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Abstract: This paper summarizes the discussion of a hypothetical computational experiment. This
paper scopes against methods for modeling and analyzing information asymmetries among bidders in
information auctions and how these asymmetries are affected by cocktail party effects. In particular,
we explore how the diffusion of information through network relationships among bidders affects
the outcome of the auction, in particular the Nash equilibrium. Our model begins with a setup in
which bidders each bid based on their valuation with respect to the value of their own information,
and models the flow of information by introducing an adjacency matrix representing the network
connections among bidders. By taking into account cocktail party effects, we mimic the process by
which a bidder receives information from another bidder and analyze how valuations are adjusted as
aresult. By deriving expected gain functions and Nash equilibria, this study quantitatively assesses
the impact of different network structures on auction outcomes. This approach provides insights
into auction design and information policy, and is considered with respect to a new framework for
understanding information asymmetry and the role of networks. By integrating bidder networks into
the model, we examine the process of information diffusion among bidders and its subsequent effects

on auction strategies and Nash equilibria.

Keywords: Incomplete Information Games, Information Asymmetry, Auction Theory, Cocktail
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1. Introduction

This paper also continues and summarizes the discussion of
the hypothetical computational experiments. In this note, we
analyze information asymmetry in auctions and its effect on
the outcome. We consider simulations that intend to address
the value of misinformation bias from the perspective of in-
formational and digital health, as well as preventive measures
against the lack of information judgment in society as a whole
due to the excess of rate.

Fig.1 the impact of social influence on bidder behavior
in a second-price auction, labeled as the "cocktail party ef-
fect". This effect may be analogous to the echo chamber effect
in the context of information dissemination, where the echo
chamber effect refers to situations in which beliefs are am-
plified or reinforced by communication and repetition inside
a closed system and insulated from rebuttal. Base Valuation
(Blue Dots) In the context of information spread, this could

Impact of cocktail party effect in second price auctions (number of bidders=10)
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Fig. 1: Impact of Cocktail Party Effect in Second Price
Auctions
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represent initial individual opinions or beliefs before being
influenced by the echo chamber. Risk: Individuals have a
diverse range of beliefs that are not yet subject to group in-
fluence.

Updated Valuation (Red Crosses)

This could symbolize how individual beliefs change after
being exposed to the echo chamber, where opinions may be-
come more extreme or polarized due to social influence. Risk:
Information within an echo chamber can become distorted,
leading to a departure from objective facts or initial positions.

Optimal Bid (Green Triangles)

This could represent the "rationally adjusted" position one
might take after considering the influence of the echo cham-
ber, aiming to find a balance between personal beliefs and
group opinions. Risk: Even when adjusting for the echo
chamber effect, there’s a risk of not fully escaping its influ-
ence or underestimating its impact on one’s beliefs.

Valuation after Iterative Dilemma (Red Squares)

This might indicate a further adjustment after multiple it-
erations of influence and learning, perhaps an individual’s
attempt to reach a more stable belief system. Risk: Over
time, the echo chamber’s influence could lead to increasingly
entrenched positions, making it difficult for individuals to
adjust their beliefs in light of new information.

From arisk management perspective, understanding these
dynamics is critical.

Diversity of Opinions

Encouraging a range of perspectives can mitigate the risk of
the echo chamber effect by preventing any single viewpoint
from becoming disproportionately influential.

Critical Thinking

Promoting critical thinking skills can help individuals to eval-
uate information more objectively, rather than being swayed
by the group.

Open Communication Channels

Ensuring that communication channels remain open to out-
side information can help prevent the echo chamber from
becoming too insular.

Continuous Learning

Encouraging continuous learning and adjustment can help
mitigate the risks associated with the iterative dilemma of
increasingly entrenched beliefs.

Cocktail party effects in Vickrey auctions
Bidders: 5, Rounds: 10
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Fig. 2: Cocktail party effects in Vickrey auctions

In any system where information spread is important, such
as markets, social networks, or even

Fig.2 shows bid amounts over several rounds in a Vickrey
auction setting with a fixed number of bidders (5) and rounds
(10). Eachline represents the bid amount trajectory of a single
bidder across these rounds. The trend shows that all bidders
decrease their bid amounts as the rounds progress. This is
labeled as the "Cocktail party effects in Vickrey auctions".

In the context of risk management for information spread
within an echo chamber, the graph can be interpreted
metaphorically. Here’s how the depicted trends might relate
to the dynamics of an echo chamber.

Descending Bids Over Rounds

This could represent the diminishing strength of an initial
opinion or piece of information as it’s repeatedly shared
within an echo chamber. It may indicate a dilution effect
where the original message loses its impact over time due to
constant repetition or challenges within the chamber.

Different Rates of Decline

The varying slopes for each bidder suggest that not all indi-
viduals within an echo chamber adjust their views at the same
rate. Some may be more resistant to change than others,
which is common in social groups where some individuals
hold onto beliefs more tightly.

Risk Management Implications

Monitoring Change Over Time

Just as the bids change over rounds, opinions in an echo
chamber may evolve. It’s important to monitor these changes




Cocktail party effect in all-pay auction

umber of bidders: 5, number of rounds: 10, cocktail party effect coefficient: 0.5
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Fig. 3: Cocktail party effect in all-pay auction

to manage the risk of misinformation or the hardening of
extreme views.

Encouraging Diversity

The varied trajectories suggest the benefit of having a diver-
sity of opinions within a group to prevent homogenization
of thought. Understanding Group Dynamics Just as each
bidder’s strategy adjusts over time in response to others, un-
derstanding the dynamics within an echo chamber can help
manage the risks of groupthink and polarization.

Strategic Adjustments

As the bidders in the auction adapt their strategies based on
others’ bids, individuals within an echo chamber might also
adjust their beliefs in response to social cues. Recognizing
these adjustments is crucial for countering the risks of misin-
formation.

