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Abstract: In this note, we propose to analyze the effects of nand p-type doping on graphene using
first-principles calculations and apply the results to social simulations of the diffusion mechanisms
of fake news in digital communication. The electronic properties of graphene and its tunable
conductivity due to doping provide a useful metaphor for modeling changes in information flow and
receptivity. n-type doping accelerates the propagation of information and p-type doping inhibits its
spread, using the analogy that the propagation of fake news is a function of the doping type. dynamics
from a new perspective. This research will examine a new theoretical framework approach to counter
fake news by integrating physics and social science.
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1. Introduction
First-principles calculations are methods for predicting the
properties and behavior of matter based on physical laws and
are used primarily in the fields of physics and chemistry.
Starting from fundamental building blocks such as atoms and
electrons, these calculations are powerful tools for under-
standing the properties of complex material systems. At the
core of this approach is the ability to verify consistency be-
tween experimental results and unknown phenomena through
predictions based on fundamental principles.

Applying this process of computational experimentation
and verification to social simulation means opening new av-
enues for deepening the relationship between theory and re-
ality in the social sciences. Social simulation aims to model
and understand individual behavior, social interactions, and
the resulting collective phenomena. By incorporating a first-
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principles computational approach, it is possible to gain a
more principled view of the fundamental elements of social
systems and their interactions, and to elucidate the mecha-
nisms behind social phenomena.

The application of first-principles calculations to social
simulations can improve the accuracy of models that predict
social phenomena by starting from the basic principles of
individual behavior and decision-making processes. This
provides more reliable information for policy making and
decision making.

In addition, first-principles-based approaches have the po-
tential to reveal unknown social phenomena and interaction
mechanisms that are difficult to capture by intuition. This
is expected to contribute to the construction of new social
theories and reevaluation of existing theories. Social systems
consist of multi-layered and interrelated elements, and their
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complexity is not easy to understand. Using first-principles
analogies, it is possible to decompose these complex sys-
tems into their more basic elements and clearly analyze their
interactions.

The application of first-principles computation in social
simulation has the potential to make a significant contribu-
tion to the development of theoretical frameworks in the social
sciences. In particular, it is expected to provide insights into
solving important issues in contemporary society, such as
the diffusion of false information and the dynamics of social
influence. Furthermore, this approach could be applied to
comparative studies to understand differences in information
dissemination under different cultures and social structures.
Ultimately, this research is expected to contribute to the for-
mulation of policies and practical strategies to build a fairer
and more transparent information society.

This research note explores attempts to apply insights
from the field of physics to problems in the social sciences.
Specifically, the paper discusses the potential of applying first-
principles calculations of the remarkable electronic proper-
ties of graphene and its metal nanoparticle composite to a
social simulation of information propagation and the forma-
tion of filter bubbles in digital space. Graphene, a material in
which a single layer of carbon atoms form a two-dimensional
honeycomb lattice, is known for its outstanding electronic
conductivity and optical properties. These properties can be
locally modulated by the adsorption of metallic nanoparti-
cles, and this physical phenomenon can be applied to social
simulations as a metaphor for information propagation.

In recent years, with the development of digital commu-
nication technologies, there has been a growing interest in the
mechanisms of information propagation and their social im-
pact. In particular, information bias and the formation of filter
bubbles on social media can have important implications for
the quality of public debate and democratic processes. To un-
derstand these phenomena and promote a healthy information
environment, it is essential to accurately model the dynamics
of information propagation.

We will examine new approaches to applying the concepts
of first-principles computation to the social sciences, specifi-
cally the dynamics of information propagation. Specifically,
the effects of nand p-type doping of graphene in materials sci-
ence are viewed as mechanisms of information diffusion and
suppression. By applying the framework of first-principles
calculations, which analyze the effects of doping on graphene
on the electronic structure, especially the Fermi level, to the
problem of information distribution and its management, we
explore new understandings and strategies for the control of
information that diffuse and disrupt false information.

First-principles calculations in physics are powerful meth-
ods for predicting the properties and behavior of complex ma-
terials starting from fundamental physical laws. The method

focuses on the most fundamental building blocks of matter
and their interactions to derive the behavior of a system. We
use this computational experimentation and verification anal-
ogy to elucidate the principles of information propagation in
social systems. We view the effect of graphene doping on
electronic conductivity as a metaphor for how information is
propagated and accepted through social networks.

We believe that n-type doping promotes the rapid diffu-
sion of information, while p-type doping has the effect of
inhibiting the circulation of information. From this perspec-
tive, we provide new insights into the coordination of informa-
tion flows in social media platforms and public information
systems. Understanding the balance between information
spread-promoting and information suppression mechanisms
is essential for maintaining a healthy information environment
and preventing the spread of false information.

The purpose of this paper is to go beyond the physics
framework of first-principles calculations to clarify the fun-
damental principles of information propagation in social sim-
ulations and to propose practical strategies for managing the
quality and distribution of information, a particularly impor-
tant issue in modern society. This approach aims to provide
new perspectives for determining the truth of information and
improving the quality of public debate.

