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Abstract: In this research note, we discuss theoretical methods for calculating the band gap using
the GW approximation and the empty-lattice approximation: the GW approximation deals with a
continuous information space and calculates the band gap in the first and second Brillouin zones
from continuous energy extrema, whereas the empty-lattice approximation discretizes the infor-
mation space and allows numerical calculations using the Fourier transform. The empty-lattice
approximation discretizes the information space and allows numerical calculations using the Fourier
transform. We compare the theoretical background and numerical methods for calculating the band
gap for each method. The proposed method of the empty-lattice approximation is a promising ap-
proach to properly reflect real physical processes and is expected to play an important role in the
analysis of electronic properties of various materials. We also compared the applicability of the GW
approximation and the sky-lattice approximation in the deep fake analysis of digital information in a
large information space. The GW approximation provides a highly accurate theoretical basis but is
computationally expensive. The application of both methods to large-scale calculations is expected
to provide a reliable method for deep fake analysis of digital information. Finally, we examine the
application of potential well and Bragg reflection analysis methods to Deep Fake analysis of digital
information. We investigate how these methods can contribute to anomaly detection and improved
security for Deep Fake techniques and identify their advantages and disadvantages. As a result,
we examine the potential of applying physics-based methods to detect and defend against Deep
Fake technologies, while also discussing disadvantages such as high computational cost and model
complexity. This effort will provide suggestions on the choice of theoretical bandgap computation
methods and contribute to improving the reliability of digital information.

Keywords: AB Initio Calculation, Potential Wells, Bragg Reflection, Kubo Green’s function, GW
approximation, Empty Lattice approximation, band gap, Fock-Plotter equation, self-energy, Green’s
function, Deep Fake, Anomaly detection, Missing Data

1. Introduction
In this comprehensive research paper, we delve into the intri-
cate realm of theoretical methodologies tailored for comput-
ing the band gap, employing both the GW approximation and
the empty-lattice approximation.

The GW approximation, adept at handling continuous in-
formation spaces, scrutinizes the band gap across the first
and second Brillouin zones by pinpointing continuous en-
ergy extrema. Conversely, the empty-lattice approximation
discretizes the information space, enabling numerical com-
putations facilitated by the Fourier transform. We meticu-
lously juxtapose the theoretical underpinnings and numerical
methodologies essential for band gap computations within

Fig. 1: Green Function Empty Lattice Approximation Band
Gap in the First Brillouin Zone
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Fig. 2: Free-Electron Density of States in 3D k-space (Empty
Lattice Approximation)

each approach.
The proposed empty-lattice approximation emerges as a

promising avenue, poised to authentically capture real-world
physical phenomena, thereby assuming a pivotal role in un-
raveling the electronic properties of diverse materials. Fur-
thermore, we meticulously explore the comparative efficacy
of the GW approximation and the sky-lattice approximation
in scrutinizing deep fake manifestations across vast informa-
tion spaces. While the GW approximation furnishes a ro-
bust theoretical framework, its computational demands loom
large. Hence, amalgamating both methodologies for large-
scale computations emerges as a pragmatic strategy for for-
tifying the reliability of deep fake analysis within the digital
domain.

Additionally, we scrutinize the potential application of
potential well and Bragg reflection analysis techniques in the
realm of Deep Fake scrutiny within the digital landscape. We
scrutinize their potency in anomaly detection and fortifica-
tion of Deep Fake defenses, meticulously delineating their
inherent strengths and limitations. Our investigation seeks
to harness physics-based methodologies for the discernment
and fortification against Deep Fake incursions, while also ac-
knowledging impediments such as computational overheads
and model intricacies. This concerted endeavor aims to fur-
nish valuable insights into the selection of theoretical band
gap computation methodologies, ultimately enhancing the
trustworthiness of digital information ecosystems.

Moreover, our exploration extends to the potential of
leveraging physics-based methodologies for detecting and
thwarting Deep Fake technologies, thereby bolstering the
integrity of digital information ecosystems. However, it is

imperative to acknowledge the associated drawbacks, such as
the computational burden and complexity inherent in these
approaches.

As we traverse this landscape, we envision a concerted
effort towards refining and optimizing these methodologies,
mitigating their limitations, and harnessing their potential to
safeguard against the proliferation of Deep Fake phenomena.
By elucidating the advantages and challenges of employing
theoretical band gap computation methods, our endeavor as-
pires to furnish pragmatic recommendations for enhancing
the robustness and resilience of digital information frame-
works.

In summary, this research paper embarks on a compre-
hensive exploration of theoretical methodologies for band
gap computation, delving into their applications in the realm
of Deep Fake analysis within digital information spaces.
Through meticulous examination and comparison, we en-
deavor to shed light on the potential of these methodologies
in fortifying digital integrity while navigating the complexi-
ties and challenges inherent in their implementation.

In addition to the investigation into theoretical methodolo-
gies for band gap computation, we delve into the application
of potential well and Bragg reflection analysis techniques in
the realm of Deep Fake detection and defense within digital
information spaces.

1.1 Non-empirical molecular orbital methods in
Deep Fake detection

Some thoughts on the application of non-empirical molecular
orbital methods in Deep Fake detection and defense will be
touched upon.

Introduction of GW Approximation and Empty Lattice
Approximation

The GW approximation is a modification of the electronic en-
ergy level that incorporates electron correlation effects and,
when combined with the molecular orbital method, provides
a more accurate description of the electronic structure; the
generated model of Deep Fake reflects the characteristics of
the electronic state, and data generated using the GW ap-
proximation can be compared with actual Anomalies can be
detected by comparing data generated using the GW approx-
imation with actual data. The empty-lattice approximation is
a method for describing electronic states in periodic systems
and is useful for detailed analysis of physical phenomena such
as Bragg reflections, etc. Spatial patterns and periodicity may
also appear in the generation process of Deep Fake. Using the
empty lattice approximation, these features can be analyzed
and differences from the canonical generative model can be
detected.