To manage risks associated with echo chambers effec-
tively, one should: Promote fact-checking and verification to
maintain a baseline of truth. Encourage exposure to diverse
viewpoints to counteract the homogenizing effects. Facilitate
open dialogue and constructive debate to help refine and mod-
erate opinions. Be vigilant about the sources of information
that feed into the echo chamber to prevent the spread of false
narratives.

Fig.3 shows the bid amounts of 5 bidders across 10 rounds
in an all-pay auction with the cocktail party effect, where the
coeflicient is set to 0.5. Unlike a traditional auction, in an
all-pay auction, all bidders must pay their bid regardless of
whether they win, which can mirror the way individuals *pay’
with their time or reputation when contributing to an echo
chamber.

In terms of risk management for information spread
within echo chambers, the graph can provide several insights.

Volatile Bid Trajectories

The bid amounts do not follow a consistent trend; instead,
they show fluctuations over the rounds. This volatility might
represent the variable nature of information within an echo
chamber, where opinions and the spread of information can
fluctuate significantly based on external factors or internal
dynamics.

Cocktail Party Effect

The coefficient suggests that bidders are influenced by the
average bid. In an echo chamber, individuals might similarly
adjust their opinions to align with the perceived average posi-
tion of the group, which could lead to group conformity over
time.

Bid Convergence and Divergence

Some bidders’ amounts converge or diverge as the rounds
progress, which may reflect how certain views become more
similar or more polarized within an echo chamber. It’s im-
portant to manage the risk of extreme polarization, which can
lead to misinformation or radicalization.

Risk Management Implications
Monitoring and Intervention

Just as bid strategies need monitoring and potentially adjust-
ment in auctions, information spread within echo chambers
requires constant monitoring and, if necessary, intervention
to prevent misinformation.

Encouraging Independent Thinking

To counteract conformity, encouraging independent thinking
and skepticism can help individuals critically assess informa-
tion rather than following the crowd.

Diversity of Perspectives

The introduction of diverse viewpoints can disrupt the echo
chamber effect, preventing any single narrative from domi-
nating and thus reducing risks.

The result provides a visual representation of how individ-
uals’ contributions (or bids) to a discussion (or auction) may
evolve when influenced by others around them. It illustrates
the importance of understanding individual and collective be-
havior dynamics when managing the spread of information
within any group, especially in an echo chamber where the
risk of misinformation is heightened.

In particular, we model a situation in which there is in-
formation asymmetry among bidders, and organize ideas to
examine how the auction outcome changes when some bid-
ders have more advantageous information than others. We



explore how this information asymmetry is affected by cock-
tail party effects, and by introducing network relationships
among bidders, we examine how information diffuses through
the network. We also use this model to organize with respect
to how network structure affects the cocktail party effect and
the diffusion of misinformation through changes in Nash equi-
librium.

Our analysis begins in a setting where there are N bidders
with respect to some fictional mixed information and each
bidders has a valuation based on private information. This
valuation can vary under information asymmetry and cocktail
party effects. The network relationship between the bidders
is represented by an adjacency matrix, which shows how the
expected gain function and valuation adjustment in this model
are defined. We also discuss how the bidder’s probability of
winning a bid is calculated.

It is possible to quantitatively analyze how information
asymmetries, cocktail party effects, and network relation-
ships among bidders affect the outcome of an auction. This
approach provides new insights into auction theory and seeks
to better understand the impact of information diffusion on
economic decision making.

We will also focus on information asymmetries among
bidders in shield bid auctions, and in particular analyze the
impact of cocktail party effects and repetition dilemmas on
bidders’ strategies. Shield bid auctions, in which bidders sub-
mit their bids in secret and the highest bidder wins, are found
in many real-world bidding environments. The strategic sig-
nificance of this study is emphasized by modeling the effects
of the cocktail party effect, in which bidders adjust their own
valuations based on information gathered from other partici-
pants, and the strategic interactions that develop over multiple
auction rounds, i.e., the effects of repeated dilemmas.

Specifically, we use a mathematical model to formulate
the process of updating a bidder’s beliefs and the associ-
ated strategy adjustment in order to find the optimal bidding
strategy to maximize the bidder’s expected gain. This pro-
cess involves updating information via cocktail party effects,
evaluating expected gains in future rounds given an iterative
dilemma, and deriving a Nash equilibrium that synthesizes
these factors.

The goal of this study is to reveal the complexity of in-
formation asymmetries and interactions in the formation of
bidder strategies in shield bid auctions, and to provide strate-
gic insights for auction designers and participants. This will
connect insights on designing fairer and more efficient auc-
tions to thinking about the routes of fake news diffusion and
pathways of suppression to fake news by reading the infor-
mation design framework backwards.

The model is premised on a setting where bidders possess
private valuations influenced by asymmetric information and
the cocktail party effect, which simulates the social dynam-

ics of information exchange. Through rigorous mathematical
formulations, we establish the expected utility function for
each bidder, incorporating adjustments for valuation based
on network-driven information flows and the intensity of the
cocktail party effect. We model a situation of information
asymmetry among bidders and analyze auction outcomes
when certain bidders have advantageous information. We
introduce different auction formats into the model, including
first-price auctions, second-price auctions, and Vickrey auc-
tions, compare the impact of cocktail party effects on each
auction format, and finally consider the case where the auc-
tion is evaluated in terms of changes in Nash equilibrium.

