Papers

Peer-reviewed International journal
Aug 7, 2020

Rapid and Systematic Exploration of Chemical Space Relevant to Artemisinins: Anti-malarial Activities of Skeletally Diversified Tetracyclic Peroxides and 6-Aza-artemisinins.

The Journal of organic chemistry
  • Karunakar Reddy Bonepally
  • Norihito Takahashi
  • Naoya Matsuoka
  • Hikari Koi
  • Haruki Mizoguchi
  • Takahisa Hiruma
  • Kyohei Ochiai
  • Shun Suzuki
  • Yutaka Yamagishi
  • Hideaki Oikawa
  • Aki Ishiyama
  • Rei Hokari
  • Masato Iwatsuki
  • Kazuhiko Otoguro
  • Satoshi O Mura
  • Nobutaka Kato
  • Hiroki Oguri
  • Display all

Volume
85
Number
15
First page
9694
Last page
9712
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1021/acs.joc.0c01017

To achieve both structural changes and rapid synthesis of the tetracyclic scaffold relevant to artemisinins, we explored two kinds of de novo synthetic approaches that generate both skeletally diversified tetracyclic peroxides and 6-aza-artemisinins. The anti-malarial activities of the tetracyclic peroxides with distinct skeletal arrays, however, were moderate and far inferior to artemisinins. Given the privileged scaffold of artemisinins, we next envisioned element implantation at the C6 position with a nitrogen without the trimmings of substituents and functional groups. This molecular design allowed the deep-seated structural modification of the hitherto unexplored cyclohexane moiety (C-ring) while keeping the three-dimensional structure of artemisinins. Notably, this approach induced dramatic changes of retrosynthetic transforms that allow an expeditious catalytic asymmetric synthesis with generation of substitutional variations at three sites (N6, C9, and C3) of the 6-aza-artemisinins. These de novo synthetic approaches led to the lead discovery with substantial intensification of the in vivo activities, which undermine the prevailing notion that the C-ring of artemisinins appears to be merely a structural unit but to be a functional area as the anti-malarial pharmacophore. Furthermore, we unexpectedly found that racemic 6-aza-artemisinin (33) exerted exceedingly potent in vivo efficacies superior to the chiral one and the first-line drug, artesunate.

Link information
DOI
https://doi.org/10.1021/acs.joc.0c01017
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32610901
ID information
  • DOI : 10.1021/acs.joc.0c01017
  • Pubmed ID : 32610901

Export
BibTeX RIS