Potential Well and Bragg Reflection Approaches

Potential wells are a fundamental model for describing bound
states of electrons, suggesting the presence of potential en-
ergy barriers or barriers in Deep Fake production models.
Using non-empirical molecular orbital methods, these poten-
tial wells can be identified and compared with similarities to
actual images and movies to detect Deep Fake. Bragg re-
flection, a method that describes the phenomenon of waves
propagating through a material being reflected by a lattice
structure, is applied to systems with periodic characteristics;
the periodicity of patterns and structures in Deep Fake gener-
ation models can be analyzed and the presence of Deep Fake
presence can be detected when these features do not match the
regular generative process. 3. Combining the above meth-
ods, we will construct an anomaly detection system for Deep
Fake based on the non-empirical molecular orbital method.
When anomalies are detected, we will implement appropriate
defense strategies and incorporate deep learning-based detec-
tion systems and data authentication techniques to build more
effective Deep Fake defense mechanisms.

These ideas can be used to develop Deep Fake detec-
tion and defense methods that apply non-empirical molecular
orbital methods. We will organize the case for obtaining
the GW and empty-lattice approximations using the non-
empirical molecular orbital method. In the nonempirical
molecular orbital method, the electronic state of the molecule
is first calculated. Then the GW approximation is introduced
to capture the electron correlation energies. This allows for
a more accurate capture of electron correlation effects. The
GW approximation requires the calculation of Green’s func-
tions and self-energies. These calculations are derived from
the wave functions and excited states underlying the molecu-
lar orbital method. It is important to obtain these quantities
accurately using non-empirical methods.

How to obtain the empty lattice approximation

Calculations for spatially periodic systems require periodic
boundary conditions. In the non-empirical molecular orbital
method, appropriate boundary conditions are also introduced
to account for periodic systems containing molecules. In
molecular orbital methods for spatially periodic systems, the
wavefunction is extended based on Bloch’s theorem. This
allows for an accurate description of the electronic state in
a periodic system. We construct a computational framework
that combines the GW approximation and the empty lattice
approximation. The framework calculates electronic states
based on the non-empirical molecular orbital method and
then applies the GW and empty-lattice approximations to
incorporate electron correlation effects and periodicity.

1.2 Potential Well Analysis
The concept of potential wells finds application in under-
standing the confinement of particles within a certain region
of space, analogous to the trapping of information within dig-
ital systems. By employing theoretical models and computa-
tional simulations, we explore how the analysis of potential
wells can aid in detecting anomalies or irregularities in digital
data indicative of Deep Fake manipulation. Furthermore, po-
tential well analysis offers insights into the underlying physics
governing the behavior of digital information, thus enhancing
anomaly detection mechanisms.

1.3 Bragg Reflection Analysis
Bragg reflection, derived from the phenomenon of construc-
tive interference in periodic structures, holds promise in dis-
cerning subtle alterations or distortions introduced by Deep
Fake techniques in digital information. By analyzing the
reflection patterns within information spaces analogous to
Bragg reflection, we aim to develop robust methods for de-
tecting tampering or manipulation attempts. Leveraging the
principles of wave interference and periodicity, Bragg reflec-
tion analysis offers a nuanced perspective on scrutinizing the
integrity of digital content, contributing to enhanced security
measures against Deep Fake threats.

Through the integration of potential well and Bragg reflec-
tion analyses into the framework of Deep Fake detection and
defense, we aspire to augment existing methodologies with
physics-based approaches, thereby bolstering the resilience
of digital information ecosystems against malicious manipu-
lation and deceptive practices.

2. Discussion
In this thesis, we attempt to introduce an understanding of
phenomena that are difficult to articulate by applying analysis
methods from first-principles calculations to the behavior of
vast amounts of information in digital space. By introduc-
ing the GW approximation to problem analysis in information
space, we can more precisely evaluate the interaction of infor-
mation and its effects. The GW approximation is a method
for calculating the self-energy using Green’s functions and
effective interactions, which can be applied to analyze the
scattering and interaction of information.

2.1 Calculation of Information Self-Energy
Based on GW Approximation

The self-energy ⌃⌧, (x, C; x0, C0) considering the interaction
of information is expressed using the GW approximation as
follows:

⌃⌧, (x, C; x0, C0) = 8

π
3x003C00⌧ (x, C; x00, C00), (x00, x0; C00, C0)



Here, ⌧ (x, C; x00, C00) represents the information diffusion
function, and , (x00, x0; C00, C0) represents the screened infor-
mation interaction potential. The screened interaction poten-
tial indicates to what extent interactions are reduced by other
sources of information and is calculated as follows:

, (x, C; x0, C0) = n�1 (x, C; x0, C0)+ (x, x0; C, C0)

Here, n�1 (x, C; x0, C0) is the inverse dielectric function in in-
formation space, and + (x, x0; C, C0) represents the unscreened
information interaction potential.

2.2 Reassessment of Information Band Gap
Using the self-energy based on the GW approximation, we
reassess the information band gap ⇢⌧,

gap :

⇢⌧,
gap = min

x2(
[⇢⌧,

accept (x)] max
x2(

[⇢⌧,
reject (x)]

Here, ⇢⌧,
accept (x) and ⇢⌧,

reject (x) respectively indicate the energy
levels at which information based on the GW approximation
is accepted and rejected. By applying the GW approxima-
tion to the analysis of information space, it becomes possible
to gain new insights into the processes of information inter-
action and scattering, especially concerning the diffusion of
misinformation. However, applying this theoretical approach
involves various challenges, such as the complexity of infor-
mation space and its correlation with real data. Overcoming
these challenges and aiming for the development of practical
analytical tools is the direction for future research.