2. Discussion:Cocktail Party Effects and

the Diffusion of Misinformation
through Changes in Nash Equilibrium

This paper also continues and summarizes the discussion of
the hypothetical computational experiments. In this note, we
analyze information asymmetry in auctions and its effect on
the outcome. We consider simulations that intend to address
the value of misinformation bias from the perspective of in-
formational and digital health, as well as preventive measures
against the lack of information judgment in society as a whole
due to the excess of rate. In particular, this paper models a
situation in which there is information asymmetry among
bidders who invest in information, and organizes ideas to ex-
amine how auction outcomes change when some bidders have
more favorable information than others. Explore how this in-
formation asymmetry is affected by the cocktail party effect
due to the spread of noisy outer information, the spread of
fake news, and other information scattering, and by introduc-
ing network relationships among bidders, how the network
structure affects the cocktail party effect and the spread of
misinformation By introducing network relationships among
bidders, we have organized a method to evaluate how net-
work structure affects cocktail party effects and the diffusion
of misinformation through changes in Nash equilibrium.

Our analysis begins in a setting where there are N bidders
with respect to some fictional mixed information and each
bidders has a valuation based on private information. This
valuation can vary under information asymmetry and cocktail
party effects. The network relationship between the bidders
is represented by an adjacency matrix, which shows how the
expected gain function and valuation adjustment in this model
are defined. We also touch on how the bidder’s probability of
winning a bid is calculated.

This paper takes a deep dive into information asymmetry
among bidders and its strategic implications in the context
of shielded bid auctions, specifically analyzing how cocktail
party effects and repetition dilemmas affect bidders’ behavior
and auction outcomes. Shielded bid auctions are an auction
format in which participants submit one sealed bid at a time,



and the secretive nature of this process adds unique complex-
ity to the bidders’ strategies. Bidders must make their own
bidding decisions based on limited information, and in doing
so, they typically infer the potential strategies and valuations
of other participants.

The cocktail party effect refers to the phenomenon in
which a bidder overreacts to bits and pieces of information
gathered from the words and actions of other bidders and
adjusts his or her own evaluation and strategy accordingly.
This effect causes the bidders’ beliefs and strategies to be
heavily influenced by the expected behavior of other bidders,
independent of the actual progress of the auction. Repeated
dilemmas, on the other hand, refer to strategic interactions
that occur in situations where the same bidders participate in
multiple auctions, creating complex dynamics in which the
outcomes of past rounds affect future strategies.

In this study, we systematically analyze these phenom-
ena using mathematical models to formulate the optimiza-
tion problems faced by bidders. Specifically, we construct
a model that takes into account the bidders’ belief updating
mechanism, information distortion due to cocktail party ef-
fects, and strategic interaction due to iterative dilemmas, with
the goal of finding the optimal bidding strategy to maximize
the bidders’ expected gains. Through this model, we examine
how bidders update their own beliefs, derive optimal bidding
strategies, and how this affects the overall outcome of the
auction.

In addition, we use the concept of Nash equilibrium to
analyze the situation in which bidders mutually take optimal
strategies and derive the equilibrium state of the auction.
Through this analysis, we aim to provide insights for auction
designers and participants to make more strategic decisions.
Understanding the complexity of information asymmetries
and strategic interactions in auctions is critical to the design
and implementation of efficient and fair auction mechanisms.
We would like to consider the implications of this research
for the development of theoretical and practical knowledge in
this area.

3. Discussion:Cocktail Party Effects and

the Diffusion of Misinformation
through Changes in Nash Equilibrium

We considers the mathematical model and calculation pro-
cess that considers the cocktail party effect in imperfect in-
formation auctions. This model takes into account the situ-
ation where specific bidders have advantageous information
compared to other bidders and analyzes the differences in
strategies and outcomes in first-price auctions, second-price
auctions, and Vickrey auctions.

Let N be the set of bidders, with each bidder denoted by
i€N.

Let v; represent the true valuation of bidder i, and b;
represent the bid amount of bidder i.

Assume that a specific bidder k has advantageous infor-
mation I compared to other bidders.

Modeling the Cocktail Party Effect

The cocktail party effect is modeled as the influence
«;; that bidder i receives from the bidding strategy of
others. It represents how much bidder i is influenced by
the actions of bidder ;.

First-Price Auction

(1) Expected utility of a bidder:
Efui] = (vi = b;) X P(wing|b;, Ix)

where P(win;|b;, I}) is the probability of bidder i/ win-
ning the auction considering the bid amount b; and in-
formation I.

(2) Nash equilibrium: Bidders choose their bidding strate-
gies to maximize their own expected utilities. The Nash
equilibrium is a set of optimal strategies b} for all bid-
ders.

Second-Price Auction

(1) Expected utility of a bidder:
Elu;] = (vi = bsecona) X P(win;|b;, I1)

where bgecond 18 the second-highest bid amount.

(2) Nashequilibrium: Bidders’ strategy of bidding their true
valuations v; becomes the Nash equilibrium.

Vickrey Auction
(1) Expected utility of a bidder:

E[u;] = (vi = bsecond) X P(win;|Iy)

In a Vickrey auction, the winner pays the second-highest
bid amount, so the bid amount b; does not affect the
expected utility.

(2) Nash equilibrium: Similarly, bidders’ strategy of bid-
ding their true valuations v; becomes the Nash equilib-
rium.

Impact of the Cocktail Party Effect

The cocktail party effect can potentially alter the ex-
pected utilities and optimal strategies of bidders. Partic-
ularly in a first-price auction, the influence from other
bidders’ strategies might be significant, making the Nash
equilibrium more complex and dynamic.



Calculation Process

(1) Define the expected utility functions for bidders in each
auction format.

(2) Modify the expected utility functions to include the cock-
tail party effect.

(3) Derive the optimal strategies for each bidder and find the
Nash equilibrium.

(4) Conduct simulations with different auction formats and
intensities of the cocktail party effect to compare and
analyze the results.