Graphene’s material state change, especially the influence
of n-type and p-type doping on the Fermi level, needs to be
modeled according to the basic principles of physics. Dop-
ing in graphene alters its electronic structure, particularly the
position of the Fermi level, thereby affecting the electronic
conductivity of graphene. Below, we present the basic equa-
tions and computational process to represent this process.

When developing hypotheses regarding the potential of
applying simulations based on first-principles calculations
of materials like graphene to social simulations of fake news
propagation, the physical properties demonstrated by the elec-
tronic conductivity of graphene or its interaction with metal
nanoparticles can be utilized as metaphors for the dynam-
ics of information dissemination. This approach may offer
a deeper understanding of the mechanisms behind fake news
propagation and provide new perspectives for addressing it.

The prominent electronic properties exhibited by
graphene and compounds with metal and metal nanoparti-
cles have been widely studied in the fields of physics and
materials science. Here, we briefly outline the theoretical
background.

Graphene is a material where a monolayer of carbon
atoms forms a honeycomb structure on a 2D plane. The elec-
tronic properties of graphene stem from its unique band struc-
ture. In particular, the band structure of graphene features a
touching of the conduction and valence bands at the Dirac
point, where electrons behave as massless Dirac fermions.
As a result, graphene possesses extremely high electron mo-



bility and conductivity, with various applications envisioned
in electronic devices.

When graphene interacts with metal nanoparticles, the
electronic states of the metal interact with the electrons
of graphene, modulating its electronic properties. This in-
teraction depends on the type, size, distribution of metal
nanoparticles, and the properties of the contact interface with
graphene. In particular, the adsorption of metal nanoparti-
cles alters the local electronic states of graphene, resulting
in reported changes in its conductivity, magnetic properties,
and chemical reactivity.

Theoretical modeling of the interaction between metal
nanoparticles and graphene often employs first-principles cal-
culations. In particular, density functional theory (DFT) pro-
vides a detailed explanation of electronic interactions and
chemical bonding between metal nanoparticles and graphene.
DFT calculations predict parameters such as the adsorption
energy of metal nanoparticles, changes in the band structure
of graphene, and alterations in the local charge distribution
of graphene induced by metal nanoparticles.

The changes in electronic properties of compounds with
graphene and metal nanoparticles hold potential for improv-
ing the performance of catalysts, sensors, energy storage de-
vices, and electronic devices. For example, combining the
catalytic properties of metal nanoparticles with graphene’s
high conductivity holds promise for the development of effi-
cient chemical sensors and fuel cells.

In this way, research on compounds with graphene and
metal nanoparticles provides a theoretical and experimen-
tal foundation for understanding their prominent electronic
properties and applying them in various fields.

1.1 Charge Transfer and Information Propaga-
tion

Analogize the charge transfer induced by the interaction of
metal nanoparticles with graphene to the process of infor-
mation reception and transmission in the propagation of fake
news. Simulations can capture how information presented
by specific media or individuals (metal nanoparticles) influ-
ences the entire society (graphene), thereby understanding
how fake news is reinforced within specific communities or
social networks.

1.2 Modulation of Conductivity and Selectivity
of Information

Liken the phenomenon of localized modulation of conductiv-
ity in graphene to the accelerated diffusion of fake news under
certain conditions. The modulation of conductivity mimics
how specific types of information are selectively propagated,
influenced by social media algorithms or people’s cognitive
biases.

1.3 Changes in Optical Properties and Visibility
of Information

Analogize the changes in graphene’s optical properties to
alterations in the visibility or perceptibility of fake news.
Changes in optical properties induced by the adsorption of
metal nanoparticles can be used as an analogy for how fake
news is highlighted or concealed by media or platforms.

1.4 Doping Effects and Enhancement of Infor-
mation

Consider the effects of n-type and p-type doping in graphene
as external factors that accelerate or inhibit the diffusion of
fake news. This enables simulations to capture the mecha-
nisms through which fake news is amplified or suppressed in
specific environments.

These hypotheses explore the potential of applying the-
ories and computational methods from physics to address
contemporary issues in social science, particularly the prop-
agation of fake news. Such an approach is expected to con-
tribute to the development of new strategies for combating
fake news and fostering a healthier information environment.

1.5 Change in Fermi Level Due to Graphene
Doping

The change in the Fermi level in graphene depends on the
density of carriers added by doping. Let =3 denote the density
of electrons (for n-type doping) or holes (for p-type doping)
added by doping. The expression for the change in Fermi
level is given as follows:

1.5.1 Increase in Fermi Level due to n-type Doping

�⇢ 5 (=) = \E�
p
c=3

Here, \ is the reduced Planck constant, E� is the Fermi
velocity in graphene (approximately 106 m/s), and =3 is the
density of electrons added by doping.

1.5.2 Decrease in Fermi Level due to p-type Doping

For p-type doping, we similarly consider the density of holes
to compute the change in the Fermi level. Since electrons
are removed in p-type doping, the Fermi level shifts in the
opposite direction.

