctions

Model Assumptions

Assume bidder 8’s judgments are distorted by external
noise or the actions of others, known as the cocktail
party effect. This effect is modeled mathematically and
analyzed through computational processes.

Each bidder 8 has a valuation E8 9 for information 9 , which
can be distorted by the cocktail party effect⇠. The cock-
tail party effect⇠ represents the magnitude of the impact
from external noise or others’ actions. Incorrect infor-
mation dissemination or pricing errors have a negative
impact on bidders’ expected payoffs.

Mathematical Setup

1. Change in Expected Payoff:

⇢ [D8] =
’
9

�
E8 9 � 18 9

�
⇥ %(winning 9 |⇠) � �⇠

Here, �⇠ represents the decrease in expected payoff
due to the cocktail party effect. %(winning 9 |⇠) is the
probability of winning given the cocktail party effect.

2. Distortion in Valuation:

Ẽ8 9 = E8 9 � W(⇠)

Here, W(⇠) represents the magnitude of valuation dis-
tortion due to the cocktail party effect. A larger ⇠ leads
to greater distortion.

3. Adjustment in Bidding:

18 9 = 5 (Ẽ8 9 )

Bidders determine their bid amounts based on the dis-
torted valuation Ẽ8 9 , which can lead to incorrect pricing.



Computational Process

1. Reevaluation of Beliefs and Expected Payoff: Bid-
ders reevaluate their beliefs and valuations considering
the cocktail party effect and recalculate their expected
payoffs.

2. Derivation of Nash Equilibrium: Determine the
Nash equilibrium when each bidder decides their bid
amount based on the optimal strategy, considering the
cocktail party effect.

Conclusion

This model allows for a quantitative analysis of how
the cocktail party effect influences bidders’ valuation
distortion and incorrect pricing in information auctions.
Additionally, it evaluates the impact on the health of the
information market.

12. Perspect Note:Derivation of the
Expected Utility Function

1. Definition of the bidder’s expected utility:

⇢ [D8] = %(winning) ⇥ (E818)⇠ (18)

Here, %(winning) represents the probability of winning,
E8 is the true valuation of bidder 8 for the information, 18
is the bid amount of bidder 8, and ⇠ (18) represents the
cost associated with bidding.

2. Modeling the probability of winning: The proba-
bility of winning depends on the actions of other bidders,
so it is necessary to model the bidder’s belief about the
distribution of actions of others. The effect of the cock-
tail party effect is considered, and this probability is
assumed to change dynamically.

3. Definition of the cost function: The cost function
⇠ (18) depends on the bid amount and may be influenced
by the cocktail party effect. This includes the mental
cost due to intense competition or bidding based on
misinformation.

Calculation of Marginal
Contribution

The marginal contribution indicates the degree to which
a small change in the bidder’s action affects the expected
utility. To obtain this, we differentiate the expected util-
ity function with respect to the bidder’s action variable
(e.g., bid amount 18).

1. Differentiation of the expected utility function:

3⇢ [D8]
318

= %(winning) ⇥ (�1) 3⇠ (18)
318

The first term represents the decrease rate of gain upon
winning, and the second term represents the increase
rate of cost.

2. Interpretation of marginal contribution: The re-
sult of differentiation indicates the change in expected
utility when the bid amount is increased by a small
amount. If this is positive, it indicates that the action in-
creases the expected utility, and if negative, it decreases
it.

Key Points of Process

This model assumes that bidders have incomplete in-
formation about the actions of other bidders and that
their beliefs are distorted by the cocktail party effect.
Calculating the expected utility function and marginal
contribution requires modeling the bidder’s belief, true
valuation, bid amount, and the cost function influenced
by the cocktail party effect. The marginal contribution is
an important indicator for adjusting the bidder’s strategy
and can be used for optimizing the bid amount.
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