This model allows for an understanding of the strategies
and outcomes in different auction formats under imperfect
information, as well as the impact of the cocktail party ef-
fect. Detailed analysis of the calculation process should be
conducted through numerical analysis or simulations.

To model the asymmetry of information among bidders in
the context of auctions considering the cocktail party effect,
we develop detailed mathematical expressions and calculation
processes as follows.

Modeling the Cocktail Party Effect

The cocktail party effect is the phenomenon where bidders
excessively react to the bidding behaviors or information of
others. To model this effect, we introduce an updating func-
tion for the bidders’ valuations.

(1) Basic valuation of bidders: Each bidder i has a basic
valuation v; for the object. This is based on the initial
information each bidder possesses.

(2) Information update: Due to the cocktail party effect,
bidders update their valuations based on the actions of
others. The updated valuation 7; for bidder 7 is modeled
as follows:

Vi=vi+ Z @ij(bj—vi)
I

where b; is the bid amount of bidder j, and «;; is a
parameter indicating how much bidder i is influenced by
the information from bidder j.

Expected Utility in First-Price Auction

(1) Expected utility of a bidder: The expected utility E [u;]
for bidder 7 is the gain from winning the auction minus
the bid amount, using the updated valuation:

E[u;] = (¥; = b;) x P(win;|b;)

where P(win;|b;) is the probability of bidder i winning
the auction with the bid amount b;.

Impact of the Cocktail Party Effect

The cocktail party effect influences bidders’ expected utilities
and strategic choices. Especially, bidders need to adjust their
bidding amounts considering the influence they receive from
others’ actions.

Calculation Process

(1) Setting parameters: Set the values for @;; to determine
how much bidders are influenced by others’ information.

(2) Calculating expected utility: Consider the updated val-
uation ¥; and each bidder’s bidding strategy to calculate
the expected utility.

(3) Deriving Nash equilibrium: Find the Nash equilibrium
by identifying the bidding strategies that maximize each
bidder’s expected utility. Optimization techniques and
game theory tools can be employed for this purpose.

To analyze the impact of the cocktail party effect in a
first-price auction, we develop the following steps for mathe-
matical expressions and calculation processes.

Basic Valuation and Cocktail Party Effect

Each bidder 7 has a basic valuation v; for the object and
updates their valuation based on bids observed from others.
The update due to the cocktail party effect is modeled as
follows:

Vi =v;i + Z Clij(bj - Vi)
J#i

Here, 7; is the updated valuation, b is the bid amount of
bidder j, and «;; indicates how much bidder i is influenced
by the bid of bidder j.

Expected Utility in a First-Price Auction

The expected utility for bidder 7 in a first-price auction is
expressed as:

E[u;] = (¥; = b;) x P(win;|b;)

Here, P(win;|b;) is the probability of bidder i winning
the auction with the bid amount b;.

Calculating Winning Probability

The winning probability P(win;|b;) depends on the bid-
ding strategies of other bidders. A common approach is to
assume that the other bidders’ bids follow a certain proba-
bility distribution. For example, if we assume that the other
bids are uniformly distributed, the winning probability can be
expressed as:

P(win;|b;) = ]—[ P(b; < b;)
j#i
Deriving Optimal Bidding Strategy
Bidders choose their bid amounts to maximize their ex-
pected utilities. To achieve this, differentiate the expected



utility function E[u;] with respect to b;, and set the deriva-
tive to zero:

dE [u;]
db;

d xd 37 p—
= W [(¥; = by) X P(win;|b;)] =0

Solving this equation will yield the optimal bidding strat-
egy b} for bidder i.

Analyzing the Impact of the Cocktail Party Effect

To analyze the impact of the cocktail party effect, calculate
the optimal bidding strategy b for different values of a;; and
compare how these parameters affect the bidders’ strategies
and the auction outcomes.

Simulation and Analysis

To understand the broader implications of the cocktail
party effect in auction scenarios, conduct simulations under
varying auction conditions and with different intensities of
the cocktail party effect. By changing the parameters and
analyzing the outcomes, insights can be gained into how in-
formation asymmetry and bidder behavior influence auction
dynamics.

Extending to Second-Price and Vickrey Auctions

The analysis can be extended to second-price (Vickrey)
auctions, where the winning bidder pays the second-highest
bid. The cocktail party effect may influence bidding strate-
gies differently in this context, as the optimal strategy in a
Vickrey auction under standard conditions is to bid one’s true
valuation.

E[u;] = (¥; = Psecond) X P(win;|b;)

Here, psecond 18 the second-highest bid, and the expected
utility calculation adjusts accordingly. The impact of the
cocktail party effect in such auctions warrants a separate
analysis, as the strategic considerations differ from first-price
auctions.

Modeling Repetitive Auctions

In repetitive auction settings, bidders may adjust their
strategies based on outcomes of previous auctions. This
dynamic introduces a layer of complexity, as bidders must
weigh historical performance and future expectations in their
decision-making process.

Addressing Complex Dynamics

The cocktail party effect can lead to complex dynamics,
especially when combined with other factors like bid shad-
ing, risk aversion, and auction format variations. Advanced
modeling techniques, including simulations and agent-based
models, may be required to fully capture these dynamics.

The mathematical models and calculation processes out-
lined provide a framework for analyzing the cocktail party
effect in auction settings. By incorporating factors such as
information asymmetry, bidder behavior, and auction dynam-
ics, these models contribute to a deeper understanding of

strategic interactions in auctions. Future research could fur-
ther refine these models, explore empirical validations, and
extend the analysis to more complex auction formats and set-
tings.