�⇢ 5 (?) = �\E�
p
c=3

To compute the change in the Fermi level, we need to
know the density of carriers added by doping =3 . To obtain
the carrier density from the doping concentration (the number
of doping atoms), we need to consider the ratio of doping
atoms and the atomic density of graphene.

Given a doping concentration ⇠ (in units of cm�3), the
carrier density =3 per unit area of graphene (in units of cm�2)



can be calculated using the doping concentration and the
thickness of graphene (since graphene is approximately one
atomic layer thick, which is about 0.335 nm).

=3 = ⇠ ⇥ 0.335 ⇥ 10�7

Using this =3 , we can substitute it into the above equa-
tions for the change in the Fermi level to compute the changes
caused by n-type and p-type doping. This enables us to quan-
titatively evaluate how the electronic properties of graphene
change due to doping.

Let’s consider a scenario where the material state change
of graphene, especially n-type and p-type doping, affecting
the Fermi level, is simulated in the context of information
diffusion and suppression. In this scenario, graphene dop-
ing is analogized to adjustment mechanisms in the flow of
information, modeling the diffusion and suppression of mis-
information or confusion.

1.6 Graphene Doping as a Metaphor for Infor-
mation Flow

1. n-type Doping (Information Diffusion Enhancement):
Similar to n-type doping adding electrons to graphene, en-
hancing its conductivity, the mechanism for enhancing infor-
mation diffusion facilitates specific information or messages
to spread more rapidly and widely. This mechanism can be
seen as algorithms on social media platforms or the promotion
of information by influential individuals or groups.

2. p-type Doping (Information Suppression): Con-
versely, p-type doping removes electrons from graphene, re-
ducing its conductivity. Similarly, the mechanism for in-
formation suppression decreases the circulation of specific
information, restraining its diffusion. This refers to activities
such as filtering misinformation, censorship, or fact-checking
against fake news.

1.7 Simulation Scenario
Simulation Objective: Evaluate how the balance between
information diffusion enhancement (n-type doping) and infor-
mation suppression (p-type doping) affects the overall circu-
lation of misinformation or confusion-inducing information.

Simulation Parameters: The "doping concentration" of
information represents the intensity of activities related to dif-
fusion enhancement or suppression. This includes activities
such as information promotion campaigns on social media,
advertising, or the frequency of fact-checking.

Simulation Implementation: Construct an information
propagation model and simulate patterns of information cir-
culation at different "doping concentrations." Evaluate how
the speed and visibility of information diffusion change ac-
cording to the doping concentration.

Interpreting Results: Compare the effects of informa-
tion diffusion enhancement and suppression to identify the

Fig. 3: Separate Visualization of n-type and p-type Doping
Effects

Fig. 4: Effect of Doping Concentration on Information Flow

optimal strategy for minimizing the circulation of misinfor-
mation or confusion-inducing information. Consider the im-
pact of information circulation on societal discourse and pub-
lic safety.

Through this simulation, insights useful for formulating
policies and strategies for controlling information circulation
can be gained. Finding a balance between enhancing and sup-
pressing information diffusion is key to preventing the spread
of misinformation and maintaining a healthy information en-
vironment.

Fig.3, Information propagation speed versus information
visibility as the "doping concentration" of information varies
from 0 to 1. The blue line representing the effect of n-type
doping (information diffusion enhancement) shows that the
propagation speed increases as the doping concentration in-
creases, while the green line representing the effect of p-type
doping (information suppression) indicates that the visibility
of information decreases as doping concentration increases.
This provides a visual understanding of how the balance be-
tween information diffusion promotion and suppression af-
fects information flow. The provided images appear to depict
the simulation results regarding the impact of doping con-
centration on information flow. There are two graphs in the
image, with the left graph showing "Information Propagation
Speed" and the right graph showing "Information Visibility."
In both graphs, the doping concentration varies from 0 to 1,
and the corresponding changes in "Speed" and "Visibility"
are shown.



1.8 Information Propagation Speed
The graph of information propagation speed indicates that
as the doping concentration increases, the speed of infor-
mation propagation increases linearly. This means that
as the effect of n-type doping (enhancement of informa-
tion diffusion) increases, information spreads more quickly
across the network. This trend is explained by the formula
+ = +0 ⇥ (1+U= ⇥⇠=U? ⇥⇠?), where the increase in doping
concentration reflects the effect of n-type doping.

1.9 Information Visibility
In the graph of information visibility, the visibility of in-
formation decreases linearly as the doping concentration in-
creases. This indicates that as the effect of p-type doping (in-
formation suppression) increases, information becomes less
prominent within the network. As indicated by the formula
( = (0 ⇥ (1 + V= ⇥ ⇠=V? ⇥ ⇠?), the effect of p-type doping
decreases the visibility of information.

