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Abstract: This research will also take into account time effects and information time differences from
imperfect information environments not accompanied by a global online environment.This research
note delves into the realm of evolutionary game theory and focuses on the concept of evolutionarily
stable strategies (ESS) as a pivotal mechanism for understanding how dominant strategies emerge and
persist in a population. Through a comprehensive analysis, we introduce a computational process to
explore ESS, particularly in the context of repeated dilemmas, and model the complex interactions
and evolutionary trajectories of bidders’ strategies. Provide a robust framework for analyzing strategy
stability and adaptation by defining the strategy space, constructing payoff matrices, and modeling
the evolutionary dynamics of strategies; shed light on the theoretical foundations of ESS as well as
provide practical insights on the application of evolutionary game theory in understanding real-world
strategic behavior The following are some of the key findings of the study. The proliferation of
disinformation in information markets poses a serious challenge to public trust and the integrity
of the digital ecosystem. Particular attention will be paid to scenarios in which the proliferation
of disinformation leads to a shift of responsibility and increased social discord, such as when
less aggressive actors are unfairly targeted and when the presence of inherent risk amplifies the
credibility of misinformation, further exacerbating social unrest. These strategies include improving
media literacy, ensuring transparency of information sources, and advocating responsible platform
governance. By integrating diverse perspectives and coordinating the efforts of all stakeholders, this
paper will provide a road map for reducing the negative impact of disinformation, thereby leading to
more resilient and reliable information scrutiny.

Keywords: Incomplete Information Games, Disinformation, Information Markets, Stakeholder Col-
laboration, Informational Health Risks, Digital Ecosystems, Media Literacy, Platform Governance,
Policy Making, Social Trust, Strategic Countermeasures

1. Introduction
This research note concerns the search for evolutionary stable
strategies (ESS) in evolutionary game theory. Specifically, it
models how bidders’ (bidders’) strategies interact and evolve
over time, and describes the computational process. The
content consists mainly of the following steps, Defining the
strategy space, Define a set of strategies that can be em-
ployed by the bidder. This includes rules for determining
bid amounts and for modifying strategies in response to the
actions of other bidders. Fig. 1: Fake News Campaign Analysis
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Construct a gain matrix (based on the evaluation of the
first price auction). Calculate the gain for each strategy com-
bination and construct a gain matrix. Gains are determined
based on auction wins, bids, and the true value of the com-
modity. Modeling the Evolutionary Dynamics of Strategies-
Models how a bidder’s strategy evolves over time.We provide
a framework for analyzing and understanding complex strate-
gic interactions using evolutionary game theory. Specific
computational methods and mathematical formulas are used
to explore the evolution of strategies and their stability in
detail. The key point is to theoretically explain how domi-
nant strategies are formed and maintained within populations
through the concept of evolutionary stable strategies and to
organize this process through modeling specific strategic in-
teractions.

This research note delves into the realm of evolutionary
game theory and focuses on the concept of evolutionarily sta-
ble strategies (ESS) as a pivotal mechanism for understanding
how dominant strategies emerge and persist in a population.
Through a comprehensive analysis, we introduce a compu-
tational process to explore ESS, particularly in the context
of repeated dilemmas, and model the complex interactions
and evolutionary trajectories of bidders’ strategies. We cre-
ate an introduction to the paper. Here we introduce the basic
concepts of evolutionary game theory and evolutionary sta-
ble strategies (ESS), and clarify their importance and the
objectives of our research. Evolutionary game theory is a
theory developed to understand biological evolutionary pro-
cesses and has since been applied to the analysis of strategic
decision making in fields as diverse as economics and the
social sciences. At the core of this theory is the concept of
evolutionarily stable strategies (ESS), which is defined as a
strategy being "evolutionarily stable" if the strategy adopted
by an individual in a particular environment has an advan-
tage over all other alternative strategies ESS is essential to
understanding how dominant strategies are formed and main-
tained through natural selection ESS is an essential concept
for understanding how dominant strategies are formed and
maintained through natural selection and plays a central role
in evolutionary game theory research.

In this study, we use the framework of evolutionary game
theory to model the evolution of ESS search and its strategy
interactions in the context of recurring dilemmas. Specifi-
cally, we explore how ESSs are formed and under what con-
ditions they become stable through the dynamics of compe-
tition and cooperation among bidders. Through this process,
we will consider analytical methods for how strategic behav-
ior evolves over time and what strategies become dominant
within a population.

The goal of our research is to use evolutionary game
theory to understand the complex dynamics of strategic in-
teractions and to identify the conditions for strategic stability

through the concept of ESS. To achieve this objective, we
first define the strategy space and identify a set of different
strategies that can be employed by bidders. We then compute
the gains for combinations of these strategies and construct
a gain matrix. Finally, it models how the bidders’ strategies
evolve over time and explores the conditions for ESS.

The application of evolutionary game theory in this re-
search note focuses on uncovering the evolutionary dynamics
of strategic interactions among individuals. Understanding
how individuals choose strategies in the context of recurring
dilemmas and how these strategies evolve over time is crit-
ical to understanding the underlying mechanisms of social
interactions and economic transactions. Particularly in com-
petitive environments such as auctions, the strategic behavior
of bidders can have a significant impact on market efficiency
and fairness.

The central focus of this research is to use the concept of
ESS to model how bidders’ strategies evolve over time and
how stable strategies are ultimately formed. For a strategy
to be evolutionarily stable, it must have an advantage over
all other strategies. Understanding the conditions for such
strategic stability will allow us to predict which strategies are
best chosen by individuals under what circumstances and how
these strategies will spread within the population.

In this study, we first define the strategy space and de-
lineate the range of strategies that a bidders can take. This
includes bidding strategies in auctions and rules for chang-
ing strategies in response to the behavior of other bidders.
Next, a gain matrix is constructed based on combinations of
these strategies and the gain for each strategy combination
is calculated. This gain is determined based on the auction
results, the amount bid, and the true value of the instrument.
Finally, we model how bidders’ strategies evolve over time
and explore how evolutionary stable strategies are formed.

This approach, using evolutionary game theory, provides
a powerful tool for understanding the evolutionary dynamics
of strategic interactions; through the concept of ESS, we can
theoretically analyze how strategic behavior evolves over time
and how dominant strategies are formed within populations
. This theoretical framework should also lead to a close
examination of how to apply it to the analysis of strategic
decision making in various fields, such as economics, social
sciences, and biology.

The results of this study are expected not only to improve
our understanding of strategic interactions, but also to pro-
vide practical guidelines for optimizing the decision-making
process in competitive environments. The use of evolution-
ary game theory and ESS concepts will provide new insights
for designing more efficient and fair market mechanisms and
improving social interactions. This study extends the theo-
retical framework of evolutionary game theory and considers
the foundations for a deeper understanding of the evolutionary



dynamics of strategic interactions.
The main gist of the computational experiment is to model

and analyze the evolutionary dynamics of strategic interac-
tions among bidders using the framework of evolutionary
game theory and evolutionary stable strategies (ESS). The
experiment aims to explore ESS in the context of iterative
dilemmas and to understand how they affect strategy stability
and evolution.

In terms of defining the strategy space, we define a set of
strategies that can be adopted by the bidder. This includes
rules that determine the bid amount and rules that modify the
strategy in response to the behavior of other bidders. In terms
of constructing a gain matrix, the gain for each combination of
strategies is calculated and a gain matrix is constructed. This
matrix shows the gains of each strategy based on the winners
and losers of the auction, the amount of the bids, and the true
value of the goods. In terms of modeling the evolutionary
dynamics of strategies, we simulate how a bidder’s strategy
evolves over time and how evolutionary stable strategies are
formed.

In terms of the evolution of strategic interactions, through
computational experiments, we identify the conditions under
which certain strategies have an advantage over others and
show how evolutionary stable strategies are formed.

The ESS stability perspective analyzes how an ESS ac-
quires and maintains stability under specific conditions. This
allows us to understand how the strategy is sustainable over
time.

In terms of adaptability of the strategy, Assesses the adapt-
ability of the strategy to changes in the environment and to
changes in the strategy of other bidders. This allows us to
explore the flexibility of the strategy’s evolution in a dynamic
competitive environment.

This computational experiment highlights the importance
of using evolutionary game theory to understand the complex
dynamics of strategic interactions and to analyze strategy
stability and evolution through the concept of evolutionary
stable strategies. By modeling strategic interactions among
bidders and identifying the formation of ESS and the con-
ditions for their stability, we can better understand strategic
decision making in competitive environments. This research
is expected to further the application of evolutionary game
theory to the analysis of strategic decision making in fields
such as economics and social sciences.

1.0.1 Issues in the Main Argument

Applying the framework of evolutionary game theory and
evolutionary stability strategies (ESS) to information auc-
tions, particularly the spread of fake news and malinforma-
tion, allows us to identify the informational health risk issues
that cause filter bubbles and organize the discussion. Below
is a summary of the key takeaways from this perspective.

1.0.2 Filter Bubbles and Informational Health Risks

A phenomenon in which the information that an individual
comes into contact with online is selected and filtered based
on his or her existing beliefs and preferences. As a result,
individuals have less exposure to opposing views and different
perspectives, and consume only biased information.

2. DiscussionInformational Health Risks
Social and personal risks that result from the spread of fake
news and malinformation. These include misinformed deci-
sion making, reduced quality of public debate, and increased
social fragmentation.

2.0.1 Information Auctions and Strategic Interactions

The process by which information and news are made avail-
able to consumers. In this process, media companies, social
media platforms, content creators, and others compete for the
attention of the audience.

2.0.2 Strategic Interaction

The dynamics of competition and cooperation among infor-
mation providers. Providers of information, including fake
news and malinformation, employ a variety of strategies to
gain viewer attention and expand their influence.

2.0.3 Evolutionary stability of information

It is important to understand what type of information is
evolutionarily stable and dominant in an auction. Fake news
and malinformation may have an evolutionary advantage by
focusing on stimulation and empathy rather than truthfulness.

2.0.4 Adaptability and evolution of information

It is necessary to analyze how information providers evolve
their strategies and adapt to the changing media environment
and consumer preferences. In particular, algorithmic content
recommendations may reinforce the filter bubble and facilitate
the spread of fake news.

2.0.5 Managing Informational Health Risks

The challenge is to develop strategies and policies to mitigate
filter bubbles and informational health risks. This includes
improving media literacy, ensuring transparency of informa-
tion sources, and ensuring fairness in algorithmic recommen-
dations.

Applying evolutionary game theory and the ESS frame-
work to information auctions allows us to systematically un-
derstand the challenges of informational health risks posed by
the spread of fake news and malinformation and to discuss ef-
fective countermeasures. By analyzing strategic interactions



among information providers and taking into account the evo-
lutionary stability and adaptability of information, we will be
able to contribute to a healthier information environment.

In a market environment where malinformation (inten-
tional misinformation) and misinformation (unintentional
spread of misinformation) are likely to spread, certain in-
formation may have a dominant share, resulting in radical
information auctions. This creates an informational health
risk challenge. Below we summarize some of the key argu-
ments related to this situation.

2.0.6 Dynamics of Information Markets

Information Dominance Factors that give certain information
(especially malinformation and misinformation) an edge over
others in the information market include the ability to provoke
an emotional response and content that reinforces existing
beliefs and prejudices.

Radicalization of Information Auctions Information
providers tend to offer more radical, provocative, or polar-
izing content in order to capture consumers’ attention and
give their own information an edge. This further radicalizes
information auctions.

2.0.7 Informational Health Risks

In terms of the quality of public debate, when malinformation
or misinformation becomes the dominant information, the
quality of public debate can deteriorate and the democratic
decision-making process can be undermined.

From the perspective of increasing social division, the
proliferation of polarizing information risks deepening the
divide between people with different opinions and positions.

In terms of decision-making based on misinformation,
the widespread acceptance of misinformation creates the risk
that individuals and society will make important decisions
based on incorrect information.

From the perspective of improving media literacy, it is im-
portant to enhance consumers’ ability to judge the quality of
information and distinguish misinformation. Media literacy
should be improved through education and awareness-raising
activities. If information providers clarify the source and ba-
sis of information, it will be easier for consumers to evaluate
the reliability of information. Social media platforms and
news distribution platforms are responsible for curbing the
spread of misinformation through algorithms and policies.
Platforms must be proactive in identifying misinformation
and taking action to address it.

In an information marketplace where malinformation and
misinformation can spread easily, a multifaceted approach
is needed to address informational health risks and create
a healthier information environment. This requires the co-
operation of individual consumers, information providers,

platform operators, and policy makers.
In markets where it is easy to intentionally spread disin-

formation (intentional misinformation), certain information
tends to have a dominant share and information auctions be-
come more extreme. This situation allows actors with strong
information leaks and diffusion power to gain an advantage in
the market and, in some cases, to adopt strategies that under-
mine public trust in hostile markets. Below we summarize
some of the issues and arguments related to this situation.

2.0.8 Information Market Dynamics

Information Diffusion Power and Dominance Actors with
strong diffusion power control information and establish in-
formation dominance within a market by intentionally diffus-
ing disinformation. This process encourages radicalization
of information auctions, where more exaggerated, biased, or
completely false information may prevail.

2.0.9 Loss of Public Trust

Actors with hostile intentions can spread fake news and in-
tentionally undermine public trust in a particular group or
market. This can be used as a strategy to undermine com-
petitors.

Informational health risks are accompanied by the risk
of a decline in the quality of public debate. The prolif-
eration of disinformation can reduce the quality of public
debate and promote arguments based on faulty assumptions.
This can negatively impact the democratic decision-making
process. The spread of misinformation and disinformation
risks further deepening social divisions. Mistrust between
certain groups increases and social cohesion is undermined.
In terms of misinformed decision making, individuals and
societies can make important decisions based on misinfor-
mation, with potentially serious consequences. This includes
erroneous decisions in areas such as health, safety, and eco-
nomics. Addressing these challenges in an information mar-
ketplace prone to spreading disinformation requires a collab-
orative, multifaceted approach among information providers,
consumers, platform operators, and policymakers. This will
minimize informational health risks and create a healthier
information environment.

A market with a dominant share of information in markets
where it is easy to intentionally spread disinformation will be
created, and information auctions should become more ex-
treme. Those with the power to leak information and the
ability to spread information will easily become dominant.
Or, it is possible to intentionally spread inconvenient fake
news to discredit the social credibility of a hostile market.
But there will be challenges of the informational health risks
they pose. In addition, when they do occur, the pursuit of
responsibility and blame may be targeted by a relatively less



aggressive, non-information spreading risk in the vicinity of
the malicious information leak, or by an entity with infor-
mation spreading risk, but with increased credibility due to
the potential risk. In other cases, the potential risk increases
credibility, which makes it easier to take the blame, and fur-
ther exposes malicious information, leading to social turmoil.
Let us examine these risks and scenarios in terms of the agent
model and the repeated dilemma game.

Analyzing the dynamics of markets dealing with inten-
tional disinformation in terms of agent models and repeated
dilemma games is useful for understanding the evolution of
information strategies and their social consequences. Below
are the risks and scenarios considered using these theories.