4. Discussion:Modeling the Iterative
Dilemma

The iterative dilemma illustrates the situation where bidders
learn from the outcomes of past auctions and adapt their
strategies for the future. The strategy of each bidder in each
round is updated based on the results of previous rounds.

bg”l) = f(b}’),B(_ti),outcome(’))

where bft) is the bid of bidder i in round ¢, B(_’i) is the set
of bids from other bidders in round ¢, and outcome®) is the
result of round ¢.

1. Initial Setup: Set the initial bid and valuation for
each bidder. 2. Influence of the Cocktail Party Effect:
In each round, bidders adjust their bidding strategy based
on the bids of other bidders. 3. Update of the Iterative
Dilemma: Update the strategy of bidders based on the results
of each round. 4. Search for Nash Equilibrium: Find the
equilibrium state when each bidder chooses a strategy that
maximizes their expected utility.

The computational process of modeling the iterative
dilemma is explained in detail. In the iterative dilemma,
each bidder must learn from past outcomes and adapt their
future strategy. This process requires defining how a bidder’s
strategy changes based on past experiences.

Definition of Bidder’s Strategy

Let si(') represent the strategy of bidder i at time step 7, in-
dicating the bidder’s action (e.g., bid amount). The initial
strategy sfo) is set based on the bidder’s initial beliefs and
information.

Learning from Past Outcomes

Bidders update their strategy based on the outcomes of past
auctions. This process is represented by a general function as
follows:

sf”l) = ¢(s;t),hist0ry(’))
where ¢ is the strategy update function, and history® is
the history of all auction outcomes up to time step .

An Example of a Strategy Update Function

An example of a strategy update function ¢ could be to in-
crease the bid amount if winning and decrease it if losing. In
this case, the function would be:



sf”l) = sft) +6 X (win}’) - loseft))

where ¢ is a parameter to adjust the strategy, win,

function that returns 1 if bidder i wins at time step ¢ and 0
otherwise, and loseft)

loses and O otherwise.

is a

is a function that returns 1 if the bidder

Adaptability of the Strategy

The strategy of a bidder changes adaptively over the course
of repetition. This adaptability can be incorporated into the
strategy update function to allow for flexibility. For example,
the influence of past outcomes can be varied over time steps,
enabling a bidder to place more emphasis on recent results.

Iteration of the Computational Process

The computational process in this model is iterative. At each
time step, bidders update their strategy and participate in the
auction based on the new strategy. This process continues
until a predefined condition (e.g., a certain number of time
steps has elapsed) is met or until the strategies converge (stop
changing).

Discussion:Modeling the Effects of
Cocktail Party Phenomenon and
Iterative Dilemma in Double Auctions

To model the effects of the cocktail party phenomenon and
the iterative dilemma in double auctions, it is necessary to
consider the situation where multiple bidders and sellers exist,
and to represent how each strategy influences each other.
Here, we explain how the cocktail party effect influences the
strategies of both bidders and sellers, and how the iterative
dilemma is incorporated into the strategies.

Let the set of bidders be B = {by, by, ...,b,} and the
set of sellers be S = {s1, 2, ..., 5, }. Each bidder b; has a
valuation v, for the goods, and each seller s; has a minimum
acceptable price cy; for the goods. Due to the cocktail party
effect, bidders and sellers are influenced by the actions of
others and adjust their strategies accordingly.

Modeling the Cocktail Party Effect

The adjustment of bidders’ bid amounts and sellers’ set prices,
considering the cocktail party effect, can be modeled as fol-
lows:

1. Adjustment of bidders’ bid amounts:

(1) _ (0 W _ 0
b b0 Y (b - ")
k#i

Here, bfz) is the bid amount of bidder i at time ¢, and « is
a parameter indicating the sensitivity to the bid amounts of
other bidders.

2. Adjustment of sellers’ set prices:

(1) _ (1) (1) _ (1)
c; =c; +,BZ(LI c; )

I#j

Here, c;t) is the set price of seller j at time ¢, and 8 is a

parameter indicating the sensitivity to the set prices of other
sellers.

Modeling the Iterative Dilemma

In the iterative dilemma, bidders and sellers learn from the
results of past transactions and adjust their future strategies.
This adaptation process can be represented as follows:

1. Strategy update based on past transaction results: Bid-
ders and sellers record their victories and losses in past trans-
actions and adjust their strategies based on these records.
For example, a bidder could increase or decrease future bid
amounts based on past successful bid amounts.

2. Definition of the strategy update function:

sf”l) = sft) +y (wing') - losei(z))
5[) is the strategy of participant i at time #, y is a pa-
(1)

i

Here, s

rameter indicating the sensitivity of strategy updates, win
(z)

and lose;"’ are indicators of victory and defeat, respectively.

Computational Process

1. Ateach time step, bidders and sellers adjust their strategies
considering the cocktail party effect. 2. After transactions
are made, bidders and sellers update their strategies based on
the outcomes. 3. This process is repeated until a specific
condition is met or the strategies converge.

This model allows us to understand how the cocktail party
effect influences the strategies of bidders and sellers and how
the iterative dilemma contributes to the evolution of strate-
gies.

In modeling the iterative dilemma, it is necessary to
quantify the process by which players (bidders or sellers)
learn from past experiences and adjust their future behavioral
strategies accordingly. Here, we describe the evolution of
strategies in such iterative games mathematically and explain
the computational process.

Modeling the Iterative Dilemma

1. Strategy Definition: Let s; represent the strategy of each
player i, which is the set of strategic parameters (e.g., bid
amount, price setting) determined based on the player’s past
experiences.

2. Experience Update: After each round, players update
their ’experience’ using the outcomes (win or lose) of that
round. This experience represents the internal state or beliefs
that influence future strategic decisions.



Mathematical Expression
Given the strategy sft) of player 7 at round ¢, the strategy
Si(z+1) for round 7 + 1 is updated as follows:

i i i

s = 0y y (Outcome([) . sf’))

where v is the learning rate (a parameter controlling the speed
of strategy adjustment), and Outcomel@ is the adjustment
based on the outcomes of round ¢.