1.10 Discussion
These graphs clearly demonstrate the influence of doping
concentration on two critical aspects of information flow,
namely propagation speed and visibility. The simulation re-
sults suggest that n-type doping aids in the rapid diffusion of
information, while p-type doping suppresses excessive prolif-
eration of information. These findings provide a foundation
for considering strategies to manage information flow, espe-
cially those affecting public safety and societal discourse.

Examine the specific values of parameters (U=, U? , V=,
V?) used in the simulation and consider how they would apply
to real-world scenarios. Determine what doping concentra-
tions are optimal to strike a balance between information
diffusion and suppression. Apply these simulation results to
actual applications concerning the regulation of information
flow in social discussions and public safety.

The results depicted in these graphs are obtained solely
through simulation and may not necessarily have the same
effects as doping concentration in actual social media plat-
forms or public information systems. Validation in real-world
situations is crucial.

Fig.4, The effect of n-type doping is plotted separately
as blue (propagation velocity) and green (visibility) lines,
and the effect of p-type doping as red (propagation veloc-
ity) and orange (visibility) lines. n-type doping increases
both propagation velocity and visibility with increasing dop-
ing concentration, indicating enhanced information diffusion.
This indicates that n-type doping increases both propagation
velocity and visibility as doping concentration increases. For
p-type doping, on the other hand, both propagation velocity
and visibility decrease with increasing doping concentration,
indicating that information distribution is suppressed. This

provides a clearer understanding of how the mechanisms of
information diffusion enhancement and suppression work.
Effects of n-type doping (promotion of information diffu-
sion) The graph on the left shows the effect of n-type doping.
As the concentration of n-type doping increases, the "infor-
mation propagation velocity (blue)" decreases at a constant
rate. This is contrary to the intuition that n-type doping sup-
presses information diffusion. Originally, n-type doping was
defined as promoting information diffusion, but the oppo-
site trend can be read from the graph. Information visibility
(green) increases at a constant rate with increasing n-type
doping concentration, which is in line with the definition.
In other words, the assumption that n-type doping increases
information visibility is supported.

Effects of p-type doping (information suppression) The
graph on the right shows the effect of p-type doping. As
the concentration of p-type doping increases, the "informa-
tion propagation velocity (red)" decreases at a constant rate,
a result consistent with the definition. In other words, we
can confirm the suppression effect of p-type doping on infor-
mation distribution. Information visibility (yellow) also de-
creases with increasing p-type doping concentration, which
is also consistent with the effect of information suppression.

There is a discrepancy in the simulation results. In par-
ticular, the result of a decrease in information propagation ve-
locity for n-type doping is inconsistent with the assumptions
of the defined model. In order to investigate this discrepancy,
the equations used and the conditions of the simulation need
to be examined in detail. The results suggest that the infor-
mation diffusion enhancement effect of n-type doping may
not be as strong as expected; on the contrary, the information
visibility is enhanced. On the other hand, p-type doping has
been shown to effectively suppress both information propaga-
tion speed and visibility, and this model may provide insight
for developing strategies in information suppression.

Further investigation should be conducted to determine
the causes of any areas where the simulation results differ
from assumptions. Validate the mathematical equations in
the simulation model and the specific parameters used in the
simulations. Understand the differences in information flow
coordination mechanisms for both doping types and study
ways to optimize their effects.

The above discussion was based on the given scenarios
and graphs, but requires a detailed examination of the actual
data and the background theory.

For the application of computational experiments in solv-
ing digital information problems, we propose topological in-
sulators as suitable materials. Topological insulators exhibit
the unique property of conductivity on their surfaces or edges
despite being insulators in their interiors. This phenomenon
arises from the presence of edge states within the energy gap,
allowing electrons to move only on the surface or edge. Orig-



inating from topological order and quantum mechanics, this
property provides highly stable conductive channels.

1.11 Characteristics of Topological Insulators as
Materials

1. Robust Surface States: The primary feature of topologi-
cal insulators is the robustness of their surface states, which
exhibit strong resistance to impurities and defects. This can
be metaphorically used to minimize the impact of errors in
information transmission.

2. Quantum Spin Hall Effect: Some topological insu-
lators demonstrate the quantum spin Hall effect, where the
spin of electrons is associated with their direction of move-
ment, enabling spin-dependent transport. This characteristic
can be utilized as a metaphor for information protection and
spin-based information processing.

3. High Thermal Stability: The surface states of topologi-
cal insulators remain stable even at high temperatures, serving
as a metaphor for systems resilient to external environmental
changes during information transmission processes.

1.12 Potential Applications
By employing the characteristics of topological insulators as
metaphors for addressing digital information problems, the
following new perspectives may be offered:

Robustness in Information Transmission: The robust sur-
face states of topological insulators suggest that information
transmission within social networks may exhibit strong re-
silience to external perturbations. Directionality and Spin of
Information Flow: Spin-dependent transport via the quantum
spin Hall effect implies selective transmission of information
based on directionality and specific attributes in information
flow. Adaptability to Environmental Changes: The thermal
stability of topological insulators emphasizes the importance
of social systems and information transmission mechanisms
functioning stably despite external environmental changes.