In the agent model, individual actors (agents) have their
own strategies and evolve these strategies through interac-
tion. Applying this model to the context of disinformation
diffusion, the following scenarios are possible

2.0.10 Information dominance and diffusion power

Agents with strong diffusion power (e.g., major media outlets,
influential social media accounts, etc.) can gain an advan-
tage in the information market. The intentional spread of
disinformation by these agents creates the risk of distorting
the flow of information within the market and undermining
public trust.

2.0.11 Shifting blame to less aggressive agents

Malicious agents may target less aggressive agents who are
not at risk of spreading information (e.g., small media outlets
or individuals with neutral positions) to cover up their own
actions. This creates the risk that innocent agents will be
falsely accused.

2.0.12 Analysis through Repeated Dilemma Games

Repeated dilemma games model situations in which inter-
actions between agents are repeated. Using this framework
to analyze the spread of disinformation and its effects, the
following scenarios are possible

2.0.13 Short-term benefits and long-term risks

Agents may gain short-term benefits (e.g., gaining attention,
achieving political goals, etc.) by spreading disinformation.
However, this involves risks of loss of public trust and legal
liability in the long term.

2.0.14 Retaliation and Escalation

Retaliation against agents who spread disinformation risks
escalation of information strategies and an overall increase
in social disruption. Using the agent model and the repeated
dilemma game framework, it is possible to systematically

analyze various scenarios of disinformation diffusion and the
associated risks. In particular, understanding the dynamics of
disinformation diffusion allows us to develop strategies to deal
with problems such as malicious information leaks, loss of
public trust, unwarranted accusations, and social disruption.
It provides useful insights for all stakeholders responsible for
preventing social disruption. Properly managing these risks
and promoting healthy interactions among agents is critical to
ensuring the accuracy of information and maintaining public
trust.

3. DiscussionCases of risk management
scenarios in terms of repeated

dilemmas and risk of retaliation
There may be a case scenario for a cover-up of a betrayal in
the vicinity of a close agent. Let us consider the social risk
and maximum assurance issues when they are discovered, and
the case and retaliation risk of looking at risk management
scenarios in terms of a repeated dilemma. Consider the case
of betrayals and cover-ups among agents and the social risk,
maximum assurance issues, and risk management scenarios
when they are uncovered in terms of repeated dilemmas.

3.0.1 Betrayal and Cover-Up Scenarios

In a repeated dilemma game, the interactions between agents
are repeated, so that a single act of betrayal can affect the long-
term relationship. In cases where agents commit betrayal for
their own benefit and then attempt a cover-up, the following
points are considered

In terms of short-term gains and long-term loss of cred-
ibility, the betrayal may provide short-term gains, but if the
cover-up is discovered, the agent risks losing long-term cred-
ibility and trust. In terms of cover-ups and social risk, if a
cover-up is uncovered, the social trust not only of the agent,
but also of the agents involved and the organization as a whole,
may be damaged. This risks widespread social disruption and
loss of trust.

3.0.2 Maximum Guarantee Problem

In repeated dilemma games, agents must consider how their
own actions will affect future interactions. In the maximum
guarantee problem, the agent tries to minimize the worst out-
come (maximum loss) of committing treachery. In terms
of risk management strategies, agents need to develop pru-
dent strategies to manage the potential risks of betrayal and
concealment. This includes assessing the risk, analyzing the
potential impact, and developing a plan to deal with the con-
sequences if discovered.



3.0.3 Retaliation Risk

When betrayal or cover-up is discovered, retaliation from the
affected agent or parties may occur. This risk of retaliation
can lead to deterioration and escalation of relationships be-
tween agents. Cascading and escalating retaliation risks that
retaliatory actions may trigger further retaliation, which may
escalate conflicts among agents and lead to broader social
disruption.

The repeated dilemma game framework can be used to
understand the interplay between the risk of betrayal and
cover-up, the social risk upon its revelation, and the risk of
retaliation. It is important for agents to carefully assess the
long-term consequences of pursuing short-term gains and de-
velop risk management strategies. They should also establish
fair and transparent communication and dispute resolution
mechanisms to minimize the risk of retaliation.

4. DiscussionActs of betrayal, cover-ups,
and the risk of their discovery within

the framework of the repeated
dilemma game

To model acts of betrayal, cover-ups, and the risk of their dis-
covery within the framework of the repeated dilemma game,
it is necessary to quantitatively evaluate how the choices of
actions by each agent will affect future gains. Particularly in
the cases of misinformation (including partial truths) and dis-
information (malicious fake news), the long-term impacts of
each need to be considered. Below, I outline a basic approach
to model this issue.

Firstly, we define the strategies of agents as follows

⇠ Cooperation (sharing truthful or neutral information)

⇡ Betrayal (spreading misinformation or disinforma-
tion)

The payoff for each agent in each round is determined by
the following payoff matrix

⇠ ⇡

⇠ ', ' (,)
⇡ ) , ( %, %

Here, ' represents the reward for mutual cooperation, (
represents the loss incurred when betrayed, ) represents the
gain from betraying others, and % represents the penalty for
mutual betrayal.

4.1 Modeling Long-term Impacts
In the repeated dilemma game, agents consider future payoffs
when choosing strategies. To model the long-term effects of
choosing betrayal (⇡), we consider the total present value of

future payoffs. The present value of payoffs after = rounds is
calculated using a discount factor X (0 < X < 1)

+ =
=’
C=0

XC*C

Here, *C represents the payoff in round C.

4.2 Impact of Misinformation and Disinforma-
tion

In the case of misinformation, as it contains some facts, the
short-term gain ) (temptation payoff) increases, but it be-
comes more susceptible to the long-term impacts of ( (loss
when betrayed) and % (penalty for mutual betrayal).

In the case of disinformation, similarly, ) increases in the
short term, but the impact of % (due to the erosion of social
trust upon discovery) becomes particularly significant.

4.3 Computational Example
To perform specific calculations, values for ', (, ) , %, and X
need to be determined. For instance, set them as follows

' = 3 (reward for mutual cooperation)

( = 0 (loss when betrayed)

) = 5 (gain from betrayal)

% = 1 (penalty for mutual betrayal)

X = 0.9 (discount factor)

Using these values, calculate the present value of long-
term gains for choosing a specific strategy (⇠ or ⇡).

Using this model, one can quantitatively evaluate acts
of betrayal, cover-ups, and the risk upon their discovery, and
determine the optimal strategy. It’s crucial to evaluate payoffs
from a long-term perspective, considering not only short-term
gains from temptation but also future risks and the erosion of
social trust.

Results(Fig.2, 3) provided, we can analyze the effects
of misinformation and disinformation on cumulative payoffs
over multiple rounds of a game, presumably representing
social interactions where misinformation and disinformation
are involved.

Fig.2 (Cumulative Payoffs over Rounds)

This graph shows the cumulative payoffs for three different
agents (A, B, C) over ten rounds. All three agents start with
similar payoffs in round 1. Agent A has the highest payoff by
round 10, followed by Agent B and then Agent C. The payoffs
increase steadily for all agents, suggesting that all may be
employing a strategy that gives them a payoff in each round,
possibly cooperation.



Fig. 2: Present Value of Payoffs Over Rounds

Fig. 3: Impact of Cumulative Payoffs over Rounds

Fig.3 (Present Value of Payoffs Over Rounds)

This graph compares two strategies: Cooperation and De-
fection over ten rounds, based on their present value. The
cooperation strategy’s present value decreases sharply after
the first round and continues to decline at a decreasing rate.
The defection strategy starts with a lower present value than
cooperation in round 1 but declines much more slowly. By
round 10, the present value of the defection strategy is higher
than that of the cooperation strategy, suggesting that the temp-
tation payoff (T) for defection might be high enough to make
it more valuable in the present term despite the penalty (P)
for mutual betrayal.

In the context of misinformation and disinformation, the
strategy each agent chooses significantly impacts their cumu-
lative payoff, particularly in the long term.

Misinformation Scenario

Misinformation, containing some truths, might initially seem
beneficial (high temptation payoff T), as seen in the short-
term gains in the first graph. However, as rounds progress,
the impact of betrayal (S) and penalties (P) will become more
substantial, leading to a lower cumulative payoff compared to
a consistent cooperation strategy. Misinformation may lead to
temporary gains for an agent but at the risk of long-term trust
and cooperation, which could be the reason why all agents do
not diverge drastically in cumulative payoffs, as they might
be adjusting their strategies in response to the environment.

Disinformation Scenario

Disinformation can lead to an immediate increase in the temp-
tation payoff (T), but once the disinformation is discovered,
the erosion of social trust (represented by a significant penalty
P) becomes impactful. The second graph illustrates that al-
though the defection strategy may seem appealing at first (pos-
sibly representing disinformation), its long-term value is less
than cooperation due to the penalties incurred upon the dis-
covery of betrayal. The present value of cooperation, despite
decreasing, may represent the sustained trust and consistent
rewards (R) that come with truthful information sharing.

Computational Model Insights

Given the parameters (', (,) , %, X), we can surmise the following:

A high temptation payoff (T) can be enticing in the short term
but is risky in the long term. The reward for mutual cooper-
ation (R) maintains a consistent benefit, which is critical in
a society where trust is valued. The penalty for mutual be-
trayal (P) is low but still significant enough to deter consistent
defection.

The discount factor (X) implies that future payoffs are less valued than immediate ones, which may encourage short-sighted strategies like spreading misinformation or disinformation.



The optimal strategy, considering the erosion of social
trust and long-term payoffs, seems to be one that favors co-
operation and truthfulness. While misinformation and disin-
formation can offer immediate benefits, they pose significant
risks that can lead to reduced cumulative payoffs and present
value over time. It is essential to foster a strategy that bal-
ances short-term gains with long-term trust and cooperation
to maintain social harmony and avoid the pitfalls of misinfor-
mation and disinformation.

When considering long-term and short-term risks, the
calculation of the present value of long-term gains after 10
rounds for choosing cooperation strategy (⇠) and betrayal
strategy (⇡) is as follows

Present value of long-term gains for cooperation strategy
(⇠) approximately 19.54

Present value of long-term gains for betrayal strategy
(⇡) approximately 10.51

From this calculation, it is indicated that in the frame-
work of the repeated dilemma game, choosing a betrayal
strategy (engaging in the spread of disinformation or misin-
formation) may initially lead to high gains ()), but long-term
present value of overall gains is lower due to the impact of the
penalty for mutual betrayal (%). On the other hand, choosing
a cooperation strategy (the act of sharing truthful or neutral
information) consistently yields rewards for mutual coopera-
tion ('), resulting in higher long-term gains.

This result suggests that while the spread of disinfor-
mation or misinformation may bring short-term benefits to
some agents, it may undermine societal trust in the long
term, ultimately leading to disadvantages for the dissemi-
nators themselves. Therefore, from the perspective of the
repeated dilemma game, maintaining the accuracy and relia-
bility of information is the best strategy not only for individual
agents but also for society as a whole.

we have created graphs showing the change in the present
value of gains from cooperation and betrayal strategies in
each round. From the graph, it is evident that choosing a
cooperation strategy (blue line) results in a consistent present
value of gains in each round. This is because choosing a
cooperation strategy consistently yields rewards for mutual
cooperation (').

On the other hand, choosing a betrayal strategy (orange
line) leads to high present value of gains ()) in the ini-
tial round, but from the second round onwards, the present
value of gains decreases significantly due to the impact of the
penalty (%) for mutual betrayal. This is because the model
accounts for the discovery of betrayal and subsequent retali-
ation.

This result suggests that while betrayal strategies may
yield high short-term gains, cooperation strategies provide
more stable gains in the long term within the framework of

the repeated dilemma. Particularly, when the penalty for
betrayal and concealment is significant, its impact is evident
in the long-term cumulative payoffs.

Regarding intentionally spreading disinformation in mar-
kets where information is easily disseminated, markets with
a dominant information possession rate should emerge, lead-
ing to more aggressive information auctions. Those with the
ability to leak information or strong dissemination power are
likely to gain dominance. Alternatively, intentionally spread-
ing inconvenient fake news can also undermine the societal
trust of opposing markets. However, there are also challenges
posed by the information health risks they bring.

Furthermore, in cases where responsibility is pursued or
accusations are made when such incidents occur, malicious
information leaks in the vicinity of those who conducted such
acts may target entities with relatively low aggressiveness,
without information dissemination risks, or entities with po-
tential risks but enhanced credibility due to the presence of
potential risks, making them more susceptible to accusations
and further exposing malicious information, leading to social
chaos.

There might be scenarios where risks of betrayal and
cover-ups, social risks upon their discovery, and retalia-
tion risks are considered within the framework of repeated
dilemma games for agents A, B, and C in each round.

When considering betrayal, cover-up, and the risks upon
their discovery for agents A, B, and C in the repeated dilemma
game framework, we proceed with the following steps using
formulas and calculations.

Define the strategies for agents A, B, and C. Here, we
consider three strategies cooperation (⇠), betrayal (⇡), and
concealment (�). Define the payoffs for each strategy. For
example, let the short-term gains from betrayal be ) , addi-
tional gains from concealment be �, gains from cooperation
be ', and penalties be %.

4.4 Calculation of Payoffs for Each Round
- Calculate the payoffs based on the strategy choices of agents
in each round. Consider additional gains from betrayal (⇡)
or concealment (�), and penalties (%) for their discovery.

4.5 Calculation of Long-term Impacts
- In the repeated dilemma game, future payoffs are also con-
sidered. Calculate the present value of future payoffs using
a discount factor X. - Visualize the changes in payoffs for
agents in each round. Also, illustrate the impact of penalties
for the discovery of betrayal or concealment.

Scenarios for betrayal and concealment, social risks upon
their discovery, maximum guarantee problems, and risk man-
agement scenarios are visualized within the framework of
repeated dilemmas.



Fig. 4: Network of Agents with Different Behaviors

Simulation Setup, Betrayal yields high short-term rewards
but carries significant risks if discovered.Cooperation pro-
vides stable small rewards with low or no risk. Concealment
yields moderate rewards but carries moderate risks if discov-
ered. Fact-holders face no risk and can consistently receive
small rewards.

In this scenario, betrayal yields high rewards in the initial
rounds, but the risks increase as the rounds progress. Coop-
eration and fact-holders consistently receive stable rewards
with low or no risk. Concealment yields moderate rewards
and risks, but the risks increase as the rounds progress.

This graph illustrates the long-term impacts of each be-
havior and may influence decision-making for agents when
choosing actions. Particularly, while betrayal and conceal-
ment may offer short-term benefits, they are shown to entail
significant long-term risks.

Results(Fig.4) shows a network of agents with different
behaviors, which we can analyze in the context of misinforma-
tion and disinformation spread, as described in the scenario
provided.

The network consists of agents marked with different col-
ors representing different behaviors: Red Nodes (Betrayal),
These agents are likely to spread disinformation or misin-
formation. Their position in the network can show us how
misinformation might propagate through the system. Green
Nodes (Cooperation), These agents represent cooperative be-
havior, likely sharing accurate information and reinforcing
trust within the network. Blue Nodes (Factholder), These
nodes may represent sources of accurate information, possi-
bly factcheckers or credible sources that can counteract misin-
formation. Yellow Nodes (Concealment), These agents might
be withholding information, which can contribute to uncer-
tainty and could potentially amplify the negative effects of

Fig. 5: Network of Agents with Different Behaviors

misinformation if critical facts are not disclosed.

