Draft Genome Sequence of *Methylobacterium* sp. ME121, Isolated from Soil as a Mixed Single Colony with *Kaistia* sp. 32K

Shun Fujinami,a,b Kiyoko Takeda-Yano,c Takefumi Onodera,d Katsuya Satoh,e Tetsu Shimizu,f Yuu Wakabayashi,g Issay Narumi,h Akira Nakamura,f Masahiro Itoa,b,g,h

Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan; Department of Chemistry, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan; Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan; Cooperative Research Centre of Life Sciences, Kobe Gakuen University, Kobe, Hyogo, Japan; Ion Beam Mutagenesis Research Group, Biotechnology and Medical Application Division, Quantum Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; Graduate School of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan; Faculty of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan

Methylobacterium sp. ME121 was isolated from soil as a mixed single colony with *Kaistia* sp. 32K, and its growth was enhanced by coculture. Here, we report the draft genome sequence of *Methylobacterium* sp. ME121, which may contribute to the study of the molecular mechanisms underlying this phenomenon.

It has been suggested that a majority of environmental microorganisms are still uncultured, and some of them form symbiotic relationships with other organisms. For example, *Symbiobacterium thermophilum* was reported as a symbiotic bacterium requiring support of the associated *Geobacillus stearothermophilus* for growth (1). The genomic information of such symbiotic bacteria could be of use for studying the molecular mechanisms underlying microbial symbiosis (2).

Methylobacterium sp. ME121 was isolated from soil as a mixed single colony with *Kaistia* sp. 32K during our screening of l-glucose-utilizing microorganisms (3), and its growth was enhanced by coculture. It was expected that genomic analysis of this bacterium would provide novel information on coculture-dependent growth enhancement. *Methylobacterium* sp. ME121 appeared to be most closely related to *M. radiotolerans* based on the 16S rRNA gene sequence identity.

The draft genome sequence of *Methylobacterium* sp. ME121 is 7,096,979 bp in total length and comprises 197 large contigs (>500 bp) and was obtained with the Roche GS Junior and GS FLX+ system. The assembled genome has 56 tRNAs.

Methylobacterium species generally live on plant surfaces and assimilate methanol emitted by plants. The genome sequences of *M. aquaticum* and *M. radiotolerans* were analyzed, and the genes involved in methylotrophy were identified (6, 7). The annotation of the draft genome sequence shows that *Methylobacterium* sp. ME121 has some genes that encode putative methanol/ethanol family PQQ-dependent dehydrogenases involved in methylotrophy. Some unknown factor (e.g., methanol) provided by the coculture may contribute to increase the growth of *Methylobacterium* sp. ME121. Future study will identify such a factor, and it would serve to clarify the molecular mechanisms of coculture-dependent growth enhancement.

Nucleotide sequence accession numbers. The draft genome sequence of *Methylobacterium* sp. ME121 was deposited at DDBJ/EMBL/GenBank under the accession number BBUX00000000. The version described in this paper is the first version, BBUX00000000.1.

ACKNOWLEDGMENTS

We thank Arthur A. Guffanti for critical reading of the manuscript.

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas no. 24170005 of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MI).

REFERENCES