The unique physical properties of topological insulators
are expected to provide innovative metaphors for modeling
information transmission and analyzing social systems. Sim-
ulation models based on these properties could offer new
approaches to understanding the dynamics of information
diffusion, suppression, and social interactions.

The above equations and computational processes repre-
sent a conceptual model for applying the effects of n-type
and p-type doping on graphene to social simulations of in-
formation propagation. Here, we provide a more detailed
explanation of the physical and social science concepts be-
hind each equation.

1.13 n-Type and p-Type Doping Effects
1. Effect of n-Type Doping: n-Type doping supplies electrons
to graphene, enhancing its conductivity. Physically, the sup-
ply of electrons raises the Fermi level, leading to a greater
occupancy of electron states in the conduction band. We de-
note this increase in the Fermi level as �⇢ 5 (=) and define it
as follows:

�⇢ 5 (=) = ⇢0
5 + U= · ⇠=

Here, ⇢0
5 is the Fermi level before doping, U= is the coefficient

representing the efficiency of n-type doping (rate of increase
in Fermi level due to electron supply), and ⇠= is the n-type
doping concentration (number of electrons supplied).

2. Effect of p-Type Doping: p-Type doping removes elec-
trons from graphene, decreasing its conductivity. By remov-
ing electrons, the Fermi level decreases, and the population of
holes (states without electrons) in the valence band increases.
We denote this decrease in the Fermi level as �⇢ 5 (?) and
define it as follows:

�⇢ 5 (?) = ⇢0
5 U? · ⇠?

Here, U? is the coefficient representing the efficiency of p-
type doping (rate of decrease in Fermi level due to electron
removal), and⇠? is the p-type doping concentration (number
of electrons removed).

1.14 Application to Social Simulation of Infor-
mation Propagation

1. Modeling Information Propagation Rate: We assume
that the information propagation rate + is proportional to the
change in Fermi level due to doping, where n-type doping ac-
celerates information propagation and p-type doping inhibits
it. We express this effect with the following equation:

+ = +0 · (1 + V= · �⇢ 5 (=)V? · �⇢ 5 (?))

Here, +0 is the baseline information propagation rate without
doping, and V= and V? are coefficients indicating the influ-
ence of n-type and p-type doping effects on the information
propagation rate, respectively.

2. Modeling Information Visibility: Similarly, we assume
that the visibility of information ( depends on the change in
Fermi level due to doping. Higher information visibility
means that it is more noticeable to recipients. We express
this relationship with the following equation:

( = (0 · (1 + W= · �⇢ 5 (=)W? · �⇢ 5 (?))

Here, (0 is the baseline visibility of information, and W= and
W? are coefficients indicating the influence of n-type and p-
type doping effects on information visibility, respectively.

These models allow for a quantitative analysis of how
the spread of fake news changes depending on social context



and characteristics of information sources. Furthermore, this
approach provides a basis for identifying intervention points
in combating fake news and devising strategies to enhance
the integrity of information propagation.

Based on the graphs shown in the image, the following
observations are made:

1.15 n-Type Doping (Promotion of Information
Diffusion) Effects

The left graph illustrates the effects of n-type doping. As
the concentration of n-type doping increases, the "Informa-
tion Propagation Rate (blue)" decreases at a constant rate.
This contrary result, indicating that n-type doping inhibits
information diffusion, is unexpected. Originally defined to
promote information diffusion, the graph shows a different
trend. The "Visibility of Information (green)" increases at
a constant rate with the increase in n-type doping concen-
tration, consistent with the definition. Thus, the assumption
that n-type doping enhances the visibility of information is
supported.

1.16 p-Type Doping (Information Suppression)
Effects

The right graph demonstrates the effects of p-type doping.
With the increase in p-type doping concentration, the "Infor-
mation Propagation Rate (red)" decreases at a constant rate,
aligning with the defined model. Thus, the inhibitory effect
of p-type doping on information dissemination is confirmed.
The "Visibility of Information (yellow)" also decreases with
the increase in p-type doping concentration, consistent with
the effect of information suppression.

1.17 Discussion
There are contradictions in the simulation results, particularly
the decrease in information propagation rate with n-type dop-
ing, which contradicts the assumptions of the defined model.
To investigate this contradiction, a detailed examination of the
formulas and simulation conditions used is necessary. The
results suggest that the promotion of information diffusion by
n-type doping may not be as significant as expected, while an
increase in information visibility is observed. On the other
hand, p-type doping effectively suppresses both the propaga-
tion rate and visibility of information, potentially providing
insights into strategies for information suppression.

Further investigation to identify the causes of discrepan-
cies in simulation results with respect to assumptions. Ver-
ification of the formulas used in the simulation model and
specific parameters utilized. Understanding the differences
in information flow regulation mechanisms for both doping
types and studying ways to optimize their effects.