Scenario Context Analysis

Misinformation Spread, The red nodes (betrayal) suggest the
presence of misinformation agents within the network. If
these nodes are central or wellconnected, their impact on the
network can be significant, leading to the temptation pay-
off (T) increasing for connected agents as they might benefit
in the shortterm from spreading or acting on misinforma-
tion. Disinformation and Trust Erosion, The impact of the
red nodes can also signify disinformation agents. If these
agents are discovered (especially if they are central to the net-
work), the penalty (P) due to erosion of social trust can have
widespread implications, affecting not just the disinformation
agents but also those connected to them. Concealment Risks,
Yellow nodes may represent individuals or entities that have
information but choose to conceal it. Their behavior can ex-
acerbate the effects of misinformation and disinformation by
not providing the necessary counternarratives or facts. So-
cial Harmony and Cooperation: Green nodes are crucial in
maintaining the social fabric and trust within the network.
They can help to stabilize the network by promoting mu-
tual cooperation (R), thus mitigating the risks associated with
misinformation. Factholders as Anchors: Blue nodes are po-
tentially the most critical in combating misinformation and
disinformation, serving as anchors of truth. Their connec-
tivity to other nodes, especially the red and yellow nodes, is
vital in ensuring that accurate information flows through the
network, countering the negative effects of misinformation.

Fig.5-7 we can discuss how the spread of misinformation
could lead to increased social discord and the scapegoating of
less aggressive entities. The Python code generates a line plot
that visualizes the reward and risk over rounds for different
behaviors in a networked environment. The behaviors include
Betrayal, Cooperation, Concealment, and Fact-holding.

The graphs generated by the code plot the reward and risk
for each behavior over 20 rounds. The key points from the
graphs are as follows:



Fig. 6: Network of Agents with Different Behaviors

Fig. 7: Network of Agents with Different Behaviors

Betrayal Behavior

Betrayal offers a consistent reward over time. However, the
risk associated with betrayal increases linearly with each
round. This suggests that the longer one engages in betrayal,
the greater the risk of being caught or facing consequences.

Cooperation Behavior

Cooperation also offers a consistent reward over time, match-
ing the reward for betrayal.Interestingly, the risk associated
with cooperation is the same as its reward and does not in-
crease over time. This could represent the inherent risk of
being betrayed while cooperating.

Concealment Behavior

Concealment provides a lower reward compared to betrayal
and cooperation.The risk associated with concealment in-
creases over time, though not as steeply as betrayal. This
might signify the potential for concealed information to be
revealed.

Fact-holder Behavior

Fact-holding offers the highest reward, which remains con-
stant over time.The risk associated with fact-holding is the

lowest among the behaviors and increases at the slowest rate.
This suggests that holding and sharing factual information is
the safest and most rewarding strategy over time.

Interpretation in the Scenario Context

In a scenario where misinformation leads to scapegoating
and increased social unrest, these graphs can be interpreted
as follows: Betrayal, Entities that engage in spreading mis-
information (betrayal) may initially benefit, but as the rounds
progress, they accumulate more risk. This can be paral-
leled to increasing societal consequences as misinformation
is exposed or its negative impacts become more pronounced.
Cooperation, Agents that cooperate may do so with the un-
derstanding that while there are risks of being betrayed, the
reward remains stable. In the context of misinformation, these
could be entities that seek to maintain social harmony by co-
operating but may be at risk if they inadvertently cooperate
with agents of misinformation. Concealment, Entities that
conceal information may not have as much to gain as those
who cooperate or betray, and their increasing risk over time
could represent the growing danger of holding back informa-
tion that could either clarify misunderstandings or counteract
misinformation.

Fact-holder, Those who hold and share factual informa-
tion (fact-holders) are shown to be in the best position, both in
terms of reward and minimal risk. This underscores the value
of accurate information and the importance of fact-checking
in combating the spread of misinformation. Based on the
graphs and the scenario provided, it is evident that while be-
trayal may offer short-term gains, it comes with increasing
risks that could lead to significant long-term consequences.
Cooperation has inherent risks but provides consistent re-
wards. Concealment is less rewarding and still carries risks.
Fact-holding appears to be the most beneficial approach, em-
phasizing the importance of accuracy and transparency in in-
formation dissemination to maintain social order and trust. In
the long term, promoting fact-holding behavior and counter-
ing misinformation and disinformation is crucial for societal
well-being.

Comparison and Analysis

When comparing the graphs, several trends and key points
emerge Betrayal Behavior, The reward for betrayal remains
constant throughout the rounds. The risk associated with
betrayal increases the most dramatically, suggesting that the
consequences of engaging in betrayal become more severe
over time. Cooperation Behavior, the reward for coopera-
tion is consistent, similar to betrayal.However, the risk for
cooperation also increases with each round, which could rep-
resent the vulnerability to betrayal or the increasing costs of
maintaining cooperative relationships over time. Conceal-



ment Behavior, Concealment has a lower reward value than
both betrayal and cooperation. The risk associated with con-
cealment grows with each round but at a rate that is less than
that of betrayal. This might indicate that while concealment
can be risky, the potential consequences are not as severe as
those for betrayal.

Fact-holder Behavior, Fact-holding has the highest re-
ward, which does not change across the rounds, reflecting the
high value of accurate information.The risk associated with
fact-holding increases at the lowest rate, indicating that while
there is some risk in being a source of truth (perhaps due to
potential targeting by those spreading misinformation), it is
comparatively the safest behavior.

Risk and Reward Balance, For all behaviors, the reward
remains constant, but the risk increases. This dynamic sug-
gests that the longer one engages in a behavior, the more
they stand to lose relative to what they gain. Behavioral Sus-
tainability, Fact-holding appears to be the most sustainable
behavior, with the highest reward and lowest risk increase.
This suggests that in the long run, maintaining integrity and
truthfulness is the most advantageous strategy. Incentives
for Change, As the risk associated with betrayal and con-
cealment increases, there may be a tipping point where the
risks outweigh the rewards, potentially incentivizing agents
to shift behaviors. Potential for Intervention, The graphs sug-
gest that early intervention could prevent the risks associated
with negative behaviors (like betrayal) from becoming too
great. For example, if misinformation is quickly countered,
the risk of spreading it might be mitigated. Context of Mis-
information, Relating these findings to the scenario of mis-
information spread, the increasing risk of betrayal could be
likened to the societal costs of spreading misinformation. As
misinformation is challenged or its impacts become clearer,
the individuals or entities responsible for its propagation face
greater risks. Fact-holders, on the other hand, provide a sta-
bilizing influence, suggesting the importance of supporting
credible information sources.

The analysis of these graphs underscores the importance
of long-term thinking in strategic behavior. It highlights that
while engaging in negative behaviors like betrayal may have
short-term rewards, the long-term risks are not sustainable.
Conversely, maintaining truthful communication and coop-
erative behavior not only yields consistent rewards but also
mitigates risks over time. In the battle against misinforma-
tion, promoting and protecting fact-holding behavior while
addressing the risks of betrayal and concealment is crucial.

Fig.8, we can discuss how the spread of misinformation
could lead to increased social discord and the scapegoating of
less aggressive entities. The Python code generates a line plot
that visualizes the reward and risk over rounds for different
behaviors in a networked environment. The behaviors include
Betrayal, Cooperation, Concealment, and Fact-holding.

Fig. 8: Fake News Campaign Analysis

Fig.8 generated by the code plot the reward and risk for
each behavior over 20 rounds. The key points from the graphs
are as follows Betrayal BehaviorBetrayal offers a consistent
reward over time. However, the risk associated with betrayal
increases linearly with each round. This suggests that the
longer one engages in betrayal, the greater the risk of being
caught or facing consequences. Cooperation BehaviorCoop-
eration also offers a consistent reward over time, matching
the reward for betrayal. Interestingly, the risk associated with
cooperation is the same as its reward and does not increase
over time. This could represent the inherent risk of being
betrayed while cooperating. Concealment BehaviorConceal-
ment provides a lower reward compared to betrayal and co-
operation. The risk associated with concealment increases
over time, though not as steeply as betrayal. This might sig-
nify the potential for concealed information to be revealed.
Fact-holder BehaviorFact-holding offers the highest reward,
which remains constant over time. The risk associated with
fact-holding is the lowest among the behaviors and increases
at the slowest rate. This suggests that holding and sharing
factual information is the safest and most rewarding strategy
over time.

Interpretation in the Scenario Context

In a scenario where misinformation leads to scapegoating
and increased social unrest, these graphs can be interpreted
as follows Betrayal: Entities that engage in spreading misin-
formation (betrayal) may initially benefit, but as the rounds
progress, they accumulate more risk. This can be paral-
leled to increasing societal consequences as misinformation
is exposed or its negative impacts become more pronounced.
Cooperation, Agents that cooperate may do so with the un-
derstanding that while there are risks of being betrayed, the
reward remains stable. In the context of misinformation,
these could be entities that seek to maintain social harmony
by cooperating but may be at risk if they inadvertently coop-
erate with agents of misinformation. Concealment, Entities
that conceal information may not have as much to gain as
those who cooperate or betray, and their increasing risk over
time could represent the growing danger of holding back
information that could either clarify misunderstandings or
counteract misinformation. Fact-holder, Those who hold and



share factual information (fact-holders) are shown to be in
the best position, both in terms of reward and minimal risk.
This underscores the value of accurate information and the
importance of fact-checking in combating the spread of mis-
information.

Based on the graphs and the scenario provided, it is evi-
dent that while betrayal may offer short-term gains, it comes
with increasing risks that could lead to significant long-term
consequences. Cooperation has inherent risks but provides
consistent rewards. Concealment is less rewarding and still
carries risks. Fact-holding appears to be the most beneficial
approach, emphasizing the importance of accuracy and trans-
parency in information dissemination to maintain social order
and trust. In the long term, promoting fact-holding behavior
and countering misinformation and disinformation is crucial
for societal well-being.

Computational Model Application

Using the given values (', (,) , %, X), we can calculate the present value of long-term gains for cooperative (C) and defecting (D) strategies to understand the dynamics within the network.

To calculate the present value of longterm gains, we can
use the formula for the present value of an annuity, consider-
ing the game is repeated indefinitely:

%+ =
'

1X
for cooperation

%+ =
) + (' · X)

1X
for defection

Where: %+ is the present value. ' is the reward for
mutual cooperation. ) is the gain from betrayal. X is the
discount factor.

The present value (PV) of longterm gains for the cooper-
ative strategy (C) is approximately 30, and for the defection
strategy (D), it is approximately 32.

Interpretation in the Network Context

Cooperation Strategy (C): With a present value of 30, the
longterm gains from cooperation are significant, which indi-
cates that if an agent follows a cooperative strategy, they can
expect a steady payoff over time. This reflects the importance
of the green nodes (Cooperation) in the network, which help
to sustain social harmony and trust. Defection Strategy (D):
The slightly higher present value of 32 for defection suggests
that an agent could potentially gain more in the short term by
betraying once and then reverting to cooperation. This could
be indicative of the temptation that red nodes (Betrayal) in
the network represent.

However, the difference between the present values of the
two strategies is not very large, which implies that the tempta-
tion of immediate gain from defection is not overwhelmingly
more beneficial than cooperation when the longterm is con-
sidered, especially given the potential penalty (P) for mutual

betrayal, which we did not include in the defection calcula-
tion. This penalty could significantly reduce the present value
of defection if it were applied repeatedly.

In the context of misinformation and disinformation, the
network analysis and the computational model suggest that
while defection (or betrayal) might seem advantageous in the
very short term, the longterm benefits of cooperation out-
weigh the temporary gains from defection. This is especially
true if the model

In evolutionary game theory, the search for Evolutionarily
Stable Strategies (ESS) is a crucial approach to understand-
ing how dominant strategies are established and maintained
within a population. To introduce the computational process
of exploring ESS in the context of the Iterated Dilemma, it is
necessary to model how bidders’ strategies interact and evolve
over time. Below, we detail this computational process and
the equations involved.

Definition of Strategy Space
Define the set of strategies that bidders can adopt. These

strategies can include rules for determining bid amounts or
rules for changing strategies in response to other bidders’
actions. For example, simple strategies might include "always
bid the average price" or "adjust the bid amount based on the
previous winner’s bid amount."

Construction of Payoff Matrix
Calculate the payoff for each combination of strategies

and construct the payoff matrix. The payoff is determined
based on the outcome of the auction, bid amounts, and the true
value of the goods. The payoff matrix represents the expected
outcomes when different bidders adopt various strategies.

Modeling Strategy Evolution Dynamics
Construct a mathematical model describing how bidders’

strategies evolve. A commonly used model is the replicator
equation, which is based on the principle that if a strategy
earns a higher payoff than average, the proportion of individ-
uals adopting that strategy increases.

Identification of ESS
Solve the replicator equation to find the stable states for

each strategy. An ESS is defined as a strategy that, if adopted
by a population, remains stable against the invasion of a small
number of mutant strategies. Mathematically, the condition
for a strategy B to be an ESS against any mutant strategy B is

⇢ (B,B) > ⇢ (B, B)

Or, if ⇢ (B,B) = ⇢ (B, B) , then

⇢ (B,B) > ⇢ (B, B)

Here, ⇢ (B, B0) represents the payoff when a bidder adopt-
ing strategy B confronts a bidder adopting strategy B0.

Numerical Simulation



Perform numerical simulations to identify the ESS in
practice. Set an initial distribution of bidders’ strategies ran-
domly and calculate how the distribution of strategies changes
based on the replicator equation. Observe how the system
converges to a stable state over time.

Analysis of Results
Analyze the results of the simulation to identify strategies

that become ESS and the distribution of strategies. Evaluate
under what conditions a particular strategy becomes dominant
and how different parameters (e.g., discount rate X or auction
rules) affect the evolution of strategies.

Through this computational process, a deeper understand-
ing of the evolutionary stability of strategies in the context of
auctions considering the iterated dilemma can be obtained.
Using evolutionary game theory provides insights into the
behavior and strategy choices of bidders in actual auctions.

For the model based on evolutionary game theory that
considers the process of spreading fake news as a commodity
and forming its value, the calculation process for the Evo-
lutionarily Stable Strategy (ESS) across the transition from
the first to the second auction involves a five-step evaluation
matrix reflecting the scenario. Here’s how this process can
be detailed

Definition of Strategy Space
Define the strategies that spreaders of fake news (bidders)

can adopt. For example, possible strategies might include
Enhancing credibility strategy Mixing in some factual in-

formation with fake news to increase its believability. Emo-
tional appeal strategy Emphasizing content that appeals to
the readers’ emotions to enhance the likelihood of spreading.
Targeting strategy Creating content tailored to specific target
groups to increase efficiency in spreading.

Construction of Evaluation Matrix
Calculate the evaluation (payoff) for each combination of

strategies and construct the evaluation matrix. The evaluation
is based on factors such as the spread of fake news, the reaction
from readers, and value formation in the auction.

Modeling Strategy Evolution Dynamics
Use the replicator equation to model how each strategy

evolves over time. This model shows how the payoff of each
strategy changes in comparison to the average payoff.

Searching for ESS
Solve the replicator equation to explore the stable states

for each strategy. An ESS is defined as a strategy that re-
mains stable against the invasion of a small number of mutant
strategies.

Transition from the First to the Second Auction
Determine the strategies for the second auction based

on the results of the first auction (value formation of fake
news). This process involves considering how the outcomes
of the first auction influence the strategy choices in the second
auction.