Computational Process

1. Setting Initial Conditions: Set the initial strategy sfo) for
each player i. This defines the initial actions of the players.
The initial strategy can be set randomly or based on assumed
strategic behaviors.

2. Executing Rounds: In round ¢, each player i acts
according to the strategy s;t) . According to the rules of the
game, determine the results of each player’s actions (win,
lose, draw, etc.).

3. Evaluating Results and Learning: For each player
i, calculate the adjustment Outcomefl) based on the results
of round 7. For example, set a positive value for a win and
a negative value for a loss. Update the strategy for the next
round using the learning rate y:

i i

s 2 0 (Outcomey) 'Sft))

Here, Outcomelm i(') represents the difference between the

outcome of the round and the current strategy, and this dif-

)

ference is used to adjust the strategy.

4. Checking for Convergence: Repeat steps 2 and 3
until the strategy updates meet a certain criterion (e.g., the
change in strategy falls below a certain threshold). Continue
the calculation until a predetermined number of rounds have
passed or until the strategies converge.

Example Calculation

Here is a simple example to illustrate the computational pro-
cess:

Initial Strategies: S§0) =0.5, sgo) = 0.5 (initial strate-
gies of players 1 and 2)
Learning Rate: y = 0.1
Round 1 Results: Player 1 wins (Outcomegl) = 1,
Outcome;” =-1)

Strategy Update for Player 1:

sV =0.5+0.1x(1-0.5)=0.55
Strategy Update for Player 2:

sV =05+0.1x (~1-0.5) =0.45

5. Discussion:Modeling the Cocktail
Party Effect and Iterative Dilemma in
Common Value Auctions

To model the cocktail party effect and the iterative dilemma
in common value auctions, we proceed with the following
steps. In this setting, there exists a true value of the item
(common value) for all bidders, but bidders have uncertainty
about this true value. The cocktail party effect is modeled as
a phenomenon where bidders update their valuation based on
information gained from the actions and statements of other
bidders.

Model Assumptions

The true value of the item is V, but each bidder does not
have complete information about V.

Each bidder i has their own belief v; about V, which is
an uncertain estimate of V.

Through the cocktail party effect, bidders can gain ad-
ditional information about V from the actions of other
bidders.

1. Bidders’ Expected Utility Function:
Elu;] = (V = b;) x P(winning|b;, info;)

Here, b; is the bid amount of bidder i, and info; is the infor-
mation held by bidder i, formed through the cocktail party
effect.

2. Information Update through the Cocktail Party
Effect:

new

infoi* = f(info;, actions_;)

Here, actions_; represents the information obtained from the
actions of bidders other than i.

3. Calculation of Nash Equilibrium: Bidders choose
their bid amounts b; to maximize their own expected utility.
The combination of bid amounts at this point forms a Nash
equilibrium.

Computational Process
0

1. Setting Initial Beliefs: Initial beliefs v,™ about V for each
bidder are set.

2. Information Update Loop: Observe the actions of
each bidder in round ¢ and update each bidder’s information
info;. Based on the updated information, calculate a new
belief vEHl) for each bidder about V.

3. Determination of Bidding Amounts and Calcula-
tion of Nash Equilibrium: Based on the updated beliefs,
calculate the bidding amount for each bidder that maximizes
the expected utility. The combination of optimal strategies
when all bidders adopt their best strategy is considered as

Nash equilibrium.



4. Consideration of the Iterative Dilemma: Accumu-
late the results of Nash equilibria from each round and use
them for long-term strategy adjustments. For maximizing
long-term gains, bidders may accept short-term losses.

This model allows us to analyze the impact of the cocktail
party effect in common value auctions and how the iterative
dilemma influences bidders’ strategies. This analysis pro-
vides a foundation for understanding how bidders form and
adjust their optimal strategies amidst imperfect information.

6. Discussion:Detailed Explanation of
the Computational Process

The computational process, considering the cocktail party
effect and the iterative dilemma in common value auctions,
is elaborated focusing on the information each bidder holds,
their expected utility, and the derivation of Nash equilibrium.

Setting Initial Beliefs

For each bidder i, initial beliefs vfo) about the true value
V of the item are set. These beliefs could be formed based on
public information about the item or past experiences.

Information Update

In each round ¢, bidders observe the actions actions(_ti) of
other bidders and update their own information infoft). This
information update is represented by the following function:

info§l+l) =f (info}t),actions(_ti))

where f is the information update function, representing
how new information is incorporated based on the actions of
other bidders.

Belief Update

After the information is updated, each bidder calculates a
new belief vf”l) as follows:

o 2y ol <010

where A is a parameter that represents the speed of infor-
mation update, ranging from O to 1.

Calculation of Expected Utility and Bidding Amounts

Based on the updated beliefs, the expected utility for each
bidder is calculated as follows:

E[u;] = (v"*" = b;) x P(winning|b;, info!"*")

where P(winning|b,, info"*")) is the probability of bid-
deri winning the auction with bid b;, depending on the actions
of other bidders and market conditions.

Bidders will choose the bid amount b; that maximizes
this expected utility.

Derivation of Nash Equilibrium

The combination of bid amounts when all bidders adopt
their strategy that maximizes their own expected utility forms

a Nash equilibrium. Nash equilibrium refers to a state where
no bidder can improve their payoff by unilaterally changing
their strategy, given the strategies of other bidders are fixed.

Consideration of the Iterative Dilemma

The iterative dilemma refers to a situation where bidders
adopt non-cooperative strategies for temporary gains, at the
expense of long-term benefits. To model this effect, con-
sider the evolution of strategies over multiple rounds, allow-
ing bidders to choose the optimal strategy from a long-term
perspective.