The above observations are based on the given scenario
and graphs, but a detailed examination of actual data and

underlying theories is necessary.
In this scenario, we aim to understand and model the

mechanisms for adjusting information flow in social media
platforms and public information systems by associating the
effects of n-type and p-type doping in graphene with the pro-
motion and suppression of information dissemination. The
following steps outline the construction of the simulation and
provide a detailed description of the formulas and computa-
tional experiments.

1. Definition of the Information Propagation Model: In-
formation dissemination is modeled as the movement of par-
ticles (electrons) in a network, with n-type and p-type doping
defined as mechanisms for promoting and suppressing infor-
mation spread, respectively.

2. Definition of Doping Concentration: "Doping con-
centration" is defined as the intensity of promotion or sup-
pression of information spread. This represents the strength
of information promotion campaigns on social media or the
frequency of fact-checking against fake news, reflecting the
intensity of activities related to information circulation.

3. Introduction of Formulas: The speed of information
spread + and visibility ( are assumed to change according to
the doping concentration. With n-type doping (promotion),
these values increase, while with p-type doping (suppression),
they decrease.

Change in information propagation speed: + = +0 ⇥ (1 +
U= ⇥ ⇠=U? ⇥ ⇠?) Change in information visibility: ( =
(0 ⇥ (1 + V= ⇥ ⇠=V? ⇥ ⇠?)

Here,+0 and (0 are the basic speeds of information propa-
gation and visibility, U= and V= are the intensities of diffusion
promotion by n-type doping, U? and V? are the intensities of
suppression by p-type doping, and ⇠= and ⇠? represent the
concentrations of n-type and p-type doping, respectively.

4. Conducting Computational Experiments: Based on
the defined model, we simulate the changes in information
propagation speed and visibility at different "doping concen-
trations." This allows us to analyze the impact of the balance
between the promotion and suppression of information dis-
semination on information flow.

5. Analysis of Results: The simulation results are ana-
lyzed to compare the effects of promotion and suppression of
information dissemination. We consider strategies to mini-
mize the circulation of false and confusing information.

Through this simulation, we expect to gain new insights
into how the mechanisms of information dissemination and
suppression function and how they affect social discussions
and public safety. Furthermore, this approach will also be
useful in formulating practical strategies for managing the
quality and circulation of information.



2. Perspect
For the application of computational experiments in solving
digital information problems, we propose topological insula-
tors as suitable materials. Topological insulators exhibit the
unique property of conductivity on their surfaces or edges
despite being insulators in their interiors. This phenomenon
arises from the presence of edge states within the energy gap,
allowing electrons to move only on the surface or edge. Orig-
inating from topological order and quantum mechanics, this
property provides highly stable conductive channels.

2.1 Characteristics of Topological Insulators as
Materials

2.2 Robust Surface States
The primary feature of topological insulators is the robust-
ness of their surface states, which exhibit strong resistance to
impurities and defects. This can be metaphorically used to
minimize the impact of errors in information transmission.

2.3 Quantum Spin Hall Effect
Some topological insulators demonstrate the quantum spin
Hall effect, where the spin of electrons is associated with
their direction of movement, enabling spin-dependent trans-
port. This characteristic can be utilized as a metaphor for
information protection and spin-based information process-
ing.

2.4 High Thermal Stability
The surface states of topological insulators remain stable even
at high temperatures, serving as a metaphor for systems re-
silient to external environmental changes during information
transmission processes.

Applying the effects of n-type and p-type doping on
graphene to social simulations of fake news propagation holds
the potential to deepen our understanding of information dis-
semination by associating the dynamics of information with
the electronic properties of materials. The following hypothe-
ses further develop this idea.

2.5 Modeling Fake News Propagation Using
Doping Effects

Application of n-Type Doping Effect to Social Simulations,
N-type doping in graphene involves supplying electrons to en-
hance conductivity. In social simulations, this phenomenon
can be likened to situations where fake news is reinforced by
specific information sources or influencers, leading to rapid
dissemination. This effect implies an increase in public at-
tention to specific topics or opinions, accelerating the spread
of information.

Application of p-Type Doping Effect to Social
Simulations,P-type doping in graphene involves reducing
conductivity by removing electrons. In social simulations,
this process can be likened to situations where verification
and criticism of fake news increase, resulting in the suppres-
sion of information dissemination. This effect can be viewed
as a mechanism to reduce the influence of fake news and delay
its spread.

2.6 Construction of Fake News Propagation
Model

2.7 Balance between Acceleration and Suppres-
sion of Information Propagation

The dissemination of fake news can be regulated by the bal-
ance between n-type doping effect (enhancement and accel-
eration of information) and p-type doping effect (suppression
and deceleration of information). This balance is influenced
by factors such as social context, credibility of information
sources, and critical thinking ability of recipients.

2.8 Role of Filter Bubbles and Echo Chambers
In social simulations, the presence of filter bubbles and echo
chambers is believed to enhance the n-type doping effect.
These phenomena represent processes where specific infor-
mation or opinions resonate within certain user groups and are
amplified, potentially accelerating the spread of fake news.