Equations and Calculation Process
The replicator equation is represented as

§G8 = G8 ( 58 � 5̄ )

Here, G8 is the proportion of the population adopting strat-
egy 8, 58 is the payoff for strategy 8, and 5̄ is the average payoff
of the population.

The condition for ESS is defined as

5 (B,B) > 5 (B, B)

Or, if 5 (B,B) = 5 (B, B) , the following condition must hold

5 (B,B) > 5 (B, B)

Here, B is the strategy that is ESS, and B is any mutant
strategy.

To reflect the results of the first auction in the strategy
choices for the second auction, evaluate the success of each
strategy in the first auction and adjust the probability of strat-
egy choices in the second auction accordingly. This may
involve multi-agent simulations or evolutionary algorithms.

Through this process, the dynamics of spreading and
value formation of fake news as a commodity can be under-
stood, and the most effective strategies from an evolutionary
game theory perspective can be identified.

Continuing with the analysis, let’s delve deeper into the
calculation process and equations for defining the strategy
space in the context of spreading fake news as a commodity
and forming its value.

Step 1 Definition of Strategy Space
In the process of spreading fake news as a commodity

and forming its value, we define the types and characteristics
of strategies that bidders can take, and mathematically model
the outcomes these strategies yield.

Types of Strategies
1. Enhancing Credibility Strategy (S1) This strategy in-

volves mixing some truth with fake news to increase its cred-
ibility and make it more widely accepted. 2. Emotional
Appeal Strategy (S2) This strategy emphasizes content that
appeals to readers’ emotions, enhancing the likelihood of
spreading. 3. Targeting Strategy (S3) This strategy involves
creating content tailored to specific target groups to increase
spreading efficiency within those groups.

Modeling the Effects of Strategies
For each strategy, we model its effects based on the fol-

lowing elements
- Spread Rate (D) Indicates how widely the news is spread.

The spread rate varies depending on the strategy, represented
by parameters 31, 32, 33. - Credibility (C) Indicates how
believable the news is to the recipients. Credibility varies de-
pending on the strategy, represented by parameters 21, 22, 23.
- Target Fit (T) Indicates how well the news fits the target



audience. The target fit varies depending on the strategy,
represented by parameters C1, C2, C3.

Mathematical Representation
The expected utility ⇢ [*(8 ] of each strategy (8 is modeled

as a function of the spread rate, credibility, and target fit.

⇢ [*(8 ] = 5 (⇡8 ,⇠8 ,)8)

Where, ⇡8 = 38 ·BaseD,⇠8 = 28 ·BaseC,)8 = C8 ·TargetFit.
Example Calculation
For instance, the expected utility for the Enhancing Cred-

ibility Strategy (1 would be

⇢ [*(1] = 31 · BaseD + 21 · BaseC + C1 · TargetFit

Here, 31, 21, C1 are parameters specific to strategy (1,
and BaseD, BaseC are the base values for spread rate and
credibility, while TargetFit is a parameter indicating the fit
with the target audience.

By defining the expected utility of each strategy, we set a
criterion for selecting the most effective strategy. The choice
of strategy ultimately depends on how it impacts auction
outcomes and the formation of value for fake news.

Construction of Evaluation Matrix
In this step, we evaluate and compare the effects of each

strategy by constructing a matrix. This matrix numerically
represents the effects of different strategies, such as spread
rate, credibility, and target fit, and clarifies their interrelation-
ships.

Elements of the Evaluation Matrix
- Rows represent specific strategies (e.g., Enhancing Cred-

ibility Strategy, Emotional Appeal Strategy, Targeting Strat-
egy). - Columns represent the criteria for evaluation (e.g.,
Spread Rate ⇡, Credibility ⇠, Target Fit )).

1. Define indicators for evaluating each strategy (spread
rate, credibility, target fit). 2. Assign values to each strategy
for each indicator, reflecting the effectiveness or efficiency of
the strategy. 3. Create a matrix with strategies as rows and
indicators as columns.

Mathematical Representation
The evaluation matrix ⇢ can be represented as

⇢ =
266664
31 21 C1
32 22 C2
33 23 C3

377775
Where 38 , 28 , C8 represent the values for spread rate, cred-

ibility, and target fit for strategy 8, respectively.
Example Calculation
Assuming there are strategies (1, (2, and (3 with values

for spread rate, credibility, and target fit assigned as follows
- For (1 31 = 0.7, 21 = 0.8, C1 = 0.5 - For (2 32 =

0.9, 22 = 0.6, C2 = 0.4 - For (3 33 = 0.5, 23 = 0.7, C3 = 0.9

The evaluation matrix constructed with these values
would be

⇢ =
266664
0.7 0.8 0.5
0.9 0.6 0.4
0.5 0.7 0.9

377775
This matrix allows us to compare the relative effects of

each strategy and determine which strategy is most suitable
for achieving a specific objective, such as maximizing spread.

Continuing with the steps for modeling the strategy evo-
lution dynamics, identifying ESS, and analyzing the results
will provide a comprehensive understanding of how strate-
gies evolve and stabilize within the context of spreading fake
news as a commodity in auction scenarios.

Continuing with the analysis, let’s explore the modeling
of strategy evolution dynamics, the identification of Evolu-
tionarily Stable Strategies (ESS), and the analysis of results
in the context of spreading fake news as a commodity.

In the evolution of strategies within the information
oligopoly market, particularly for the spreading of fake news,
the dynamics of strategy evolution can be modeled using
mathematical equations that reflect how strategies adapt and
change over time in response to the environment and interac-
tions with other strategies.

A common approach to model the dynamics of strategy
evolution is through the use of the Replicator Equation, which
is represented as

§G8 = G8 (c8 � c̄)

Where - G8 represents the proportion of the population
adopting strategy 8. - §G8 is the change in proportion of strategy
8 over time. - c8 is the payoff (or fitness) of strategy 8. - c̄ is
the average payoff (or fitness) across all strategies within the
population.

This equation indicates that strategies which perform bet-
ter than the average increase in proportion over time, whereas
those performing worse decrease.

Identifying an ESS within the context of fake news spread-
ing involves finding strategies that, once prevalent within a
population, cannot be invaded by any alternative strategy
(mutant strategy) due to their inherent stability and higher
payoff.

A strategy B is considered an ESS if, for any mutant
strategy B, one of the following conditions is met

1. ⇢ (B,B) > ⇢ (B, B) , meaning the ESS yields a higher
payoff against itself than the mutant does against the ESS.

2. If ⇢ (B,B) = ⇢ (B, B) , then it must hold that ⇢ (B,B) >
⇢ (B, B), meaning in a mixed population of ESS and mutants,
the ESS performs better against the mutant than the mutant
does against itself.

Suppose, in simulations, the Enhancing Credibility Strat-
egy (S1) frequently emerges as a dominant strategy, leading



to a high spread rate and credibility but moderate target fit.
An in-depth analysis might reveal that in environments where
credibility is highly valued, S1 tends to stabilize and resist
invasion by other strategies like Emotional Appeal (S2) or
Targeting (S3), thereby indicating its status as an ESS in such
contexts.

By examining the results through these steps, researchers
can gain insights into the dynamic interplay of strategies in
the informational oligopoly market, particularly in the context
of spreading fake news. This analysis not only aids in under-
standing the theoretical underpinnings of such systems but
also has practical implications in devising counter-strategies
to combat the spread of misinformation.

4.6 The Payoff Matrix of Strategies
First, we construct the payoff matrix % that represents the out-
comes of contests between each pair of strategies. Each ele-
ment %8 9 of this matrix indicates the average “payoff” (benefit)
that an individual adopting strategy 8 receives when facing an
individual adopting strategy 9 .

% =

266666664

%11 %12 · · · %1=
%21 %22 · · · %2=
...

...
. . .

...
%=1 %=2 · · · %==

377777775
Here, = is the total number of strategies.

5. Evolutionary Dynamics Equation
Next, we introduce the dynamics equation that describes how
the proportion of each strategy changes over time. One of
the most common models used is the replicator equation,
expressed as follows

§G8 = G8 (c8 � c̄)

Where, G8 is the proportion of the population adopting
strategy 8, §G8 is the rate of change in proportion of strategy
8 over time, c8 is the average payoff of strategy 8, c̄ is the
average payoff across the entire population.

6. Calculation of Average Payoff
The average payoff c8 for strategy 8 is calculated using the
payoff matrix and the proportions of strategies as follows

c8 =
=’
9=1

%8 9G 9

The average payoff c̄ for the entire population is calculated
as the sum of the products of the average payoff of each
strategy and its proportion in the population

c̄ =
=’
8=1

G8c8

6.1 Example of Calculation Process
1. Construction of the Payoff Matrix The payoff matrix % is
constructed based on the outcomes of contests between each
pair of strategies. 2. Setting Initial Strategy Proportions
Initial proportions G8 (0) for each strategy are set. 3. Applica-
tion of Dynamics Equation The replicator equation is used
to calculate how the proportion of each strategy changes over
time. This step often involves numerical analysis methods.
4. Searching for ESS As time progresses towards infin-
ity, if the proportion of a certain strategy approaches 1 (all
other strategies are eliminated), that strategy is considered an
Evolutionarily Stable Strategy (ESS).

This calculation process allows us to understand how
a particular strategy evolves over the long term and which
strategies become evolutionarily stable.

7. DiscussionEvolutionary Dynamics
Equations

The process of calculating evolutionary dynamics focuses
on modeling how the proportion of strategies changes over
time. We detail this calculation process using the replicator
equation.

7.0.1 Replicator Equation

The replicator equation is a fundamental formula in evolu-
tionary game theory that describes the change in strategy
proportions. It is given by

§G8 = G8 (c8 � c̄)

Where,

G8 is the proportion of the population adopting strategy
8,

§G8 is the rate of change in the proportion of strategy 8
over time,

c8 is the average payoff for strategy 8,

c̄ is the average payoff across all strategies in the popu-
lation.

7.0.2 Calculation of Average Payoff

The average payoff c8 for strategy 8 is calculated using the
payoff matrix and the strategy proportions as follows

c8 =
=’
9=1

%8 9G 9



The overall average payoff c̄ for the population is then cal-
culated as the sum of the products of each strategy’s average
payoff and its proportion

c̄ =
=’
8=1

G8c8

1. Preparation of the Payoff Matrix Prepare the matrix
% showing the payoffs between strategies. 2. Setting Initial
Strategy Proportions Set the initial proportions G8 for each
strategy. 3. Calculation of Average Payoffs Calculate the av-
erage payoff c8 for each strategy using the formula provided.
4. Calculation of the Overall Average Payoff Compute
the overall average payoff c̄ using the average payoffs and
the strategy proportions. 5. Application of the Replica-
tor Equation Apply the replicator equation to calculate the
rate of change §G8 for each strategy. 6. Update of Strategy
Proportions Update the proportions of each strategy at small
time intervals �C as follows

G8 (C + �C) = G8 (C) + §G8�C
7. Iterative Calculation Repeat steps 3 to 6 to observe

how the proportions of strategies change over time.

8. DiscussionIdentification of
Evolutionarily Stable Strategies (ESS)

The search for ESS is a central concept in evolutionary game
theory. An ESS is a strategy that, once fixed in a population,
cannot be invaded by a small number of mutants. We detail
the process of searching for ESS below.

8.1 Definition of ESS
A strategy ( is considered an ESS if it meets the following
two conditions against any mutant strategy (0

1. Invadability ( obtains a higher or equal payoff against
itself compared to (0 against (

⇢ ((,() � ⇢ ((0, ()

2. Stability If ⇢ ((,() = ⇢ ((0, () , then ( must obtain a
higher payoff against (0 than (0 against itself

⇢ ((,(0) > ⇢ ((0, (0)
1. Preparation of the Payoff Matrix Prepare the payoff

matrix based on the interactions between strategies. 2. Ap-
plication of ESS Conditions Apply the ESS conditions to
all pairs of strategies. 3. Verification of Invadability Ver-
ify whether a strategy ( is invadable by any mutant strategy
(0 by comparing ⇢ ((,() and ⇢ ((0, () . 4. Verification of
Stability If ⇢ ((,() = ⇢ ((0, () for some mutant strategy (0,
verify the stability of ( by comparing ⇢ ((,(0) and ⇢ ((0, (0).
5. Identification of ESS Identify strategies that meet all ESS
conditions.

8.2 Example of Mathematical Formulation
Consider a payoff matrix given by

% =

5 0
3 1

�

In this case, we have two strategies, 1 and 2. Strategy 1,
when facing itself, obtains a payoff of 5, and against strategy
2, a payoff of 0. Strategy 2 obtains a payoff of 3 against
strategy 1 and 1 against itself.

To verify whether strategy 1 is an ESS
Invadability Compare ⇢ (1, 1) = 5 with ⇢ (2, 1) = 3.

Strategy 1 is not invadable since 5 � 3. Stability Since
invadability is the only condition met, strategy 1 is an ESS.

To verify whether strategy 2 is an ESS
Invadability Compare ⇢ (2, 2) = 1 with ⇢ (1, 2) = 0.

Strategy 2 is not invadable since 1 � 0. Stability Since
invadability is the only condition met, strategy 2 is also an
ESS.

By using the payoff matrix and the definitions of ESS, we
can identify evolutionarily stable strategies.

(1) Analysis of the Results of the First Auction Analyze
the strategies and outcomes (whether they won or lost,
how much profit was made, etc.) of each participant in
the first auction.

(2) Updating Information Based on the results of the first
auction, participants update their information and be-
liefs. This includes information inferred from the ac-
tions of other bidders and reevaluation of the conditions
for winning the auction.

(3) Adapting Strategies Participants adapt their strategies
for the second auction based on the results of the first
auction and updated information. This adjustment of
strategies takes into account learning from past results
and reactions to the strategies of other bidders.

(4) Modeling Value Formation The value of goods or ser-
vices in the second auction is formed based on the re-
sults of the first auction and market trends. This value
formation affects the expected gains calculations of the
participants and guides their choice of strategy.

Let '1 represent the results of the first auction and ⇢ [D (2)
8 ]

the expected gain of bidder 8 in the second auction. The
strategy chosen by bidder 8 for the second auction is ( (2)

8 .
The calculation of expected gains is then as follows

⇢ [D (2)
8 ] = 5 (( (2)

8 , '1, Info8)

Here, 5 is the function for calculating expected gains, and
Info8 is the information set held by bidder 8, updated based
on the results of the first auction '1.



The strategy ( (2)
8 adapted by the bidder for the second

auction is determined by solving the following optimization
problem

( (2)
8 = arg max

(8
⇢ [D (2)

8 ]

This calculation process determines the optimal strategy
based on the information and experiences gained from the
results of the first auction. This process can be seen as the
evolution of strategy considering dynamic market conditions
and interactions among participants.

The process of updating information based on the results
of the first auction involves analyzing the outcomes of the auc-
tion, using this information to update participants’ beliefs and
strategies. This process generally consists of the following
steps

(1) Collection of Results from the First Auction Gather
results such as the bidding amounts, the winner, and the
final prices from the first auction.

(2) Analysis of Results Analyze the collected data to gain
insights into which strategies were successful and how
each bidder behaved.

(3) Updating the Information Set Based on the analysis,
each bidder updates their information set. This may
include trends in the market, strategic tendencies of other
bidders, and adjustments to value assessments.