In addition, in this thesis, we introduce the lattice approx-
imation. When incorporating the lattice approximation into
the GW approximation in information space, theoretical sup-
plements and formulas like the following can be considered.

Introduction of Lattice Approximation
In the lattice approximation, information space is dis-

cretized in Fourier space, considering each point as an inde-
pendent information site. In this case, variables related to
space and time are discretized and denoted by k and l.

Lattice Representation of Green’s Function
The Green’s function of information diffusion can be ex-

pressed as follows by Fourier transformation of space and
time:

⌧ (k,l) = 1
lnk + 8[ sgn(l)

Here, nk represents the energy spectrum of information prop-
agation, and [ is the regularization parameter.

Lattice Representation of Inverse Dielectric Function
Similarly, the inverse dielectric function can also be ex-

pressed by Fourier transformation of space and time:

n�1 (k,l) = 1 ++2 (k)⇧(k,l)

Here, +2 (k) is the Fourier-transformed information interac-
tion potential, and ⇧(k,l) is the correlation energy.

Lattice Representation of Self-Energy
Using the above, the lattice representation of the self-

energy ⌃⌧, can be derived:

⌃⌧, (k,l) = 8

2c

π
3l0

l � l0 + 8[ sgn(l0 � l)⌧ (k,l0)n�1 (k,l0)

This equation becomes a one-dimensional integral in k-space,
making numerical calculations relatively straightforward.

Advantages and Challenges of Lattice Approximation

2.3 Advantages
Simplifies numerical calculations by discretizing information
space Enables calculations in :-space through Fourier trans-
formation

2.4 Challenges
Whether discretizing information space adequately represents
reality Accurate evaluation of the correlation energy ⇧ Va-
lidity of assuming the energy spectrum of information prop-
agation nk

The lattice approximation significantly facilitates numeri-
cal calculations by simplifying the complexity of information
space. However, the extent to which this approximation accu-
rately represents reality is a crucial challenge. It is essential
to assume an appropriate energy spectrum and compare and
verify with experimental data.

Furthermore, in this thesis, when considering scenarios
to perform first-principles calculations as simulations of the
flow of large-scale information in digital space and exploring
regions of local singularity, we introduce the following:

When incorporating the GW approximation in informa-
tion space, there are differences between the band gaps of the
first Brillouin zone and the Brillouin zone in the lattice ap-
proximation. Below, we present the theoretical supplements,
formulas, and computational procedures for this.

Band Gaps in the GW Approximation
In the GW approximation, information space is treated

continuously. Band gaps are defined as follows:
Band gap of the first Brillouin zone:

⇢⌧,
6,1 = ⇢⌧,

⇠⌫,<8=⇢
⌧,
+⌫,<0G

Here, ⇢⌧,
⇠⌫,<8= is the self-energy-corrected energy of the

minimum level of the conduction band, and ⇢⌧,
+⌫,<0G is the

self-energy-corrected energy of the maximum level of the
valence band.

Band gap of the second Brillouin zone:

⇢⌧,
6,2 = ⇢⌧,

⇠⌫,<8=+1⇢
⌧,
+⌫,<0G

⇢⌧,
⇠⌫,<8=+1 is the energy of the second lowest level in the

conduction band.



These are determined by extremum calculations in con-
tinuous k-space.

Band Gaps in the Lattice Approximation
In contrast, in the lattice approximation, information

space is discretized, leading to a different definition of band
gaps.

Band gap of the first Brillouin zone:

⇢ ;0CC
6,1 = min

k21⌫/
[⇢⌧,

⇠⌫ (k)] max
k21⌫/

[⇢⌧,
+⌫ (k)]

Here, ⇢⌧,
⇠⌫ (k) and ⇢⌧,

+⌫ (k) are the self-energy-corrected
band structures of the conduction and valence bands, respec-
tively. Extremum searches are conducted within the first
Brillouin zone.

Band gap of the second Brillouin zone:

⇢ ;0CC
6,2 = min

k22⌫/
[⇢⌧,

⇠⌫ (k)] max
k21⌫/

[⇢⌧,
+⌫ (k)]

Extremum searches for the conduction band are con-
ducted within the second Brillouin zone.

Thus, in the lattice approximation, due to the discretiza-
tion of k-points, different results are obtained compared to
the continuous case. Significant differences may particularly
appear on the high-energy side.

Example Computational Procedure
1. Set the energy spectrum nk of information propagation

appropriately. 2. Compute ⇢⌧,
⇠⌫ (k) and ⇢⌧,

+⌫ (k) in Fourier
space using lattice GW approximation. 3. Search for the
minima of the conduction band and the maxima of the valence
band in the first/second BZ. 4. Use these values to compute
⇢ ;0CC
6,1 and ⇢ ;0CC

6,2 .
In this way, in the lattice approximation, band gap defini-

tions are carried out in a discretized space, yielding generally
different values from the continuous GW approximation. The
extent to which this method can appropriately reflect physical
processes in real space is crucial in determining its validity.

Furthermore, when introducing a random lattice model
into the above analytical scenario, generalizing the GW ap-
proximation and its lattice approximation becomes straight-
forward.

Random Lattice GW Approximation
In a random lattice model, information sites (lattice

points) are randomly distributed. Therefore, instead of real-
space representation, quantum states are expressed using site
indices 8.