These hypotheses suggest the potential of using the
electronic properties of graphene and its doping effects as
metaphors for information dissemination in social systems.
Further exploration of such approaches is considered benefi-
cial to gain a deeper understanding of fake news propagation
and develop insights for its mitigation.

2.9 Potential Applications
By employing the characteristics of topological insulators as
metaphors for addressing digital information problems, the
following new perspectives may be offered:

Robustness in Information Transmission: The robust sur-
face states of topological insulators suggest that information
transmission within social networks may exhibit strong re-
silience to external perturbations. Directionality and Spin of
Information Flow: Spin-dependent transport via the quantum
spin Hall effect implies selective transmission of information
based on directionality and specific attributes in information
flow. Adaptability to Environmental Changes: The thermal
stability of topological insulators emphasizes the importance
of social systems and information transmission mechanisms
functioning stably despite external environmental changes.

The unique physical properties of topological insulators
are expected to provide innovative metaphors for modeling



information transmission and analyzing social systems. Sim-
ulation models based on these properties could offer new
approaches to understanding the dynamics of information
diffusion, suppression, and social interactions.

As a suitable material for application in computational ex-
periments for solving digital information problems, we pro-
pose topological insulators. Topological insulators exhibit
the unique property of conductivity at their surfaces or edges
despite being insulators in their interior. This characteristic
arises because edge states exist within the energy gap, al-
lowing electrons to move only at the surface or edge. This
phenomenon, derived from topological order and quantum
mechanics, provides highly stable conduction channels.

2.10 Characteristics of Topological Insulators as
Materials

1. Robust Surface States: The most significant feature of
topological insulators is the stability of their surface states.
These surface states exhibit strong resistance to impurities
and defects, serving as a metaphor for minimizing the impact
of errors in information transmission.

2. Quantum Spin Hall Effect: Some topological insula-
tors demonstrate the quantum spin Hall effect, where the spin
of electrons is associated with their direction of movement,
enabling spin-dependent transport. This property can be uti-
lized as a metaphor for information protection and spin-based
information processing.

3. High Thermal Stability: The surface states of topo-
logical insulators remain stable even at high temperatures,
which can be considered a metaphor for systems that are re-
silient to external environmental changes during the process
of information transmission.

2.11 Potential Applications
By utilizing the characteristics of topological insulators
as metaphors in social sciences, especially in addressing
problem-solving in digital information, new perspectives may
be provided as follows:

Robustness of Information Transmission: The robust sur-
face states of topological insulators suggest that information
transmission within social networks exhibits strong resistance
to external perturbations.

Directionality and Spin of Information Flow: Spin-
dependent transport due to the quantum spin Hall effect im-
plies selective transmission of information based on direc-
tionality and specific attributes in information flow.

Adaptability to Environmental Changes: The high ther-
mal stability of topological insulators emphasizes the impor-
tance of social systems and information transmission mecha-
nisms continuing to function stably despite external environ-
mental changes.

The unique physical properties of topological insulators
are expected to provide innovative metaphors for modeling
information transmission and analyzing social systems. Sim-
ulation models based on these properties could offer new
approaches to understanding the dynamics of information
diffusion, suppression, and social interactions.

In this scenario, we aim to understand and model the
mechanisms for regulating information flow on social media
platforms and public information systems by associating the
effects of n-type and p-type doping on graphene with the
diffusion and suppression of information. We will outline
the steps to construct the simulation and provide specific
explanations with equations and computational experiments.

2.12 Steps of the Simulation
1. Definition of Information Propagation Model: Model the
diffusion of information as the movement of particles (elec-
trons) on a network and define n-type and p-type doping as
mechanisms for promoting and inhibiting information diffu-
sion, respectively.

2. Definition of Doping Concentration: Define "doping
concentration" as the strength of activities related to infor-
mation dissemination, such as the intensity of information
promotion campaigns on social media or the frequency of
fact-checking for fake news.

3. Introduction of Equations: Assume that the diffusion
rate + and visibility ( of information change with doping
concentration. We model an increase in these values with
n-type doping (promotion of diffusion) and a decrease with
p-type doping (suppression) as follows:

Change in information diffusion rate: + = +0 ⇥ (1 +
U= ⇥ ⇠=U? ⇥ ⇠?) Change in information visibility: ( =
(0 ⇥ (1 + V= ⇥ ⇠=V? ⇥ ⇠?)

Here, +0 and (0 are the baseline information propaga-
tion rate and visibility, U= and V= represent the strength of
diffusion promotion by n-type doping, U? and V? represent
the strength of suppression by p-type doping, and ⇠= and
⇠? represent the concentration of n-type and p-type doping,
respectively.

4. Conducting Computational Experiments: Perform
simulations to observe changes in information propagation
rate and visibility at different "doping concentrations," an-
alyzing the impact of the balance between promoting and
suppressing information flow.

5. Analysis of Results: Analyze the simulation results and
compare the effects of promoting and suppressing information
diffusion. Consider strategies to minimize the circulation of
false information and confusion.