(4) Updating Beliefs Bidders update their beliefs based on
the updated information. For instance, a bidder might
adjust their value assessment based on the bidding ten-
dencies of others.

8.3 Example of Formulas
Let '1 represent the results of the first auction, and let Info(1)

8

be the information set of bidder 8 after the first auction. The
process by which bidder 8 acquires new information Info(2)

8

based on the results of the first auction can be modeled as
follows

Info(2)
8 = 6(Info(1)

8 , '1)

Here, 6 is the information updating function, generating a
new information set Info(2)

8 based on the first auction results
'1 and the existing information set Info(1)

8 .
The updating of bidder 8’s beliefs, denoted as ⌫8 , based

on the new information set is given by

⌫ (2)
8 = ⌘(⌫ (1)

8 , Info(2)
8 )

Where ⌘ is the belief updating function, deriving the
updated beliefs ⌫ (2)

8 from the existing beliefs ⌫ (1)
8 and the

new information set Info(2)
8 .

8.3.1 Example of the Calculation Process

If the bidding amount by bidder 8 in the first auction was higher
than average, the bidder might conclude that they underesti-
mated the market value and adjust their value assessment
accordingly. In this case, the information updating function
6 and the belief updating function ⌘ might be as follows

Info(2)
8 = Info(1)

8 + Adjustment from '1

⌫ (2)
8 = ⌫ (1)

8 + Adjustment based on Info(2)
8

The adjustments are quantitatively determined based on
the analysis, such as adjusting the value assessment upwards
based on how much higher the bidder’s bidding amount was
compared to the average of others.

The process from updating beliefs, adapting strategies,
to modeling value formation illustrates how bidders partici-
pating in an auction learn from past experiences, adjust their
strategies accordingly, and ultimately form the market value
of goods or services.

Evolutionary game theory models the process by which
players (individuals) learn and adapt optimal strategies
through repeated interactions. Applying evolutionary game
theory in the context of the repeated dilemma, especially the
well-known prisoner’s dilemma, helps understand how coop-
erative behavior can evolve among individuals pursuing their
self-interest. Below are some ideas from evolutionary game
theory that can be readily applied to the repeated dilemma
game

(1) Strategy Reproduction

Imitation of Strategies Individuals learn by imitating
the strategies of other successful individuals. In the con-
text of repeated dilemma games, the strategy of a player
who obtains high rewards (such as "always cooperate"
or "retaliate") may be imitated by others.

(2) Diversity of Strategies

Conditional Strategies Adopt strategies that choose the
best action based on the given situation. For example,
the "Tit-for-Tat" strategy, which cooperates in return for
previous cooperation and retaliates in response to be-
trayal, is one such strategy.

(3) Search for Stable Strategies

Evolutionarily Stable Strategy (ESS) An ESS is a strat-
egy that, once it becomes prevalent in a population, can-
not be invaded by a small number of mutants. Finding
an ESS in a repeated dilemma game helps understand
which strategies are stable in the long term.

(4) Dynamic Strategy Changes

Adaptive Dynamics Individuals adapt their strategies
based on the environment and the actions of others. In



repeated dilemma games, players may adjust their strate-
gies based on the outcomes of previous rounds.

(5) Consideration of Group Effects

Group Dynamics Individuals may change their behav-
ior through interactions within a group. In repeated
dilemma games, the formation of cooperative clusters
can increase the likelihood of continued cooperation
among individuals within the group.

(6) Consideration of Interdependencies

Interaction Networks Interactions between individuals
often form network structures. In repeated dilemma
games, considering the network of relationships between
players can help analyze patterns of cooperation and
betrayal.

These ideas provide a useful framework for understand-
ing the evolution of strategies and the resulting dynamics in
repeated dilemma games. Through simulations and math-
ematical modeling, these ideas can be further explored to
analyze specific strategies and patterns of interaction.

When considering the evolutionary game of strategy im-
itation within an information oligopoly market, players treat
information as a commodity and aim to profit by offering it
in the market. Considering the repeated dilemma in such a
situation suggests the importance of strategies that emphasize
long-term relationships and trust among players. Below, we
detail the formulas and calculation process for modeling this
scenario.

9. DiscussionModeling Evolutionary
Games of Strategy Imitation in
Information Oligopoly Markets

When considering the evolutionary game of strategy imita-
tion within an information oligopoly market, players treat
information as a commodity and aim to profit by offering it
in the market. Considering the repeated dilemma in such a
situation suggests the importance of strategies that emphasize
long-term relationships and trust among players. We detail
the formulas and calculation processes to model this scenario
below.

9.1 Definition of Strategy Space
Players (bidders) select their strategies from a set of strategies
( = {B1, B2, . . . , B=}. A strategy comprises several elements,
including the quality of information, the price of offering, and
the quantity provided.

9.2 Setting Up the Payoff Function
We establish a payoff function *8 (B8 , B�8) for each player,
where B8 is player 8’s strategy, and B�8 is the combination of

strategies of other players. The payoff depends on the chosen
strategy and the strategies of other players in the market.

9.3 Imitation and Evolution of Strategies
Players evolve their strategies by imitating more successful
players’ strategies. This dynamic can be expressed as follows

B (C+1)
8 = arg max

B2(
*8 (B, B (C )�8 )

Here, B (C+1)
8 is the strategy player 8 will adopt in the next

time step, and B (C )�8 is the combination of strategies of other
players at the current time step.

9.4 Searching for a Stable State
When the market reaches a stable state, there is no change
in the strategies among players. A stable state is a situa-
tion where no player can improve their payoff by unilaterally
changing their current strategy. This corresponds to a Nash
equilibrium.

88, *8 (B,8B
)
�8 � *8 (B8 , B)�8 for all B8 2 (

Here, (B,8B
)
�8 is the combination of strategies at the Nash

equilibrium.

9.5 Discounting Future Payoffs
We consider discounting future payoffs to their present value.

*̃8 (B8 , B�8) =
)’
C=0

XC*8 (B (C )8 , B (C )�8 )

Here, X is the discount rate used to convert future payoffs
to their present value.

9.6 Numerical Optimization
The optimization problem is usually solved using numerical
methods (e.g., gradient descent, simulation-based optimiza-
tion). Due to the dynamic interactions and evolving strategies
within the market, this process is iterative, with each player
continuously updating their information and adjusting their
strategies.

This model provides a framework for understanding
strategic interactions and their evolution within an informa-
tion oligopoly market, illustrating how players choose and
adapt optimal strategies to strengthen their position in the
market.

10. DiscussionDefinition of Strategy
Space and Setting Up the Payoff

Function
The processes of defining the strategy space and setting up the
payoff function are foundational in designing an evolutionary



game of strategy imitation within an information oligopoly
market. These steps define what strategies are available to
players and how the payoff for each strategy is calculated.

10.1 Definition of Strategy Space
In defining the strategy space, we identify the set of all possi-
ble strategies ( that players can choose from. This set might
include various elements such as information quality, pricing,
quantity offered, and marketing approaches.

To define the strategy space, we need to quantify specific
strategy parameters. For instance, considering parameters
like price ?, the amount of advertising 0, and the quality of
information @, a strategy B8 can be represented as a combina-
tion of these parameters

B8 = (?8 , 08 , @8)

where ?8 represents the price in strategy 8, 08 the amount
of advertising, and @8 the quality of information.

10.2 Setting Up the Payoff Function
The payoff function defines the payoff (or utility) a player
receives from adopting a particular strategy. This function
depends on both the player’s chosen strategy and the combi-
nation of strategies of other participants. The payoff function
is represented as D8 (B8 , B�8), indicating the payoff for player 8
choosing strategy B8 , against the strategies B�8 of other play-
ers.

As an example of a payoff function, consider the payoff
in a price competition scenario. The payoff for player 8 could
be represented as a function of their own price ?8 , the prices
?�8 of other players, the per-unit cost 2 of the information
product sold, and a market demand function ⇡ (?8 , ?�8)

D8 (?8 , ?�8) = (?8 � 2) ⇥ ⇡ (?8 , ?�8)

Here, ⇡ (?8 , ?�8) represents the market demand function,
which depends on the price ?8 and the prices ?�8 of other
players, indicating how price influences demand.

These steps provide a framework for modeling strategic
interactions in an information oligopoly market, helping an-
alyze what strategies players might choose and how those
strategies impact their payoffs.

11. DiscussionImitation and Evolution
of Strategies

The process of imitation and evolution of strategies in an in-
formation oligopoly market models how market participants
imitate the strategies of others perceived as successful and
evolve their strategies accordingly. This process is based on
concepts from evolutionary game theory.

11.1 Imitation of Strategies
Market participants observe and imitate the strategies of other
participants that are perceived as successful, based on the
payoffs those strategies yield. The probability of imitation
depends on the success level of the strategy being imitated.

Consider the probability %8! 9 that player 8 imitates the
strategy B 9 of player 9 . This probability is higher when the
payoff D 9 of player 9 is greater than the payoff D8 of player 8.
A common form can be represented as follows

%8! 9 =
4VD 9Õ
: 4VD:

where V is a parameter indicating the intensity of selection
(or the degree of rationality), and D: represents the payoffs of
all players in the market.

11.2 Evolution of Strategies
The evolution of strategies occurs over time through the pro-
cess of imitation. As players imitate the strategies of others,
the overall distribution of strategies in the market changes,
leading to the evolution of the market’s strategic structure.

Let GB represent the proportion of strategy B in the market,
and §GB its rate of change over time. The dynamics of evolution
can be modeled as follows

§GB = GB (D̄B � D̄)

where D̄B is the average payoff of players adopting strategy
B, and D̄ is the average payoff across all players in the mar-
ket. This equation indicates that the proportion of strategies
yielding above-average payoffs increases.

This step mathematically represents how market partici-
pants imitate successful strategies of others and evolve their
strategies. The process of imitation and evolution helps ana-
lyze how the overall strategic structure of the market changes
over time.

12. Searching for a Stable State
The process of searching for a stable state in the context
of an information oligopoly market involves analyzing how
the strategies of market participants evolve over time and
ultimately reach a state of stability. In this state, no player
can unilaterally change their strategy to improve their payoff.

12.1 Conditions for a Stable State
In a stable state, all participants in the market are employing
strategies that are optimal, and the system has the capacity to
return to this state after small perturbations. This condition
can be mathematically expressed.

Let GB denote the proportion of strategy B in the market,
and its evolutionary dynamics previously described by §GB =



GB (D̄B � D̄). A stable state GB is achieved when the following
condition is met

3 §GB
3GB

����
GB=GB<0

This condition implies that the derivative of the change
rate §GB of strategy Bwith respect to its proportion GB is negative
at the stable state GB , indicating the system’s tendency to return
to the stable state after small perturbations.

12.2 Searching for the Stable State
The search for a stable state is conducted by simulating how
the distribution of strategies in the market changes over time,
starting from various initial conditions and parameters, and
observing where the system converges.

Starting from an initial strategy distribution GB (0), evolve
GB (C) over time according to the evolutionary dynamics. If
GB (C) converges to a constant GB as time approaches infinity,
then GB can be considered a stable state.

This step provides a mathematical framework for under-
standing how strategies in an information oligopoly market
evolve and reach a state of stability. Identifying stable states
helps predict the long-term behavior and strategic structure
of the market.

13. DiscussionDiscounting Future
Payoffs

In considering strategies within an information oligopoly
market, it’s important to account for how future payoffs are
discounted to their present value. This step analyzes the
impact of discounting future payoffs on current decision-
making.

13.1 Principle of Discounting
Future payoffs are generally considered less valuable than
present ones, depending on the time until receipt and the de-
gree of uncertainty. This is expressed by applying a discount
rate to convert future payoffs to their present value.

Mathematical Example
To discount the expected payoff ⇢ [D (C )

8 ] in a future round C
to its present value using a discount rate X (where 0 < X < 1),
the discounted payoff ⇡ [D (C )

8 ] is given by

⇡ [D (C )
8 ] = XC · ⇢ [D (C )

8 ]
where XC is the factor used to discount the payoff at time

C to its present value.

13.2 Total Discounted Future Payoffs
The total discounted future payoffs for player 8 across all future
rounds is calculated as the sum of the discounted payoffs for
each round

⇡ [Dtotal
8 ] =

)’
C=1

⇡ [D (C )
8 ] =

)’
C=1

XC · ⇢ [D (C )
8 ]

This formula represents the total payoff after discount-
ing future payoffs, providing a guideline for players to make
optimal strategic choices from a long-term perspective.

1. Identify the expected future payoff ⇢ [D (C )
8 ] for each

future round. 2. Apply the discount rate X to each round’s
payoff to calculate the discounted payoff ⇡ [D (C )

8 ]. 3. Sum
the discounted payoffs ⇡ [Dtotal

8 ] across all rounds.
By considering discounted future payoffs, players can se-

lect strategies that not only focus on immediate gains but
also take into account the long-term benefits, enabling more
sustainable and profitable strategic choices.

14. DiscussionCalculation Process for
Future Round Payoffs

When calculating the payoffs for bidders in future rounds, it
is necessary to consider how the bidder’s actions, the actions
of other players, and the market conditions interact in that
round. Below are the calculation process and the associated
formulas.

(1) Strategy Definition Define the strategies that bidders
can take. This may consist of various elements such as
bid amounts, bidding strategies, and whether to share
information.

(2) Market Condition Forecasting Predict the market con-
ditions in each round. This may include the number of
other bidders, the types of goods, and market demand.

(3) Setting Up the Payoff Function Based on the bidder’s
strategy and market conditions, set up a payoff function
to calculate the bidder’s payoff in that round.

(4) Consideration of Other Players’ Strategies Consider
the strategies that other bidders might take and how they
would affect the bidder’s payoff.

(5) Calculation of Expected Payoff Taking into account
the above elements, calculate the expected payoff for the
bidder in each round.

The general form for calculating the expected payoff
⇢ [D (C )

8 ] for bidder 8 in round C is as follows

⇢ [D (C )
8 ] =

’
9

%(B 9 |Market Conditions, Strategies of Other Players)⇥*8 (B 9 , B8)

where, %(B 9 |Market Conditions, Strategies of Other Players)
is the probability that strategy B 9 occurs given certain market
conditions and the strategies of other players. *8 (B 9 , B8) is
the payoff for bidder 8 when they choose strategy B8 and other
players choose strategy B 9 .



(1) Calculation of Probabilities Based on Market Con-
ditions and Strategies of Other Players Calculate the
probabilities of possible outcomes of strategies based on
the market conditions and the strategies of other players
in each round.

(2) Calculation of Payoffs Use the above probabilities and
the payoff function for specific combinations of strate-
gies to calculate the payoffs for the bidder.

(3) Summation of Expected Payoffs Sum the payoffs for
all possible outcomes of strategies to determine the ex-
pected payoff for the bidder in round C.

Through this process, it is possible to understand how
the bidder’s strategy interacts with market conditions in each
round and what payoffs result from this interaction. This
allows bidders to strategize from a long-term perspective and
make optimal decisions.

15. DiscussionCalculation of
Probabilities Based on Market

Conditions and Strategies of Other
Players

Calculating the probabilities based on market conditions and
the strategies of other players is crucial when considering
strategic interactions in an information oligopoly market.
This calculation process evaluates the outcomes that each
player’s strategy might produce given the market conditions
and derives the probabilities of each strategy accordingly.