Through this computational process, the impact of the
cocktail party effect in common value auctions can be quan-
titatively assessed, and the influence of the iterative dilemma
on bidders’ strategies can be analyzed.

Detailed Explanation of Information Update
Process

The information update process in Next Step is elaborated
here. This step models how each bidder incorporates new
information from the actions of other bidders.

Information Update Process

Each bidder i observes the actions actions(_ti) of other bidders

in round ¢ and updates their own information infogt) to form
(z+1)

new information infoi

Mathematical Formulation

The information update function is represented as follows:

i =i

infof”l) =f (info(’),actions(t))

(1)

where, info; ’ is the information set of bidder i at round

t, actions(_[l.) is the set of actions from bidders other than i in
round ¢, f is the information update function, indicating how
new information is integrated.

1. Analysis of Other Bidders’ Actions: Bidder i ob-
serves the actions actions(_li) of other bidders and analyzes
how these actions affect their own information set. For exam-
ple, if a bidder bids unexpectedly high, bidder i may reassess
the value of the item.

2. Update of Information: Bidder i updates their own
information set based on the observed actions. This process
is formalized as the formation of new information infoEH]).

Specific Example

For instance, consider the information update function f takes
the following form:

infof”l) = infolm + Z wij - (actiony) - infoft))
J#i



where, w;; is the weight of the impact of bidder j’s action
on bidder i’s information update, action;.t) is the action of
bidder j in round ¢.

This equation averages the impact of other bidders’ ac-
tions on bidder i’s information set, weighted by w;;, which
indicates how much bidder i trusts the action of bidder j.
Through this process, bidders learn new information from
the actions of other bidders and update their information sets.

Belief Update Process

Models the process by which each bidder updates their belief
based on newly acquired information. This step formalizes
how bidders incorporate new inferences from other bidders’
actions and auction conditions into their beliefs and strategies.

Belief Update Process

Each bidder i uses the newly acquired information infog”l) to

update their belief belief\", forming a new belief belief"*"
for the next round.

Mathematical Formulation

The belief update function is represented as follows:

i

belief{"*" = ¢ (beief,", info{"*")
where, belief(" is the belief of bidder i at round 7, info!"*"
is the new information acquired by bidder i, g is the belief
update function, indicating how new information is incorpo-
rated into beliefs.

1. Evaluation of New Information: Bidder i evalu-
ates the newly acquired information info}”l) and analyzes its
impact on their own belief.

2. Update of Belief: Based on the evaluated information,
bidder i updates their belief beliefft) to form a new belief

belief("*!.

Specific Example

Consider a belief update function g that takes the following
form:

i

betiet{"") = belief{"’ + 1 (info{*") - beief,")

where, A is a parameter that represents the speed or adapt-
ability of information update, indicating how quickly a bidder
incorporates new information into their belief.

This equation shows the process of updating beliefs based
on the difference between new information infogl“) and the
ff[). If the new information significantly
differs from the current belief, the belief undergoes a larger

current belief belie

change. Through this process, bidders incorporate new infor-
mation into their beliefs, forming the basis for strategizing in
the next round.

7. Perspect of Research:Deriving Nash
Equilibrium Based on Updated
Beliefs and Strategies

We derive the Nash Equilibrium, which is a state where all
players choose their optimal strategies and no player can im-
prove their payoff by unilaterally changing their strategy. This
step involves finding an overall equilibrium state by each bid-
der considering the strategies of others and selecting their
own optimal strategy.

Definition of Nash Equilibrium

The Nash Equilibrium in an auction, denoted as b* =
(b}, b3, ..., b},), is the combination of bid amounts for all
bidders i that satisfies the following condition for each bid-
der:

b} = arg n})ax Elui(b;,b ;)]

where b” ; represents the combination of optimal bidding
strategies of all bidders except bidder i.

Computational Process

1. Derivation of Optimal Response Functions for Each
Bidder: For each bidder 7, derive the optimal response func-
tion representing the optimal bid amount b} given the strate-
gies b_; of other bidders.

Ri(b_;) = arg max E[u;(bi,b-i)]

2. Setting Up Simultaneous Equations: Use the opti-
mal response functions of all bidders to set up simultaneous
equations.

b; =Ri(b>,), Vi

3. Derivation of Nash Equilibrium: Solve the above
simultaneous equations to derive the Nash Equilibrium b* for
the strategies of all bidders.

Specific Computational Methods

Numerical Solution: In many cases, the simultaneous equa-
tions are difficult to solve analytically, so numerical methods
(e.g., fixed-point iteration or Newton’s method) are used to
find an approximate solution.

Simulation: Using simulation, each bidder can try dif-
ferent strategies and search for the optimal response to the
strategies of other bidders. By repeating the simulation, we
can approach an equilibrium state.



Conclusion

Deriving Nash Equilibrium demands more sophisticated
mathematical and numerical methods as the auction model
and bidders’ strategies become more complex. In practice, it
is often difficult to obtain a complete analytical solution, and
it is common to rely on approximate solutions or numerical
methods. Through this process, auction designers and par-
ticipants can gain deep insights into how different strategies
interact and affect the final outcomes of the auction.

To solve the optimization problem faced by bidders, we
explain a method using the assumption that the bidders’ be-
liefs follow a normal distribution. In this case, the bidder’s be-
lief beliefi(m) is modeled as a normal distribution N (u, 02)
with mean yu and standard deviation o~. Bidders attempt to
optimize their bid amounts based on this distribution.