Through this simulation, we expect to gain insights into
how the mechanisms of information diffusion and suppres-
sion function and how they impact social discourse and public
safety. Furthermore, this approach can aid in devising prac-



Fig. 5: Network Belief States susceptibility

tical strategies for managing the quality and circulation of
information.

Fig.5 shows the change in the Fermi level (Ef) in graphene
due to n-type and p-type doping as a function of doping
concentration (C). Here’s an analysis of the graph from the
perspective of information flow in the context of graphene’s
electronic properties:

With increasing doping concentration, the Fermi level for
n-type doping (blue curve) increases, indicating an addition
of electrons to the system. This is consistent with the expecta-
tion that n-type doping introduces additional charge carriers
in the form of electrons, which can increase the conductivity
of graphene. Conversely, the Fermi level for p-type doping
(red curve) decreases with increasing doping concentration,
indicating the removal of electrons (or the addition of holes).
P-type doping introduces holes as charge carriers, which also
contribute to electrical conductivity, albeit by the movement
of the positively charged holes in the opposite direction to
electron flow. In both cases, the Fermi level changes nonlin-
early with doping concentration. This nonlinear relationship
is typical in semiconductors and semi-metals like graphene
and is due to the density of states and the distribution of
electrons and holes in the material.

In terms of information flow, the change in the Fermi level
due to doping can be likened to changing the bandwidth for
electronic communication. As the Fermi level shifts, it alters
the energy landscape of graphene, which can either enhance
or inhibit the flow of electrons. N-type doping effectively
"speeds up" information flow by increasing the number of
electrons available to conduct electric signals. This could
model a scenario where information dissemination is pro-
moted, similar to increasing the reach and speed of a mes-
sage within a network. P-type doping, by introducing holes,
may be considered as creating "gaps" in the information flow,
analogous to implementing checks or controls that slow down
the spread of information, such as fact-checking mechanisms
against misinformation. The nonlinear change implies that
the impact of doping on information flow is not constant; it
can have varying effects at different doping levels. This sug-

Fig. 6: n-type Doping Effect on Fermi Level, p-type Doping
Effect on Fermi Level

gests that fine-tuning the doping concentration could optimize
the electronic properties of graphene for specific applications
in electronics and information technology.

The basic formulas and computational process described
correspond to the physical principles of semiconductor
physics. The Fermi velocity (vF) and the density of added car-
riers (nd) due to doping are crucial factors that determine the
shift in the Fermi level. The computational process involves
quantifying the carrier density from the doping concentration,
which then allows for calculating the change in the Fermi level
using the formulas provided.

By modeling this process, we can predict how graphene’s
electronic characteristics will be modified by doping, which
is essential for designing materials with specific electronic
and informational properties. This understanding is valuable
for the development of graphene-based electronic devices,
sensors, and possibly even for quantum information systems
where electron behavior at the Fermi level is critical.

Fig.6 shows two graphs side by side, which represent the
effects of n-type and p-type doping on the Fermi level in a
material, graphene, before and after doping. These changes
are plotted as a function of doping concentration.

The left graph shows the Fermi level increasing linearly
with the n-type doping concentration. In the context of social
simulation for information spread:

The increase in Fermi level due to n-type doping corre-
lates with an enhanced ability for information to propagate
through a social network. It can be interpreted as an increase
in the ’activity’ or ’energy’ in the network, analogous to in-
creasing the number of charge carriers that can contribute to
electrical conductivity in graphene. This might model the
effectiveness of campaigns or strategies that actively spread
information, messages, or influence throughout a network.

: The right graph(p-type Doping Effects on Fermi Level)
demonstrates a linear decrease in the Fermi level with the p-
type doping concentration. Regarding the social simulation:
The decrease in Fermi level corresponds to a suppression of
the propagation ability within the network. This can represent
the implementation of measures that act as ’gaps’ or ’holes’
in the flow of information, such as censorship, fact-checking,
or any other form of information control that limits the spread



of certain content. In practical terms, this could model how
fact-checking or counter-information campaigns can reduce
the visibility or spread of misinformation or undesirable in-
formation within a social system.

Application to Social Simulation of Information Spread,
The formulae and conceptual models provided can be used
to quantitatively analyze how the spread of misinformation
might change depending on social context and the charac-
teristics of the information source. It can also provide a
foundation for identifying intervention points in combating
fake news and for devising strategies to enhance the integrity
of information propagation.

In a social system, n-type doping could represent actions
that increase the speed and reach of information dissemina-
tion (positive feedback mechanisms), while p-type doping
could symbolize control mechanisms that reduce the spread
(negative feedback mechanisms).

To summarize, these models could be pivotal in under-
standing and simulating the complex dynamics of information
flow in social networks, where the ’doping’ effects can be used
to represent different factors that influence how quickly and
widely information spreads, and how visible or influential
it becomes. This understanding is crucial for managing the
spread of information in various settings, from social media
platforms to public information campaigns.
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