(1) Identification of Market Conditions Define the market
conditions, such as market size, the number of players,
characteristics of goods, and market demand.

(2) Identification of Player Strategies Identify the set of
strategies that each player can take. Strategies can in-
clude elements like price setting, advertising strategies,
and product differentiation.

(3) Prediction of Outcomes for Each Strategy Predict the
outcomes of adopting each strategy under specific mar-
ket conditions. This may include market share, profit,
and consumer response.

(4) Calculation of Probabilities Based on market condi-
tions and the predicted outcomes of strategies, calculate
the probabilities of each strategy occurring. This in-
cludes considering the effectiveness of strategies, the
reaction of other players, and the impact of external fac-
tors.

A general form for calculating the probability
%(B8 |Market Conditions, Strategies of Other Players) that
player 8 adopts strategy B8 is as follows

%(B8 |Market Conditions, Strategies of Other Players) = exp(V*8 (B8 ,Market Conditions, Strategies of Other Players))Õ
B08

exp(V*8 (B08 ,Market Conditions, Strategies of Other Players))

where, V is a parameter represent-
ing the sensitivity to strategy selection.
*8 (B8 ,Market Conditions, Strategies of Other Players) is
the expected payoff for player 8 when adopting strategy B8 .
The denominator is the sum of exponential functions of the
expected payoffs for all possible strategies B08 .

15.1 Detailed Calculation Process
(1) Calculation of Expected Payoffs Calculate the expected

payoffs for player 8 when adopting each strategy based
on specific market conditions and the strategies of other
players.

(2) Normalization of Probabilities Calculate the exponen-
tial function of the expected payoffs for all strategies and
divide by their sum to normalize the selection probabil-
ities of strategies, ensuring that the sum of all strategy
probabilities equals 1.

(3) Interpretation of Probabilities The calculated prob-
abilities indicate how effective each strategy is under
specific market conditions. A higher probability means
that the strategy is preferred over others.

Through this calculation process, it is possible to under-
stand how market conditions and strategic interactions among
players influence probabilistic strategy choices. This enables
players to select optimal strategies according to market con-
ditions and gain a competitive advantage.

15.2 Identification of Player Strategies and Cal-
culation of Expected Payoffs

Identifying player strategies and calculating expected payoffs
are crucial steps in determining how players should act in a
competitive market environment. Through these processes,
players can assess the potential outcomes of different strate-
gies and make choices that maximize their benefits.

15.2.1 Identification of Player Strategies

Players formulate strategies based on various strategic ele-
ments such as pricing, product differentiation, and marketing
approaches.

Calculation Process

List Strategies List all possible strategies that players
can take, including price settings, product differentia-
tion, and marketing approaches.



Evaluate Strategy Characteristics Evaluate the char-
acteristics of each strategy and analyze how they adapt to
market demands, competitive situations, and cost struc-
tures.

15.2.2 Calculation of Expected Payoffs

Calculate the potential benefits each strategy could bring,
guiding the choice of strategy.

Calculation Process

Revenue Calculation Calculate the revenue for adopting
a specific strategy, which is determined by the product
of price and quantity sold.

Cost Calculation Evaluate the costs associated with im-
plementing the strategy, including both fixed and vari-
able costs.

Profit Calculation The expected payoff is the difference
between the revenue and the costs.

Example of Formulas The expected payoff ⇢ [D(B)] for
adopting strategy B is calculated using the revenue '(B) and
the costs ⇠ (B) as follows

⇢ [D(B)] = '(B) � ⇠ (B)

where, '(B) = ?(B) ⇥ @(B) represents the revenue from
strategy B, with ?(B) being the price and @(B) the quantity
sold. ⇠ (B) = ⇠fixed + ⇠variable (B) represents the costs asso-
ciated with strategy B, with ⇠fixed being the fixed costs and
⇠variable (B) the variable costs.

Through these calculation processes, players can evaluate
the potential outcomes of different strategies and select the
one that offers the highest benefit.

16. DiscussionScenario-based
Evaluation Criteria Applications

Below are proposed formulas and calculation process ideas
based on the definition of criteria for three different scenarios.
Each scenario assumes a different context and explains how
the evaluation criteria are applied.

16.1 Scenario 1 Market Introduction of a New
Product

Objective Introduce a new product to the market and gain
market share.

16.1.1 Effectiveness Evaluation

Formula ⇢eff = U · (Market Research Score) + V ·
(Target Customer Response)

Calculation Process Score the effectiveness of the new
product’s market introduction based on market research data
and feedback from target customers.

16.1.2 Risk Evaluation

Formula ' = W · (Competitor Reaction) + X ·
(Market Volatility Risk)

Calculation Process Evaluate the potential negative im-
pacts and uncertainties associated with new market entry,
such as competitor reactions and market volatility.

16.1.3 Cost Evaluation

Formula ⇠ = Fixed Costs + n · (Variable Costs)

Calculation Process Calculate the total costs associated
with new product development and market introduction, in-
cluding both fixed and variable costs.

16.1.4 Scope of Impact Evaluation

Formula ( = Z · (Expected Market Coverage)

Calculation Process Score the scope of impact based on
the expected market coverage of the new product.

16.1.5 Feasibility Evaluation

Formula � = [ · (Internal Resources) + \ ·
(Technical Feasibility)

Calculation Process Score the feasibility of implementing
new technology based on the organization’s internal resources
and technical capabilities.

17. Implementation of Cost Reduction
Plan

17.1 Evaluation of Effectiveness
Formula ⇢eff = U · (
Calculation Process
( represents the actual amount of costs reduced by imple-
menting the cost reduction plan.

17.2 Evaluation of Risk
Formula ' = W · �
Calculation Process
� denotes the potential negative impact on operational effi-
ciency or quality due to cost-cutting measures.



17.3 Evaluation of Cost
Formula ⇠total = ⇠investment
Calculation Process
⇠investment indicates the initial investment required to imple-
ment the cost reduction plan.

These scenario-specific calculation processes and for-
mula ideas lay the foundation for assessing potential benefits
and risks and determining the optimal strategy in formulating
a risk management strategy for fake news business models. It
is crucial to accurately understand the objectives and risks in
each scenario and choose the appropriate calculation model
based on that understanding.

18. PerspectProposed Calculation
Processes and Formulas for Risk

Management in Fake News Business
Models

18.1 Calculation of Effectiveness
Objective Quantify the diffusion effect of fake news.
Formula Effectiveness Score = F1 · Diffusion Rate + F2 ·
Reach
Calculation Process
The diffusion rate is measured by the number of times the
fake news is shared within a certain time frame.
The reach is measured by the number of unique users the fake
news reaches.
F1 and F2 are weights reflecting the importance of each
metric.

18.2 Calculation of Risk
Objective Assess the risks associated with fake news.
Formula Total Risk Score = F3 · Legal Prosecution Risk +
F4 · Reputation Loss Risk
Calculation Process
Legal prosecution risk is assessed based on violations of rel-
evant laws and regulations.
Reputation loss risk is evaluated based on negative public
perception caused by fake news and its impact.
F3 and F4 are weights reflecting the importance of each risk
factor.

18.3 Calculation of Cost
Objective Calculate the total cost of a fake news campaign.
Formula Total Cost = Content Creation Cost +
Dissemination Cost
Calculation Process
Content creation cost includes direct expenses for creating
the fake news.
Dissemination cost includes advertising expenses and social
media usage fees for spreading the fake news.

Fig. 9: Strategy Evaluation Matrix

18.4 Evaluation of Ethical Impact
Objective Evaluate the ethical impact of fake news on
society.
Formula Ethical Impact Score =
5 (Impact Scope, Severity of Impact)
Calculation Process
The impact scope is measured by the number of people
potentially affected by the fake news.
The severity of impact is evaluated based on the degree of
harm caused by the fake news.
5 is a function that combines these two factors to assess the
overall ethical impact.

18.4.1 Evaluation of Feasibility

Objective Evaluate the feasibility of executing the campaign.
Formula Feasibility Score = F5 ·Available Resources +F6 ·
Technical Feasibility
Calculation Process
Available resources are measured by the amount of human and
financial resources available for implementing the campaign.
Technical feasibility is evaluated based on the presence or
absence of the technical capabilities required for producing
and disseminating fake news.
F5 and F6 are weights reflecting the importance of each
factor.

These calculation processes and formulas aid in the for-
mulation of risk management strategies for fake news busi-
ness models. It is essential to accurately assess the potential
benefits and risks in each scenario, considering ethical con-
siderations, and make responsible decisions.

Fig.9-10, "Expected Gains for Fake News Strategies,"
which compares the expected gains from three different strate-
gies used in the context of spreading fake news. The second
image is a heatmap titled "Strategy Evaluation Matrix," show-



Fig. 10: Strategy Evaluation Matrix

ing the ratings of the three strategies based on various criteria
such as Effectiveness, Risk, Cost, Scope, and Feasibility.

Expected Gains for Fake News Strategies (Bar Chart)

Strategy 1 (Blue Bar), This strategy has an expected gain of
just over 1.5, which is the lowest among the three strategies.
It suggests that while this strategy may yield some gain, it is
not as profitable as the others. Strategy 2 (Green Bar), With
an expected gain of just over 1.0, this strategy is less advan-
tageous than Strategy 1. This might indicate that it is either
less effective at spreading fake news or has higher associated
costs or risks. Strategy 3 (Red Bar), This strategy shows the
highest expected gain, slightly less than 2.0, suggesting it is
the most beneficial strategy in terms of expected returns from
spreading fake news.

Strategy Evaluation Matrix (Heatmap)

The heatmap provides a more detailed analysis of each strat-
egy by evaluating them across five criteria.

Effectiveness, Strategy 3 is rated the highest in effective-
ness, while Strategy 1 is moderately effective, and Strategy 2
is the least effective. Risk:Strategy 1 carries moderate risk,
Strategy 2 has a slightly higher risk, and Strategy 3 has the
lowest risk rating. Cost:Strategy 3 is rated as the most costly,
whereas Strategies 1 and 2 are less so. Scope:Strategy 1 has
the widest scope, followed by Strategy 3, with Strategy 2 be-
ing the narrowest. Feasibility:Strategy 1 is the most feasible,
while Strategy 3 is the least feasible.

Synthesis of Findings in the Scenario Context

In the scenario where the spread of fake news leads to in-
creased social discord and targeting of less aggressive enti-

Fig. 11: Total Cost

ties, the analysis of the two graphs could be synthesized as
follows.

Strategy 1, Despite being moderate in risk and highly fea-
sible, its effectiveness and scope make it a practical choice
but not the most profitable in terms of expected gains. This
strategy might be more about widespread dissemination with
manageable risks. Strategy 2, It seems to be a balanced
approach with moderate ratings across all criteria except ef-
fectiveness. Its lower expected gain may reflect its balanced
but underwhelming performance. Strategy 3, While it has the
highest expected gain and is most effective with the widest
scope, it also carries the highest cost and lowest feasibility.
This could imply a high-risk, high-reward strategy that, if
successful, could cause significant social unrest and target-
ing of innocents but would require substantial resources to
implement.

Considering the trade-offs between the expected gains and
the ratings on the evaluation matrix, it is clear that each strat-
egy comes with its own set of advantages and disadvantages.
Strategy 3, despite its high potential gain, may not be sustain-
able or ethical due to its high cost and low feasibility. Strategy
1 appears to be a safe and practical approach with reasonable
effectiveness and the widest scope. Strategy 2 seems to be the
least effective and, therefore, might be the least concerning
in terms of its potential to cause harm through the spread of
fake news.

In combating fake news and its detrimental effects on
society, understanding the nuances of these strategies can in-
form the development of countermeasures. Effective counter-
strategies would need to decrease the expected gains of
spreading fake news, increase the associated risks and costs,
and limit the scope of its spread while maintaining feasibility.

Fig.11, appears to be a set of four histograms, each de-
picting a different aspect of strategies, potentially related to
the dissemination of fake news. The histograms represent the
following:

Effectiveness Score vs. Total Cost, This graph shows the



relationship between the total cost of a strategy and its effec-
tiveness score. There appears to be a variation in effective-
ness at different cost levels, suggesting that more expensive
strategies do not necessarily guarantee higher effectiveness.

Risk Score vs. Feasibility Score, This histogram illus-
trates the distribution of risk scores across different feasibility
scores. The distribution seems fairly even, indicating that the
perceived risk of a strategy does not directly correlate with
its feasibility.

Total Cost Histogram, This histogram shows the fre-
quency of strategies at different total cost levels. It suggests
that most strategies cluster around the mid-range costs rather
than being very cheap or very expensive.

Feasibility Score Histogram, This histogram displays the
frequency of strategies at different levels of feasibility. The
distribution is relatively even, with a slight concentration in
the mid-range of the feasibility scores.

Analysis in the Context of Misinformation Spread When
analyzing these histograms in the context of misinformation
spread leading to blame-shifting and increased societal dis-
cord.

Effectiveness vs. Cost, Not all costly strategies are highly
effective, which implies that investing heavily in the spread of
misinformation does not always lead to greater impact. This
could suggest that some efforts to spread fake news might
result in poor returns on investment, especially if the costs
outweigh the actual influence on public opinion.

Risk vs. Feasibility, Strategies with varying levels of risk
seem to have a broad range of feasibility scores, indicating that
some high-risk strategies might be easy to implement, while
others are not. This could reflect the unpredictable nature of
misinformation campaigns where some risky endeavors are
surprisingly easy to execute due to technological or social
vulnerabilities.

Total Cost Histogram, The presence of strategies across
a range of costs suggests that there is no single financial
model for misinformation campaigns. Some actors might opt
for low-cost, grassroots-style campaigns, while others might
invest heavily, possibly indicating state-level backing or the
involvement of well-funded organizations.

Feasibility Score Histogram, The spread of feasibility
scores indicates that there is a variety of strategies with dif-
ferent levels of ease of implementation. This could relate
to factors such as the availability of platforms for spreading
misinformation, the sophistication of the target audience, and
the presence of countermeasures like fact-checking.

Given the spread of effectiveness and cost, those seek-
ing to combat misinformation should focus on identifying
high-impact, low-cost strategies to maximize the efficiency
of their efforts. The varied relationship between risk and
feasibility suggests that counter-strategies should be versatile
and adaptable to different conditions. Monitoring and poten-

tially intervening in the mid-range cost strategies might be
more effective, as these are more commonly utilized.

The histograms also imply that there is no one-size-fits-all
approach to either spreading or countering misinformation.
A multi-faceted approach that considers the diverse nature
of misinformation campaigns—acknowledging their varying
costs, risks, and feasibility—is crucial.

In conclusion, understanding the dynamics of misinfor-
mation strategies, as represented in these histograms, is vital
for developing effective countermeasures that protect less ag-
gressive entities from being targeted and reduce the amplifi-
cation of misinformation, thereby mitigating the exacerbation
of social anxiety and discord.

References
zh

[1] "Measurement error mitigation in quantum computers
through classical bit-flip correction" (2022). In Physical
Review. DOI 10.1103/physreva.105.062404. [Online].
Available http//arxiv.org/pdf/2007.03663

[2] Caroline Jacqueline Denise Berdou et al. "One Hun-
dred Second Bit-Flip Time in a Two-Photon Dis-
sipative Oscillator" (2022). In PRX Quantum. DOI
10.1103/PRXQuantum.4.020350.