Green’s function: ⌧8 9 (l) Self-energy operator: ⌃8 9 (l)
These quantities take different values depending on the

random lattice structure. The self-energy equation in the GW
approximation can be written as follows:

⌃8 9 (l) =
8

2c

’
:

π
3l0 ⌧8: (l0),: 9 (l0)

ll0 + 8[ sgn(l0 � l)

Here, ,8 9 (l) is the screened effective interaction. This
equation provides the GW self-energy for random systems
by appropriately summing and integrating according to the
random lattice structure.

Random Lattice Lattice Approximation in the GW
Approximation

Furthermore, introducing the lattice approximation yields
the following discretized self-energy equation:

⌃8 9 (l) =
8

2c

’
:;

π
3l0⌧8: (l0),:; (l0)⌧; 9 (l0)

ll0 + 8[ sgn(l0 � l)

In this equation, the continuous integral is replaced by
discrete sums via sampling. Both ⌧ and , are represented
by site indices on the random lattice.

Thus, generalizing to the random lattice model allows
for a more realistic incorporation of irregular information
network structures. However, there are challenges in actual
computations:

Efficiency and accuracy improvement of numerical calcu-
lations in random systems Appropriate calculation methods
for staying Green’s functions in non-periodic systems Intro-
duction of ensemble averaging through large-scale sampling
Proper modeling for comparison and verification with exper-
imental data

Overcoming these challenges requires bridging theory
with experimental data through model construction. The ran-
dom lattice GW approximation offers an intriguing approach
that holds the potential to bring new insights into the analysis
of irregular information networks.

Furthermore, in this thesis, when considering scenarios
to perform first-principles calculations as simulations of the
flow of large-scale information in digital space and exploring
regions of local singularity, we introduce the following:

When dealing with the characteristics of a random scat-
tering potential substrate in first-principles calculations, the
theoretical explanation, formulas, and computational process
are as follows.

Theoretical Explanation
A random scattering potential substrate is a system with

random potential modulation on the substrate surface. This
random potential can be realized, for example, by introducing
impurities or defects on the substrate surface. When associat-
ing information propagation with electronic conduction, this
random potential serves as a source of electron scattering,
significantly influencing the conduction characteristics.

In first-principles calculations, the construction of the
random potential from the substrate’s atomic structure and
the determination of the electron wave functions propagating
through this potential are performed. Generally, in systems
with a random potential, electronic states tend to localize,
leading to a significant suppression of conduction character-
istics.



Formulas and Computational Process
Construction of the random potential Obtain the ef-

fective potential +eff (r) from the substrate’s atomic structure
through first-principles calculations. Add the random poten-
tial due to impurities or defects, denoted as +rand (r). Total
potential: +tot (r) = +eff (r) ++rand (r)

Calculation of electron wave functions Solve the single-
particle Schrödinger equation numerically:


� \2

2<
r2 ++tot (r)

�
k8 (r) = ⇢8k8 (r)

Set appropriate boundary conditions and determine the wave
functions k8 and energies ⇢8 of conducting electrons.

Calculation of the Green’s function The conduc-
tion characteristics are obtained from the Green’s function
⌧ (r, r0, ⇢). Green’s functions are typically numerically cal-
culated using recursive Green’s function methods.

Calculation of conductivity Compute the linear response
of current from the Green’s function to derive the conductivity
f. f = f(l,+rand (r))

Ensemble averaging Perform calculations for various
random potentials +rand and take the ensemble average.
hfi =

Ø
D+rand f(l,+rand)%(+rand) Here, %(+rand) is the

distribution function of random potentials.
In this way, precise construction of the random potential

and analysis of the conduction characteristics of electrons
within this potential can be achieved through first-principles
calculations. In practical computations, advanced computa-
tional methods and efficiency enhancements are essential due
to the requirement for large-scale numerical calculations and
sampling.

Furthermore, while the above procedure is an example
of electronic conduction, appropriate modifications may be
necessary depending on the modeling of information propa-
gation. Through comparison and verification of theory with
data, the advancement of theory is required to ensure that the
random scattering potential substrate becomes a better model
for information networks.

By introducing the Keldysh Green’s function, the GW
approximation and its lattice approximation can be treated
more generally. Below, we provide a detailed explanation
of the theoretical background, formulas, and computational
procedures.

Introduction of the Keldysh Green’s Function
The Keldysh Green’s function is a general form of the

time-dependent Green’s function, defining three types of
Green’s functions:

Retarded Green’s function: ⌧> (rC, r0C0) Advanced
Green’s function: ⌧< (rC, r0C0) Lesser Green’s function:
⌧ e (rC, r0C0)

These satisfy the following equations of motion:


8\

m

mC
� (r, C)

�
⌧ e (rC, r0C0) = X(r � r0)X(C � C0)


8\

m

mC0
� (r0, C0)

�
⌧ e (rC, r0C0) = X(r � r0)X(C � C0)

Here, � (r, C) is the generalized Hamiltonian. The re-
tarded and advanced Green’s functions are obtained from the
definition of time-ordered integrals.

Keldysh Green’s Function in the GW Approximation
In the GW approximation, the following Dyson-like equa-

tion for the Keldysh Green’s function can be derived:


8\

m

mC
�0 (r, C)

�
⌧ e (rC, r0C0) = X(r � r0)X(C � C0)

+
π

3r003C00⌃e (rC, r00C00)⌧ e (r00C00, r0C0)

Here, �0 is the non-interacting Hamiltonian, and ⌃e is the
Keldysh self-energy. The Keldysh self-energy is calculated
from the Green’s function and effective potential as follows:

⌃e (rC, r0C0) = 8\
π

3r003C00⌧ e (rC, r00C00)�e (r00C00, r0C0)

�e (rC, r0C0) = X(r � r0)X(C � C0)+eff (r, C)

+ 8

\
P
π

3r003C00+eff (r, r00, C � C00)n�1 (r00C00, r0C0)

Here, P denotes the principal value integral, and n�1 is the
inverse dielectric function. By solving this set of equations
self-consistently, Green’s functions and self-energies in the
GW approximation can be obtained.