Definition of Expected Utility

Bidder i’s expected utility E[u;] is defined based on their
own bid amount b; and the distribution of other bidders’ bid
amounts. The expected utility is expressed as follows:

Elu;] = /(v — b;) - P(winning|b;, v) - f(v|u, o2)dv

where P(winning|b;,v) is the probability that bidder i
wins the auction by bidding b; for a value v, and f(v|u, o2)
is the probability density function of the normal distribution
that the bidder’s belief follows.

Setting Up the Optimization Problem

The objective function that bidder i seeks to maximize is
the above-defined expected utility E[u;]. The optimization
problem is expressed as:

max E [u;]

Derivation of the Solution

To solve this optimization problem, we first differentiate
E[u;] with respect to b; and set the derivative equal to 0 to
find the optimal bid amount b;.

dE[u;]
db;

The b; that satisfies this derivative equation is the optimal

=0

bid amount for bidder i.

Numerical Optimization

In many cases, the integral and differentiation mentioned
above are difficult to solve analytically, so numerical opti-
mization methods (e.g., Newton’s method or gradient de-
scent) are used to approximate b;.

Numerical Example

As a specific numerical example, suppose the bidder’s belief
follows a normal distribution with ¢ = 100 and o = 15.

Using the above computational process along with specific
numerical values, the optimal bid amount b} is numerically
determined.

1. Select a numerical optimization method (e.g., New-
ton’s method). 2. Set an initial value b © and iteratively
update b; to satisfy dE ”‘ =0. 3. The b; at the point
where the convergence crlterlon (e.g., the absolute value of
the change is below a certain threshold) is met is considered
the optimal bid amount 5.

Through this process, bidders can quantitatively deter-
mine the optimal bidding strategy considering their beliefs
and market conditions.

When considering the repeated dilemma, bidders need
to take into account not only the current round’s payoff but
also future rounds’ payoffs. Therefore, the calculation of a
bidder’s expected utility models the discounted sum of future
payoffs in addition to the direct payoff of a single round.
Here, we explain the computational process for calculating
expected utility considering the repeated dilemma.

Modeling Future Payoffs

Bidder i’s future payoffs are modeled as follows:

futurc Z 5. (t)

where E[u I.t ] is the expected utility of bidder i in future
round ¢, ¢ is the discount rate for future payoffs (0 < 6 < 1),
and 7 is the total number of future rounds considered.

Redefining Current Round’s Expected Utility

The expected utility for the current round is redefined as
the sum of the direct utility and the discounted sum of future
payoffs.

E[ufurrent] — E[ ]+E[ futurc]

where E[u;] is the direct expected utility in the current
round.

Redefining the Optimization Problem

Bidders choose their bid amount b; to maximize the cur-
rent expected utility E[u$"""]. The optimization problem
is thus expressed as:

maXE[ Current]

i

Derivation of the Solution
To find the optimal bid amount b;, differentiate
Euf" "] with respect to b; and set it equal to 0.

dE[ currenf]

db;

Numerical Optimization
Often, it is challenging to solve the above differential

=0

equation analytically, so numerical optimization methods are
used to find b}.



Numerical Example

Assuming a discount rate § = 0.9, a total of T = 5 future
rounds, a direct expected utility for the current round E [u;] =
50, and an expected utility of E [uft)] = 40 for each future

round, the total future payoffs are calculated as:

E[ul"""] = 0.9x40+0.9x40+0.9°x40+0.9*x40+0.97 x40

This is added to E [1;] = 50 to calculate E [u{*""*"], and
the optimal bid amount b7 is determined. This process is
executed using a specific numerical optimization algorithm
along with concrete numerical values.

Through this process, bidders can quantitatively deter-
mine their optimal bidding strategy, taking into account both
their beliefs and market conditions.

In the context of sealed-bid auctions, we model the im-
pact of the cocktail party effect and the repeated dilemma as
follows: in a sealed-bid auction, each bidder submits their
bid amount secretly, and the highest bidder wins the item.
Considering the cocktail party effect assumes that bidders
are influenced by the potential bids of others. The repeated
dilemma arises through strategic interactions over multiple
auction rounds.

Mathematical Formulation
1. Definition of Bidder’s Expected Utility:
Elu;] = (vi — b;) x P(winning;|b;, beliefs)

Here, v; is the true valuation of the item by bidder i, b; is
the bid amount by bidder i, and P(winning;|b;, beliefs) is the
probability of bidder i winning the auction, dependent on the
beliefs about other bidders’ bid amounts.

2. Modeling the Cocktail Party Effect:

beliefs = beliefsy + a x CP_effect

Where beliefsg are the original beliefs (about other bidders’
bid amounts), « is the strength of the cocktail party effect, and
CP_effect represents the change in beliefs due to the cocktail
party effect.

3. Incorporating the Repeated Dilemma: To account
for the repeated dilemma, bidders consider the payoffs in
future rounds. This includes the likelihood of winning in
future rounds and the strategic interactions therein.

E[Mlt«ola[] — E[ui] +8X E[leuture]

Where E [u'l.f M€Y is the expected utility in future rounds,
and ¢ is the discount rate for future payoffs.

1. Setting Initial Beliefs: Each bidder has initial beliefs
about the bid amounts of others.

2. Applying the Cocktail Party Effect: Bidders update
their beliefs about other bidders’ bid amounts through the
cocktail party effect.

3. Determining Optimal Bid Amounts: Bidders de-
termine their bid amounts to maximize their utility for the
current and future rounds.

* _ total
b; = argn;)a_xE[ui ]

4. Deriving Nash Equilibrium: The Nash equilibrium is
sought where all bidders choose their optimal bidding strate-
gies.

Conclusion

Modeling the impact of the cocktail party effect and the
repeated dilemma in sealed-bid auctions involves complex
strategic interactions and advanced mathematical and numer-
ical methods. The Nash equilibrium provides a framework
for understanding the optimal strategies of bidders in the face
of incomplete information and strategic uncertainty.
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