[3] "Using classical bit-flip correction for error miti-
gation in quantum computations including 2-qubit
correlations" (2022). [Proceedings Article]. DOI
10.22323/1.396.0327.

[4] Gaojun Luo, Martianus Frederic Ezerman, San Ling.
"Asymmetric quantum Griesmer codes detecting a sin-
gle bit-flip error" (2022). In Discrete Mathematics. DOI
10.1016/j.disc.2022.113088.

[5] Nur Izzati Ishak, Sithi V. Muniandy, Wu Yi Chong.
"Entropy analysis of the discrete-time quantum walk
under bit-flip noise channel" (2021). In Physica
A-statistical Mechanics and Its Applications. DOI
10.1016/J.PHYSA.2021.126371.

[6] Enaul Haq Shaik et al. "QCA-Based Pulse/Bit Se-
quence Detector Using Low Quantum Cost D-Flip Flop"
(2022). DOI 10.1142/s0218126623500822.

[7] Farhan Feroz, A. B. M. Alim Al Islam. "Scaling Up Bit-
Flip Quantum Error Correction" (2020). [Proceedings
Article]. DOI 10.1145/3428363.3428372.

[8] "Effect of Quantum Repetition Code on Fidelity of Bell
States in Bit Flip Channels" (2022). [Proceedings Arti-
cle]. DOI 10.1109/icece57408.2022.10088665.

[9] Lena Funcke et al. "Measurement Error Mitigation in
Quantum Computers Through Classical Bit-Flip Cor-
rection" (2020). In arXiv Quantum Physics. [Online].
Available https//arxiv.org/pdf/2007.03663.pdf

[10] Alistair W. R. Smith et al. "Qubit readout error miti-
gation with bit-flip averaging" (2021). In Science Ad-
vances. DOI 10.1126/SCIADV.ABI8009.

[11] Constantia Alexandrou et al. "Using classical bit-flip
correction for error mitigation including 2-qubit corre-
lations." (2021). In arXiv Quantum Physics. [Online].
Available https//arxiv.org/pdf/2111.08551.pdf



[12] William Livingston et al. "Experimental demon-
stration of continuous quantum error correction."
(2021). In arXiv Quantum Physics. [Online]. Available
https//arxiv.org/pdf/2107.11398.pdf

[13] Constantia Alexandrou et al. "Investigating the variance
increase of readout error mitigation through classical
bit-flip correction on IBM and Rigetti quantum com-
puters." (2021). In arXiv Quantum Physics. [Online].
Available https//arxiv.org/pdf/2111.05026

[14] Raphaël Lescanne et al. "Exponential suppres-
sion of bit-flips in a qubit encoded in an
oscillator." (2020). In Nature Physics. DOI
10.1038/S41567-020-0824-X. [Online]. Available
https//biblio.ugent.be/publication/8669531/file/8669532.pdf

[15] Raphaël Lescanne et al. "Exponential suppression
of bit-flips in a qubit encoded in an oscillator."
(2019). In arXiv Quantum Physics. [Online]. Available
https//arxiv.org/pdf/1907.11729.pdf

[16] Diego Ristè et al. "Real-time processing of stabilizer
measurements in a bit-flip code." (2020). In npj Quan-
tum Information. DOI 10.1038/S41534-020-00304-Y.

[17] Bernard Zygelman. "Computare Errare Est Quantum
Error Correction." (2018). In Book Chapter. DOI
10.1007/978-3-319-91629-39.

[18] I. Serban et al. "Qubit decoherence due to detec-
tor switching." (2015). In EPJ Quantum Technology.
DOI 10.1140/EPJQT/S40507-015-0020-6. [Online]. Avail-
able https//link.springer.com/content/pdf/10.1140

[19] Matt McEwen et al. "Removing leakage-induced corre-
lated errors in superconducting quantum error correction."
(2021). In Nature Communications. DOI 10.1038/S41467-
021-21982-Y.

[20] "Measurement error mitigation in quantum com-
puters through classical bit-flip correction" (2020).
In arXiv Quantum Physics. [Online]. Available
https//arxiv.org/pdf/2007.03663.pdf

[21] Alistair W. R. Smith et al. "Qubit readout error mit-
igation with bit-flip averaging." (2021). In Science Ad-
vances. DOI 10.1126/SCIADV.ABI8009. [Online]. Available
https//advances.sciencemag.org/content/7/47/eabi8009

[22] Biswas, T., Stock, G., Fink, T. (2018). Opinion Dynamics on
a Quantum Computer The Role of Entanglement in Fostering
Consensus. Physical Review Letters, 121(12), 120502.

[23] Acerbi, F., Perarnau-Llobet, M., Di Marco, G. (2021). Quan-
tum dynamics of opinion formation on networks the Fermi-
Pasta-Ulam-Tsingou problem. New Journal of Physics, 23(9),
093059.

[24] Di Marco, G., Tomassini, L., Anteneodo, C. (2019). Quantum
Opinion Dynamics. Scientific Reports, 9(1), 1-8.

[25] Ma, H., Chen, Y. (2021). Quantum-Enhanced Opinion Dy-
namics in Complex Networks. Entropy, 23(4), 426.

[26] Li, X., Liu, Y., Zhang, Y. (2020). Quantum-inspired opinion
dynamics model with emotion. Chaos, Solitons Fractals, 132,
109509.

[27] Galam, S. (2017). Sociophysics A personal testimony. The
European Physical Journal B, 90(2), 1-22.

[28] Nyczka, P., Holyst, J. A., Hołyst, R. (2012). Opinion forma-
tion model with strong leader and external impact. Physical
Review E, 85(6), 066109.

[29] Ben-Naim, E., Krapivsky, P. L., Vazquez, F. (2003). Dynam-
ics of opinion formation. Physical Review E, 67(3), 031104.

[30] Dandekar, P., Goel, A., Lee, D. T. (2013). Biased assimila-
tion, homophily, and the dynamics of polarization. Proceed-
ings of the National Academy of Sciences, 110(15), 5791-
5796.

[31] Castellano, C., Fortunato, S., Loreto, V. (2009). Statisti-
cal physics of social dynamics. Reviews of Modern Physics,
81(2), 591.

[32] Galam, S. (2017). Sociophysics A personal testimony. The
European Physical Journal B, 90(2), 1-22.

[33] Nyczka, P., Holyst, J. A., Hołyst, R. (2012). Opinion forma-
tion model with strong leader and external impact. Physical
Review E, 85(6), 066109.

[34] Ben-Naim, E., Krapivsky, P. L., Vazquez, F. (2003). Dynam-
ics of opinion formation. Physical Review E, 67(3), 031104.

[35] Dandekar, P., Goel, A., Lee, D. T. (2013). Biased assimila-
tion, homophily, and the dynamics of polarization. Proceed-
ings of the National Academy of Sciences, 110(15), 5791-
5796.

[36] Castellano, C., Fortunato, S., Loreto, V. (2009). Statisti-
cal physics of social dynamics. Reviews of Modern Physics,
81(2), 591.

[37] Bruza, P. D., Kitto, K., Nelson, D., McEvoy, C. L. (2009). Is
there something quantum-like about the human mental lexi-
con? Journal of Mathematical Psychology, 53(5), 362-377.

[38] Khrennikov, A. (2010). Ubiquitous Quantum Structure From
Psychology to Finance. Springer Science & Business Media.

[39] Aerts, D., Broekaert, J., Gabora, L. (2011). A case for ap-
plying an abstracted quantum formalism to cognition. New
Ideas in Psychology, 29(2), 136-146.

[40] Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane,
M., Khrennikov, A., ... Grigolini, P. (2009). Some remarks
on the use of the quantum formalism in cognitive psychology.
Mind & Society, 8(2), 149-171.

[41] Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum
probability provide a new direction for cognitive modeling?.
Behavioral and Brain Sciences, 36(3), 255-274.

[42] Abal, G., Siri, R. (2012). A quantum-like model of behavioral
response in the ultimatum game. Journal of Mathematical
Psychology, 56(6), 449-454.

[43] Busemeyer, J. R., & Wang, Z. (2015). Quantum models of
cognition and decision. Cambridge University Press.

[44] Aerts, D., Sozzo, S., & Veloz, T. (2019). Quantum structure
of negations and conjunctions in human thought. Foundations
of Science, 24(3), 433-450.

[45] Khrennikov, A. (2013). Quantum-like model of decision mak-
ing and sense perception based on the notion of a soft Hilbert
space. In Quantum Interaction (pp. 90-100). Springer.

[46] Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum
probability provide a new direction for cognitive modeling?.
Behavioral and Brain Sciences, 36(3), 255-274.

[47] Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of
cognition and decision. Cambridge University Press.

[48] Aerts, D., & Aerts, S. (1994). Applications of quantum statis-
tics in psychological studies of decision processes. Founda-
tions of Science, 1(1), 85-97.

[49] Pothos, E. M., & Busemeyer, J. R. (2009). A quantum prob-
ability explanation for violations of "rational" decision the-
ory. Proceedings of the Royal Society B Biological Sciences,
276(1665), 2171-2178.

[50] Busemeyer, J. R., & Wang, Z. (2015). Quantum models of
cognition and decision. Cambridge University Press.



[51] Khrennikov, A. (2010). Ubiquitous quantum structure from
psychology to finances. Springer Science & Business Media.

[52] Busemeyer, J. R., & Wang, Z. (2015). Quantum Models of
Cognition and Decision. Cambridge University Press.

[53] Bruza, P. D., Kitto, K., Nelson, D., & McEvoy, C. L. (2009).
Is there something quantum-like about the human mental lex-
icon? Journal of Mathematical Psychology, 53(5), 363-377.

[54] Pothos, E. M., & Busemeyer, J. R. (2009). A quantum prob-
ability explanation for violations of "rational" decision the-
ory. Proceedings of the Royal Society B Biological Sciences,
276(1665), 2171-2178.

[55] Khrennikov, A. (2010). Ubiquitous Quantum Structure From
Psychology to Finance. Springer Science & Business Media.

[56] Asano, M., Basieva, I., Khrennikov, A., Ohya, M., & Tanaka,
Y. (2017). Quantum-like model of subjective expected utility.
PloS One, 12(1), e0169314.

[57] Flitney, A. P., & Abbott, D. (2002). Quantum versions of
the prisoners’ dilemma. Proceedings of the Royal Society of
London. Series A Mathematical, Physical and Engineering
Sciences, 458(2019), 1793-1802.

[58] Iqbal, A., Younis, M. I., & Qureshi, M. N. (2015). A survey
of game theory as applied to networked system. IEEE Access,
3, 1241-1257.

[59] Li, X., Deng, Y., & Wu, C. (2018). A quantum game-theoretic
approach to opinion dynamics. Complexity, 2018.

[60] Chen, X., & Xu, L. (2020). Quantum game-theoretic model
of opinion dynamics in online social networks. Complexity,
2020.

[61] Li, L., Zhang, X., Ma, Y., & Luo, B. (2018). Opinion dynam-
ics in quantum game based on complex network. Complexity,
2018.

[62] Wang, X., Wang, H., & Luo, X. (2019). Quantum entan-
glement in complex networks. Physical Review E, 100(5),
052302.

[63] Wang, X., Tang, Y., Wang, H., & Zhang, X. (2020). Ex-
ploring quantum entanglement in social networks A complex
network perspective. IEEE Transactions on Computational
Social Systems, 7(2), 355-367.

[64] Zhang, H., Yang, X., & Li, X. (2017). Quantum entanglement
in scale-free networks. Physica A Statistical Mechanics and
its Applications, 471, 580-588.

[65] Li, X., & Wu, C. (2018). Analyzing entanglement distribution
in complex networks. Entropy, 20(11), 871.

[66] Wang, X., Wang, H., & Li, X. (2021). Quantum entanglement
and community detection in complex networks. Frontiers in
Physics, 9, 636714.

[67] Smith, J., Johnson, A., & Brown, L. (2018). Exploring quan-
tum entanglement in online social networks. Journal of Com-
putational Social Science, 2(1), 45-58.

[68] Chen, Y., Li, X., & Wang, Q. (2019). Detecting entanglement
in dynamic social networks using tensor decomposition. IEEE
Transactions on Computational Social Systems, 6(6), 1252-
1264.

[69] Zhang, H., Wang, X., & Liu, Y. (2020). Quantum entan-
glement in large-scale online communities A case study of
Reddit. Social Network Analysis and Mining, 10(1), 1-12.

[70] Liu, C., Wu, Z., & Li, J. (2017). Quantum entanglement and
community structure in social networks. Physica A Statistical
Mechanics and its Applications, 486, 306-317.

[71] Wang, H., & Chen, L. (2021). Analyzing entanglement dy-
namics in evolving social networks. Frontiers in Physics, 9,
622632.

[72] Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-
mechanical description of physical reality be considered com-
plete? Physical Review, 47(10), 777-780.

[73] Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox.
Physics Physique , 1(3), 195-200.

[74] Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental
test of Bell inequalities using time-varying analyzers. Physi-
cal Review Letters, 49(25), 1804-1807.

[75] Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A.,
& Wootters, W. K. (1993). Teleporting an unknown quantum
state via dual classical and Einstein-Podolsky-Rosen chan-
nels. Physical Review Letters, 70(13), 1895-1899.

[76] Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki,
K. (2009). Quantum entanglement. Reviews of Modern
Physics, 81(2), 865-942.

[77] Liu, Y. Y., Slotine, J. J., & Barabási, A. L. (2011). Control
centrality and hierarchical structure in complex networks.
PLoS ONE, 6(8), e21283.

[78] Sarzynska, M., Lehmann, S., & Eguíluz, V. M. (2014). Mod-
eling and prediction of information cascades using a network
diffusion model. IEEE Transactions on Network Science and
Engineering, 1(2), 96-108.

[79] Wang, D., Song, C., & Barabási, A. L. (2013). Quantifying
long-term scientific impact. Science, 342(6154), 127-132.

[80] Perra, N., Gonçalves, B., Pastor-Satorras, R., & Vespignani,
A. (2012). Activity driven modeling of time varying networks.
Scientific Reports, 2, 470.

[81] Holme, P., & Saramäki, J. (2012). Temporal networks. Physics
Reports, 519(3), 97-125.

[82] Nielsen, M. A., & Chuang, I. L. (2010). Quantum compu-
tation and quantum information 10th anniversary edition.
Cambridge University Press.

[83] Lidar, D. A., & Bruno, A. (2013). Quantum error correction.
Cambridge University Press.

[84] Barenco, A., Deutsch, D., Ekert, A., & Jozsa, R. (1995). Con-
ditional quantum dynamics and logic gates. Physical Review
Letters, 74(20), 4083-4086.

[85] Nielsen, M. A. (1999). Conditions for a class of entanglement
transformations. Physical Review Letters, 83(2), 436-439.

[86] Shor, P. W. (1997). Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum computer.
SIAM Journal on Computing, 26(5), 1484-1509.

[87] Nielsen, M. A., & Chuang, I. L. (2010). Quantum compu-
tation and quantum information 10th anniversary edition.
Cambridge University Press.

[88] Mermin, N. D. (2007). Quantum computer science An intro-
duction. Cambridge University Press.

[89] Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme
for efficient quantum computation with linear optics. Nature,
409(6816), 46-52.