Keldysh Green’s Function in the Lattice GW Approx-
imation

Furthermore, when introducing the lattice approximation,
we transition from real-space representation to a discretized
representation.

Green’s function: ⌧ e
8 9 (C, C0) Self-energy: ⌃e

8 9 (C, C0)
Here, 8, 9 represent site indices. In this case, the Dyson-

like equation is discretized as follows:
8\

m

mC
�0,88 (C)

�
⌧ e

8 9 (C, C
0) = X8 9X(C � C0)

+
’
:

π
3C00⌃e

8: (C, C
00)⌧ e

: 9 (C
00, C0)

Similarly, the self-energy is expressed in a discretized
form using site indices.

⌃e
8 9 (C, C

0) = 8\
’
:

π
3C00⌧ e

8: (C, C
00)�e

: 9 (C
00, C0)

�e
8 9 (C, C

0) = X8 9X(C � C0)+eff,ii (C)

+ 8

\

’
:;

P
π

3C00+eff,ik (C � C00)n�1
:; (C00, C0)



Using the formalism of the Keldysh Green’s function, the
GW approximation and lattice GW approximation can be ap-
plied to general systems, including those with random scat-
tering potentials. However, actual numerical computations
become highly complex, and the development of efficient
algorithms is crucial.

Moreover, depending on the modeling of information
propagation, appropriate generalizations and modifications of
the quantities and equations mentioned above may be neces-
sary. The formalism of the Keldysh Green’s function provides
a powerful theoretical foundation for this purpose.

However, it’s important to note the following challenges:
Difficulty in numerical computation of the Keldysh

Green’s function Ambiguity in matching physical quantities
between real and discrete space Applicability of Brillouin
zone concept in disordered systems Difficulty in generalizing
to information propagation problems

Efforts to overcome these challenges through theoreti-
cal and experimental comparisons are crucial. The Keldysh
Green’s function formalism provides a powerful theoretical
framework in this endeavor.

When analyzing the intricate diffusion pathways of mis-
information, the idea of applying the Kubo Green function
formalism could be as follows:

2.5 Generalization to Non-equilibrium Theory
of Information Propagation

1. Treat the generation, propagation, and annihilation of
misinformation as probabilistic processes and replace them
within the framework of non-equilibrium statistical mechan-
ics. 2. Introduce the probability distribution function 5 (r, C)
for information propagation. 3. Derive Fokker-Planck equa-
tions or generalized diffusion equations for this distribution
function:

m 5

mC
= �r · J[ 5 ] + ([ 5 ]

where J is the probability flux and ( is the source/sink term.
4. Introduce non-equilibrium Green functions ⌧<,⌧> and
construct their Dyson-like equations:


8\

m

mC
� (r, C)

�
⌧ e = X +

π
⌃e⌧ e

where the self-energy ⌃e incorporates the probabilistic pro-
cesses of information propagation. 5. Reconstruct the proba-
bility distribution function from these non-equilibrium Green
functions and analyze the behavior of information propaga-
tion.

2.6 Integration with Complex Network Theory
1. Model information propagation pathways as networks:
Nodes correspond to information sources, media, receivers.
Links represent the flow of information. 2. Introduce metrics

representing the complexity of the network: Degree distri-
bution, clustering coefficient, path length distribution, etc.
3. Investigate correlations between these metrics and Green
functions: Derive non-equilibrium Green functions incor-
porating network metrics. Analyze information propagation
characteristics for various network structures. 4. Identify fea-
tures of network structures advantageous for misinformation
propagation.

2.7 Integration with Numerical Simulations
1. Implement virtual misinformation propagation using nu-
merical simulation techniques like agent-based models. 2.
Extract statistical quantities and probability distributions of
information propagation from the simulation data. 3. Con-
struct equations for Kubo Green functions and self-energy by
fitting to this empirical data. 4. Develop more realistic mod-
els of information propagation through collaboration between
simulation and theory.

These approaches center around generalizing the Kubo
Green function formalism to describe information propaga-
tion as a non-equilibrium probabilistic process. Collaborating
with complex networks and numerical simulations holds the
promise of more realistic modeling.

However, there are anticipated challenges in actual for-
malization and numerical implementation. Overcoming these
challenges, such as constructing appropriate self-energy and
advancing large-scale numerical computations, is crucial.
Yet, overcoming these difficulties may lead to a new un-
derstanding of misinformation propagation. Bridging theory
and empirical data will be a vital guiding principle.

When generalizing to non-equilibrium theory of informa-
tion propagation, the detailed equations and computational
procedures are as follows:

2.8 Framework of Non-equilibrium Statistical
Mechanics

1. Introduction of Probability Distribution Function Define
the probability distribution function for information quantity
as 5 (r, C). This function represents the probability density of
information quantity at position r and time C.

2. Generalized Diffusion Equation The probability distri-
bution function 5 follows the generalized diffusion equation:

m 5

mC
= �r · J[ 5 ] + ([ 5 ]

J[ 5 ] is the probability flux operator. ([ 5 ] is the
source/sink term.

3. Specific Probability Flux and Source Terms Simple
examples: J[ 5 ] = �⇡r 5 , ([ 5 ] = 6W 5 . ⇡: Information
diffusion coefficient, 6: Information generation rate, W: In-
formation decay rate.



2.9 Generalization to Kubo Green Functions
1. Introduction of Non-equilibrium Kubo Green Functions
Define the non-equilibrium Kubo Green function for informa-
tion propagation as ⌧ e (rC, r0C0). This quantity encompasses
both information propagation and generation/annihilation.

2. Generalized Dyson-like Equation The Green function
⌧ e follows the generalized Dyson-like equation:


8\

m

mC
� (r, C)

�
⌧ e (rC, r0C0) (1)

= X(r � r0)X(C � C0) (2)

+
π

3r003C00⌃e (rC, r00C00)⌧ e (r00C00, r0C0) (3)

� (r, C) is the generalized Hamiltonian. ⌃e is the non-
equilibrium self-energy.

3. Structure of the Self-Energy ⌃e incorpo-
rates probabilistic processes of information genera-
tion/annihilation and propagation. Example: ⌃e = ⌃0 +Ø
3C0⌃1 [ 5 ] (rC, r0C0)⌧ e (r0C0, rC). ⌃0: Conventional self-

energy. ⌃1 [ 5 ]: Non-equilibrium term dependent on the
probability distribution.

2.10 Relationship between Green Functions and
Probability Distribution

1. Derivation of Density Matrix from Kubo Green Functions

d(rC, r0C0) = � 8

\
⌧< (rC, r0C0)

where ⌧< = (1 + ⌧ e⌧0)/2 (Keldysh function).
2. Calculation of Probability Distribution

5 (r, C) = d(rC, rC0)

i.e., the diagonal elements of the density matrix become
the probability distribution function.

2.11 Setting Initial and Boundary Conditions
Set initial probability distribution 5 (r, 0) = 50 (r). Exam-
ple: uniform distribution in a region, or assume Gaussian
distribution, etc.

2.12 Boundary Conditions
For periodic boundary conditions: 5 (r + L, C) = 5 (r, C)
(where L is the periodic vector of the simulation cell) For
open boundaries: 5 (rboundary, C) = 5boundary (C) (value at the
boundary given as a function of time)

2.13 Introduction of Self-consistent Field Ap-
proximation

Introduce the self-consistent field (Hartree) approximation to
the self-energy:

⌃e (rC, r0C0) ⇡ X(r � r0)X(C � C0)⌃� [ 5 ] (r, C)

The specific form of the Hartree self-energy ⌃� depends on
the probability distribution. Example: ⌃� [ 5 ] = +eff (r) +
_ 5 (r, C) (+eff is the effective potential, _ is the strength of
interaction between information quantities)

2.14 Discretization in Real Space and Time
Discretize real space using a 3D mesh: r =
(=G�G, =H�H, =I�I) Discretize time: C = <�C Discrete
Green function: ⌧ e

8 9 (<,<0) (Indices 8 = (=G , =H , =I), 9 =
(=0G , =0H , =0I) represent lattice points)

2.15 Discrete Dyson-like equation

8\

m

mC
�88 (<)

�
⌧ e

8 9 (<,<0) (4)

= X8 9X(< � <0) +
’
:

⌃e
8: (<,<00)⌧ e

: 9 (<
00,<0) (5)

2.16 Calculation of Green Functions and Prob-
ability Distribution

Solve the discrete Dyson-like equation numerically to ob-
tain ⌧ e

8 9 (<,<0) Example: Formulate a system of simultane-
ous equations using implicit finite difference approximations,
solve using numerical computing libraries Compute density
matrix from discrete Keldysh function:

d8 9 (<,<0) = � 8

\

✓
1 + ⌧ e (<,<0)⌧ e (<0,<)

2

◆

Diagonal elements are the probability distribution:

58 (<) = d88 (<,<)

2.17 Self-consistent Iterative Calculation
Compute new Hartree self-energy ⌃� from obtained prob-
ability distribution 58 (<) Recalculate Green functions and
probability distribution in step 4 Repeat steps 4-5 until con-
vergence

2.18 Details of Numerical Computation
Number of points in 3D mesh: #G ⇥#H ⇥#I Number of time
steps: #C Number of unknowns: #G#H#I#C ⇥ #G#H#I#C

Size of system of simultaneous equations: (#G#H#I#C )2

Computational cost grows exponentially with dimensions of
spatial and temporal discretization Large-scale parallel com-
puting and efficient solvers are indispensable.



Thus, numerical implementation of non-equilibrium
Green function method requires solving large systems of si-
multaneous equations, leading to very high computational
costs. However, it has the potential to appropriately model
the probabilistic processes of information propagation and
bridge theory with experimental data. Efficient algorithm
development and connecting models to reality are key.

3. Perspect:Potential Well and Bragg
Reflection

A potential well is a structure where the potential is constant
within a certain region and sharply increases at its boundary.
The Schrödinger equation for a potential well is given by:

� \2

2<
32k

3G2 ++ (G)k = ⇢k

Here, + (G) represents the potential of the well, ⇢ is the
energy, and k is the wave function.

Within the potential well, the potential is assumed to be
constant +0. Therefore, the Schrödinger equation simplifies
to:

� \2

2<
32k

3G2 ++0k = ⇢k

By solving this equation, the wave function and energy
levels of electrons within the potential well can be determined.

Bragg reflection is a phenomenon where waves, such as
X-rays or neutrons, incident on a crystal lattice are strongly
reflected in specific directions. This phenomenon occurs
when the spacing between atoms in the crystal lattice aligns
with the wavelength of the wave. The condition for Bragg
reflection is expressed by the following equation:

23 sin(\) = =_

Here, 3 represents the spacing of the crystal lattice, \ is
the angle of incidence, = is the order of reflection, and _ is
the wavelength.

When the condition for Bragg reflection is met, X-rays or
neutrons are scattered within the crystal lattice and strongly
reflected in specific directions.

These are the basic equations and computational proce-
dures for potential wells and Bragg reflection. For specific
problems or scenarios, more detailed computational proce-
dures can be applied based on the specific conditions.