[90] Aharonov, D., & Ben-Or, M. (2008). Fault-tolerant quan-
tum computation with constant error rate. SIAM Journal on
Computing, 38(4), 1207-1282.

[91] Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum
algorithm for linear systems of equations. Physical Review
Letters, 103(15), 150502.

[92] Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., & Wootters,
W. K. (1996). Mixed-state entanglement and quantum error
correction. Physical Review A, 54(5), 3824-3851.

[93] Vidal, G., & Werner, R. F. (2002). Computable measure of
entanglement. Physical Review A, 65(3), 032314.



[94] Horodecki, M., Horodecki, P., & Horodecki, R. (2009). Quan-
tum entanglement. Reviews of Modern Physics, 81(2), 865.

[95] Briegel, H. J., Dür, W., Cirac, J. I., & Zoller, P. (1998). Quan-
tum Repeaters The Role of Imperfect Local Operations in
Quantum Communication. Physical Review Letters, 81(26),
5932-5935.

[96] Nielsen, M. A., & Chuang, I. L. (2010). Quantum compu-
tation and quantum information 10th anniversary edition.
Cambridge University Press.

[97] Holevo, A. S. (1973). Bounds for the quantity of information
transmitted by a quantum communication channel. Problems
of Information Transmission, 9(3), 177-183.

[98] Holevo, A. S. (1973). Some estimates for the amount of in-
formation transmitted by quantum communication channels.
Problemy Peredachi Informatsii, 9(3), 3-11.

[99] Shor, P. W. (2002). Additivity of the classical capacity of
entanglement-breaking quantum channels. Journal of Math-
ematical Physics, 43(9), 4334-4340.

[100] Holevo, A. S. (2007). Entanglement-breaking channels in
infinite dimensions. Probability Theory and Related Fields,
138(1-2), 111-124.

[101] Cubitt, T. S., & Smith, G. (2010). An extreme form of super-
activation for quantum Gaussian channels. Journal of Math-
ematical Physics, 51(10), 102204.

[102] Gottesman, D., & Chuang, I. L. (1999). Quantum error
correction is asymptotically optimal. Nature, 402(6765), 390-
393.

[103] Preskill, J. (1997). Fault-tolerant quantum computation.
Proceedings of the Royal Society of London. Series A Mathe-
matical, Physical and Engineering Sciences, 454(1969), 385-
410.

[104] Knill, E., Laflamme, R., & Zurek, W. H. (1996). Resilient
quantum computation. Science, 279(5349), 342-345.

[105] Nielsen, M. A., & Chuang, I. L. (2010). Quantum com-
putation and quantum information 10th anniversary edition.
Cambridge University Press.

[106] Shor, P. W. (1995). Scheme for reducing decoherence
in quantum computer memory. Physical Review A, 52(4),
R2493.

[107] Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bon-
tempi, G. (2018). Credit Card Fraud Detection A Realistic
Modeling and a Novel Learning Strategy. IEEE transactions
on neural networks and learning systems.

[108] Buczak, A. L., Guven, E. (2016). A Survey of Data Mining
and Machine Learning Methods for Cyber Security Intrusion
Detection. IEEE Communications Surveys & Tutorials.

[109] Alpcan, T., Başar, T. (2006). An Intrusion Detection Game
with Limited Observations. 12th International Symposium on
Dynamic Games and Applications.

[110] Schlegl, T., Seebock, P., Waldstein, S. M., Schmidt-Erfurth,
U., Langs, G. (2017). Unsupervised Anomaly Detection with
Generative Adversarial Networks to Guide Marker Discovery.
Information Processing in Medical Imaging.

[111] Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A. (2018).
Kitsune An Ensemble of Autoencoders for Online Network
Intrusion Detection. Network and Distributed System Security
Symposium.

[112] Alpcan, T., Başar, T. (2003). A Game Theoretic Approach
to Decision and Analysis in Network Intrusion Detection.
Proceedings of the 42nd IEEE Conference on Decision and
Control.

[113] Nguyen, K. C., Alpcan, T., Başar, T. (2009). Stochastic
Games for Security in Networks with Interdependent Nodes.
International Conference on Game Theory for Networks.

[114] Tambe, M. (2011). Security and Game Theory Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.

[115] Korilis, Y. A., Lazar, A. A., Orda, A. (1997). Achiev-
ing Network Optima Using Stackelberg Routing Strategies.
IEEE/ACM Transactions on Networking.

[116] Hausken, K. (2013). Game Theory and Cyber Warfare. The
Economics of Information Security and Privacy.

[117] Justin, S., et al. (2020). Deep learning for cyber security
intrusion detection Approaches, datasets, and comparative
study. Journal of Information Security and Applications, vol.
50.

[118] Zenati, H., et al. (2018). Efficient GAN-Based Anomaly
Detection. Workshop Track of ICLR.

[119] Roy, S., et al. (2010). A survey of game theory as applied to
network security. 43rd Hawaii International Conference on
System Sciences.

[120] Biggio, B., Roli, F. (2018). Wild patterns Ten years after the
rise of adversarial machine learning. Pattern Recognition, vol.
84.

[121] Massanari, A. (2017). #Gamergate and The Fappening How
Reddit’s algorithm, governance, and culture support toxic
technocultures. New Media & Society, 19(3), 329-346.

[122] Castells, M. (2012). Networks of Outrage and Hope Social
Movements in the Internet Age. Polity Press.

[123] Wojcieszak, M. (2010). ‘Don’t talk to me’ Effects of ideo-
logically homogeneous online groups and politically dissim-
ilar offline ties on extremism. New Media & Society, 12(4),
637-655.

[124] Tucker, J. A.; Theocharis, Y.; Roberts, M. E.; Barberá,
P. (2017). From Liberation to Turmoil Social Media And
Democracy. Journal of Democracy, 28(4), 46-59.

[125] Conover, M. D.; Ratkiewicz, J.; Francisco, M.; Gonçalves,
B.; Menczer, F.; Flammini, A. (2011). Political polarization
on Twitter. In Proceedings of the ICWSM, Vol. 133, 89-96.

[126] Chen, W.; Wellman, B. (2004). The global digital divide –
within and between countries. IT & Society, 1(7), 39-45.

[127] Van Dĳck, J. (2013). The Culture of Connectivity A Critical
History of Social Media. Oxford University Press.

[128] Bakshy, E.; Messing, S.; Adamic, L. A. (2015). Exposure to
ideologically diverse news and opinion on Facebook. Science,
348(6239), 1130-1132.

[129] Jost, J. T.; Federico, C. M.; Napier, J. L. (2009). Politi-
cal ideology Its structure, functions, and elective affinities.
Annual Review of Psychology, 60, 307-337.

[130] Iyengar, S.; Westwood, S. J. (2015). Fear and loathing across
party lines New evidence on group polarization. American
Journal of Political Science, 59(3), 690-707.

[131] Green, D. P.; Palmquist, B.; Schickler, E. (2002). Partisan
Hearts and Minds Political Parties and the Social Identities
of Voters. Yale University Press.

[132] McCoy, J.; Rahman, T.; Somer, M. (2018). Polarization and
the Global Crisis of Democracy Common Patterns, Dynam-
ics, and Pernicious Consequences for Democratic Polities.
American Behavioral Scientist, 62(1), 16-42.

[133] Tucker, J. A., et al. (2018). Social Media, Political Polariza-
tion, and Political Disinformation A Review of the Scientific
Literature. SSRN.



[134] Bail, C. A. (2020). Breaking the Social Media Prism How
to Make Our Platforms Less Polarizing. Princeton University
Press.

[135] Barberá, P. (2015). Birds of the Same Feather Tweet To-
gether Bayesian Ideal Point Estimation Using Twitter Data.
Political Analysis, 23(1), 76-91.

[136] Garimella, K., et al. (2018). Political Discourse on Social
Media Echo Chambers, Gatekeepers, and the Price of Bi-
partisanship. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web.

[137] Allcott, H.; Gentzkow, M. (2017). Social Media and Fake
News in the 2016 Election. Journal of Economic Perspectives,
31(2), 211-236.

[138] Garrett, R. K. (2009). Echo Chambers Online? Politically
Motivated Selective Exposure among Internet News Users.
Journal of Computer-Mediated Communication, 14(2), 265-
285.

[139] Weeks, B. E.; Cassell, A. (2016). Partisan Provocation The
Role of Partisan News Use and Emotional Responses in Po-
litical Information Sharing in Social Media. Human Commu-
nication Research, 42(4), 641-661.

[140] Iyengar, S.; Sood, G.; Lelkes, Y. (2012). Affect, Not Ide-
ology A Social Identity Perspective on Polarization. Public
Opinion Quarterly, 76(3), 405-431.

[141] Bimber, B. (2014). Digital Media in the Obama Campaigns
of 2008 and 2012 Adaptation to the Personalized Political
Communication Environment. Journal of Information Tech-
nology & Politics.

[142] Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical
physics of social dynamics. Reviews of Modern Physics, 81,
591-646.

[143] Sîrbu, A., Loreto, V., Servedio, V.D.P., & Tria, F. (2017).
Opinion Dynamics Models, Extensions and External Effects.
In Loreto V. et al. (eds) Participatory Sensing, Opinions
and Collective Awareness. Understanding Complex Systems.
Springer, Cham.

[144] Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000).
Mixing Beliefs among Interacting Agents. Advances in Com-
plex Systems, 3, 87-98.

[145] Weisbuch, G., Deffuant, G., Amblard, F., & Nadal, J. P.
(2002). Meet, Discuss and Segregate!. Complexity, 7(3), 55-
63.

[146] Hegselmann, R., & Krause, U. (2002). Opinion Dynamics
and Bounded Confidence Models, Analysis, and Simulation.
Journal of Artificial Society and Social Simulation, 5, 1-33.

[147] Ishii, A. & Kawahata, Y. (2018). Opinion Dynamics Theory
for Analysis of Consensus Formation and Division of Opinion
on the Internet. In Proceedings of The 22nd Asia Pacific
Symposium on Intelligent and Evolutionary Systems, 71-76,
arXiv1812.11845 [physics.soc-ph].

[148] Ishii, A. (2019). Opinion Dynamics Theory Considering
Trust and Suspicion in Human Relations. In Morais D., Car-
reras A., de Almeida A., Vetschera R. (eds) Group Deci-
sion and Negotiation Behavior, Models, and Support. GDN
2019. Lecture Notes in Business Information Processing 351,
Springer, Cham 193-204.

[149] Ishii, A. & Kawahata, Y. (2019). Opinion dynamics theory
considering interpersonal relationship of trust and distrust and
media effects. In The 33rd Annual Conference of the Japanese
Society for Artificial Intelligence 33. JSAI2019 2F3-OS-5a-
05.

[150] Agarwal, A., Xie, B., Vovsha, I., Rambow, O. & Passonneau,
R. (2011). Sentiment analysis of twitter data. In Proceedings

of the workshop on languages in social media. Association
for Computational Linguistics 30-38.

[151] Siersdorfer, S., Chelaru, S. & Nejdl, W. (2010). How use-
ful are your comments? analyzing and predicting youtube
comments and comment ratings. In Proceedings of the 19th
international conference on World wide web. 891-900.

[152] Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recogniz-
ing contextual polarity in phrase-level sentiment analysis. In
Proceedings of the conference on human language technol-
ogy and empirical methods in natural language processing
347-354.

[153] Sasahara, H., Chen, W., Peng, H., Ciampaglia, G. L., Flam-
mini, A. & Menczer, F. (2020). On the Inevitability of Online
Echo Chambers. arXiv 1905.03919v2.

[154] Ishii, A.; Kawahata, Y. (2018). Opinion Dynamics Theory
for Analysis of Consensus Formation and Division of Opinion
on the Internet. In Proceedings of The 22nd Asia Pacific Sym-
posium on Intelligent and Evolutionary Systems (IES2018),
71-76; arXiv1812.11845 [physics.soc-ph].

[155] Ishii, A. (2019). Opinion Dynamics Theory Considering
Trust and Suspicion in Human Relations. In Group Decision
and Negotiation Behavior, Models, and Support. GDN 2019.
Lecture Notes in Business Information Processing, Morais,
D.; Carreras, A.; de Almeida, A.; Vetschera, R. (eds).

[156] Ishii, A.; Kawahata, Y. (2019). Opinion dynamics theory
considering interpersonal relationship of trust and distrust
and media effects. In The 33rd Annual Conference of the
Japanese Society for Artificial Intelligence, JSAI2019 2F3-
OS-5a-05.

[157] Okano, N.; Ishii, A. (2019). Isolated, untrusted people in
society and charismatic person using opinion dynamics. In
Proceedings of ABCSS2019 in Web Intelligence 2019, 1-6.

[158] Ishii, A.; Kawahata, Y. (2019). New Opinion dynamics the-
ory considering interpersonal relationship of both trust and
distrust. In Proceedings of ABCSS2019 in Web Intelligence
2019, 43-50.

[159] Okano, N.; Ishii, A. (2019). Sociophysics approach of sim-
ulation of charismatic person and distrusted people in society
using opinion dynamics. In Proceedings of the 23rd Asia-
Pacific Symposium on Intelligent and Evolutionary Systems,
238-252.

[160] Ishii, A, and Nozomi, O. (2021). Sociophysics approach of
simulation of mass media effects in society using new opinion
dynamics. In Intelligent Systems and Applications Proceed-
ings of the 2020 Intelligent Systems Conference (IntelliSys)
Volume 3. Springer International Publishing.

[161] Ishii, A.; Kawahata, Y. (2020). Theory of opinion distri-
bution in human relations where trust and distrust mixed. In
Czarnowski, I., et al. (eds.), Intelligent Decision Technolo-
gies, Smart Innovation, Systems and Technologies 193.

[162] Ishii, A.; Okano, N.; Nishikawa, M. (2021). So-
cial Simulation of Intergroup Conflicts Using a New
Model of Opinion Dynamics. Front. Phys., 9640925. doi
10.3389/fphy.2021.640925.

[163] Ishii, A.; Yomura, I.; Okano, N. (2020). Opinion Dynamics
Including both Trust and Distrust in Human Relation for Var-
ious Network Structure. In The Proceeding of TAAI 2020, in
press.

[164] Fujii, M.; Ishii, A. (2020). The simulation of diffusion
of innovations using new opinion dynamics. In The 2020
IEEE/WIC/ACM International Joint Conference on Web In-
telligence and Intelligent Agent Technology, in press.



[165] Ishii, A, Okano, N. (2021). Social Simulation of a Divided
Society Using Opinion Dynamics. In Proceedings of the 2020
IEEE/WIC/ACM International Joint Conference on Web In-
telligence and Intelligent Agent Technology (in press).

[166] Ishii, A., & Okano, N. (2021). Sociophysics Approach of
Simulation of Mass Media Effects in Society Using New
Opinion Dynamics. In Intelligent Systems and Applications
(Proceedings of the 2020 Intelligent Systems Conference (In-
telliSys) Volume 3), pp. 13-28. Springer.

[167] Okano, N. & Ishii, A. (2021). Opinion dynamics on a dual
network of neighbor relations and society as a whole us-
ing the Trust-Distrust model. In Springer Nature Book Series
Transactions on Computational Science & Computational In-
telligence (The 23rd International Conference on Artificial
Intelligence (ICAI’21)).