3.1 Schrödinger Equation for Potential Well
The Schrödinger equation describing the wave function of
electrons within a potential well is given by:

� \2

2<
32k

3G2 ++ (G)k = ⇢k

Here,< represents the effective mass of the electron,+ (G)
is the potential function of the potential well, ⇢ is the energy,
and k is the wave function.

3.2 Potential Function of the Potential Well
Within the potential well, the potential is assumed to be con-
stant. Therefore, the potential function + (G) is defined as
follows:

+ (G) =
(

0 if 0 < G < !

1 otherwise

Here, ! is the width of the potential well.

3.3 Solution of the Wave Function
Within the potential well, the Schrödinger equation simplifies
to:

� \2

2<
32k

3G2 = ⇢k

The solution to this equation takes the general form:

k(G) = � sin(:G) + ⌫ cos(:G)

Here, : =
q

2<⇢
\2 is the wave number, and � and ⌫ are

constants.

3.4 Calculation of the Band Gap
Energy levels within the potential well are quantized, meaning
they have discrete energy levels rather than continuous energy
bands. The band gap is defined as the energy difference
between the ground state (lowest energy level) and the first
excited state (next lowest energy level).

Therefore, the band gap⇢gap is calculated as the difference
between the energies ⇢1 and ⇢0 of the first excited state and
the ground state, respectively:

⇢gap = ⇢1⇢0

The band gap in a potential well is calculated by deter-
mining the wave function and energy levels. By following the
above steps and solving the Schrödinger equation, the band
gap of the potential well can be computed.

3.5 Bragg Reflection
Bragg reflection is a phenomenon where X-rays or neutrons
scattered within a crystal lattice are strongly reflected in a
specific direction. This phenomenon arises from the peri-
odicity of the crystal lattice. Below are the equations and
computational procedures for Bragg reflection.



3.6 Equations for Bragg Reflection
The condition for Bragg reflection, known as Bragg’s law, is
expressed by the following equation:

23 sin(\) = =_

Here, 3 represents the spacing between crystal lattice
planes, \ is the angle of incidence, = is the order of reflection,
and _ is the wavelength.

3.7 Computational Procedure for Bragg Reflec-
tion

The procedure for calculating the Bragg reflection band gap
is as follows:

Preparation of Crystal Structure: Determine the structure
of the crystal of interest. Identify the spacing 3 between lat-
tice planes. Determination of Incident Wave’s Wavelength:
Determine the wavelength _ of the incident wave (X-ray or
neutron) to be used. Calculation of Incident Angle: Deter-
mine the angle of incidence \ of the incident wave. Typically,
in Bragg reflection, it is assumed that the angle of incidence
equals the angle of reflection. Application of Bragg’s Law:
Use Bragg’s law to determine the order of reflection =. Cal-
culation of Band Gap: If the conditions for Bragg reflection
are met, the wavelength of the wave strongly reflected in
a specific direction is determined. Calculate the band gap
from this wavelength. Interpretation of Results: Interpret the
calculated band gap to gain insights into the properties and
structure of the material.

Since Bragg reflection relies on the periodicity of the
crystal, detailed information about the crystal structure is
necessary. Additionally, Bragg reflection is observed only for
specific wavelengths such as X-rays or neutrons, making the
characteristics of the incident wave crucial. Accurate knowl-
edge of experimental data and crystal structure is required for
the calculations.

The application of potential well and Bragg reflection
analysis methods to deep fake analysis of digital information
will be summarized. Potential well and Bragg reflection anal-
ysis methods are advanced techniques for elucidating physical
phenomena in detail using numerical and analytical methods.
Applying these methods to deep fake analysis of digital in-
formation provides a deeper understanding of the generative
models and editing methods behind images and video. Po-
tential well and Bragg reflection analysis methods can be
used to detect anomalous behavior and features that deviate
from the canonical generative model. For example, it can
detect patterns and unnatural changes in images and videos
generated using deep fake techniques and identify them as
anomalies. deep fake techniques pose a significant threat to
security systems such as face recognition and video analyt-
ics. By utilizing potential well and Bragg reflection analysis

methods, it is expected that countermeasures and defenses
against these threats can be developed and contribute to im-
proved security. However, potential well and Bragg reflection
analysis methods are computationally expensive because they
use advanced numerical and analytical methods to elucidate
physical phenomena in detail. For deep fake analysis, these
methods can be computationally expensive when applied to
large data sets or high-resolution images and videos.

In addition, potential well and Bragg reflection analysis
methods use sophisticated models and algorithms based on
physics and mathematics. These models are very complex
and their interpretability can be poor. Therefore, even in
deep fake analysis, it can be difficult to understand the results
and criteria produced by the models. In addition, there may
be limited accurate data on the canonical generating models
and editing methods in the deep fake analysis. When using
potential well or Bragg reflection analysis methods, it may be
difficult to collect and organize the data necessary to apply
these methods.

As mentioned above, there are many advantages to ap-
plying potential well and Bragg reflection analysis methods
to deep fake analysis, but disadvantages such as computa-
tional cost, model complexity, and lack of data must also be
considered.

4. Perspect:Outlook Application to deep
fake analysis of digital information

The proposed methods of empty lattice approximation and
GW approximation may play an important role in the analysis
of deep fake of digital information. Specifically, the following
aspects of application are considered.

GW approximation and empty lattice approximation may
be useful for feature extraction in digital information. These
methods map data to a mathematical model and analyze its
features numerically, which is useful for extracting deep fake
features.

In addition, the calculation of the band gap may be useful
as a measure of truth or falsehood in the analysis of deep
fakes. The GW and empty lattice approximations can also
be applied to build models for data analysis. These methods
can be used to more accurately model data features and are
expected to contribute to the improvement and accuracy of
deep learning models.

As described above, the proposed methods of sky-lattice
approximation and GW approximation may be useful tools in
deep fake analysis of digital information. Appropriate appli-
cation of these methods is expected to realize more advanced
fraud detection and data analysis, and contribute to improving
the reliability of digital information.



4.1 Validity of GW and Lattice Approximations
for Deep Fake Analysis of Digital Informa-
tion

Validity of GW Approximation and Its Application to Deep
Fake Analysis of Digital Information, Theoretical Founda-
tion: The GW approximation achieves high accuracy in cal-
culating band gaps by accurately incorporating electron cor-
relation effects. This method provides detailed information
on electronic energy levels and spectra, serving as a useful
metric to detect differences between real and deep fake digital
information.

Computational Approach, The GW approximation is typ-
ically performed by correcting the self-energy based on initial
calculations such as density functional theory (DFT). This al-
lows it to be applied to large-scale calculations in extensive in-
formation spaces. Moreover, leveraging advanced numerical
techniques and parallel computing technologies can reduce
computational costs, enabling fast and efficient analysis.

Validity of Lattice Approximation and Its Application
to Deep Fake Analysis of Digital Information, Theoretical
Foundation: The lattice approximation simplifies calcula-
tions by discretizing information spaces, enabling computa-
tions in large information spaces. Even in calculating band
gaps, analysis in discrete information spaces provides suffi-
cient accuracy and reliable metrics for deep fake analysis.

Computational Approach, The lattice approximation ef-
ficiently computes band structures and self-energies using
numerical analysis techniques such as Fourier transforms.
Therefore, it can be applied to large-scale calculations in ex-
tensive information spaces. Furthermore, due to relatively
low computational costs, it is suitable for analyzing multiple
datasets or large amounts of data.

GW and lattice approximations offer different computa-
tional methods and accuracies, both of which are considered
valid approaches for deep fake analysis of digital information.
The GW approximation, with its advanced theoretical foun-
dation, provides relatively high accuracy but tends to have
higher computational costs. The lattice approximation en-
ables analysis in discrete information spaces, reducing com-
putational costs while maintaining sufficient accuracy. Both
methods are applicable to large-scale calculations in extensive
information spaces, serving as powerful tools for achieving
reliable analyses in deep fake analysis of digital information.

4.2 Comparison of GW and Lattice Approxima-
tions for Deep Fake Analysis in Large Infor-
mation Spaces

Comparing the GW and lattice approximations, we focus on
their application to deep fake analysis of digital information in
large-scale first-principles calculations, explaining the merits
and drawbacks of each method.

4.3 Merits of GW Approximation for Deep Fake
Analysis of Digital Information

High Precision Theoretical Foundation, The GW approxi-
mation provides high accuracy in calculating band gaps by
accurately incorporating electron correlation effects. This
makes it a reliable metric for detecting differences between
real and deep fake digital information in deep fake analysis.

Detailed Information Provision, The GW approximation
provides detailed information on electronic energy levels and
spectra. This information serves as a useful metric for under-
standing the characteristics of data and detecting fraudulent
data in deep fake analysis.

4.4 Drawbacks of GW Approximation for Deep
Fake Analysis of Digital Informations

High Computational Cost, The GW approximation has high
computational costs, requiring substantial resources for large-
scale calculations in extensive information spaces. This may
pose challenges in terms of computational time and resource
constraints in deep fake analysis of digital information.

4.5 Merits of Lattice Approximation for Deep
Fake Analysis of Digital Information

Low Computational Cost, The lattice approximation performs
calculations in discretized information spaces, resulting in
relatively low computational costs. This enables efficient
large-scale calculations in extensive information spaces.

4.6 Drawbacks of Lattice Approximation for
Deep Fake Analysis of Digital Information

Lower Accuracy, The lattice approximation may have lower
accuracy compared to analysis in continuous information
spaces. Consequently, it may not achieve sufficient accu-
racy in deep fake analysis of digital information. Limited
Information Provision, The lattice approximation restricts the
provision of continuous information due to its discrete nature.
This limitation may result in insufficient information for deep
fake analysis of digital information. Both GW and lattice
approximations have their merits and drawbacks. When ap-
plying them to deep fake analysis of digital information, it is
essential to consider the balance between computational cost
and accuracy. While the GW approximation offers high pre-
cision, it tends to have high computational costs. On the other
hand, the lattice approximation has lower computational costs
but may sacrifice accuracy. Choosing the appropriate method
is crucial in deep fake analysis of digital information, depend-
ing on the nature of the problem and the analysis objectives.
The following theoretical approaches can also be considered
when applying potential well and Bragg reflection analysis
methods to deep fake analysis of digital information. As an



application of potential wells, numerical and analytical meth-
ods of potential wells can be used to extract features of images
and videos generated by generative models. This allows data
with features or patterns that differ from regular data to be
detected and identified as anomalies. For example, the distri-
bution of features and edges in an image generated by a deep
learning model can be analyzed and judged as anomalous if
the distribution is different from that of a normal image. An
application of Bragg reflection is to use the matrix transfer
or density matrix method of Bragg reflection to map features
in data transformed by a generative model. For example, by
viewing an image or video as a lattice structure and analyzing
the behavior of wave propagation and reflection on the lat-
tice, the features of the transformed data can be quantified and
compared to regular data. Using these theoretical approaches,
potential well and Bragg reflection analysis methods can be
applied to deep fake analysis for purposes such as anomaly
detection and feature mapping. This is expected to help assess
the quality and reliability of the data generated and contribute
to improving the performance and enhancing the security of
deep learning models.
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