Natural killer cell cytotoxicity is influenced by QPY/RAH haplotypes of the \textit{GZMB} gene.

Wataru Oboshi1, Toru Watanabe2, Keisuke Hayashi3, Takehiro Nakamura1, Nobuyasu Yukimasa1

Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa1, Department of Clinical Technology, Hyogo College of Medicine Hospital, Hyogo2, Department of Clinical Laboratory, Shikoku Central Hospital, Ehime3

Natural killer (NK) cells constitute approximately 10\% of the lymphocytes in human peripheral blood. Granzyme B (GzmB) is a component of cytolytic granules within NK cells and is involved in several pathologies. In the presence of perforin, GzmB escapes from the endolysosomal compartment and gains access to a number of important proteins involved in the execution of the apoptotic program. It has previously been reported that there are three non-synonymous coding SNPs (rs8192917; Q48R, rs11539752; P88A, and rs2236338; Y245H) in the \textit{GZMB} gene, and that the QPY/RAH allele was clustered together close to the C-terminal α-helix. However, it is unknown whether the function of GzmB produced from NK cells is influenced by QPY/RAH polymorphism. The authors investigated the distribution of QPY/RAH polymorphism of the \textit{GZMB} gene in a Japanese population (n = 106), and the involvement of Q48R polymorphism in NK cell cytotoxicity, degranulation, and production of GzmB. A strong linkage disequilibrium was observed among these SNPs, and NK cell cytotoxicity was influenced by rs8192917 (Q48R). Moreover, it found that R48-GzmB is a stable protein that accumulates to similar levels in activated NK cells as Q48-GzmB. The rs8192917 polymorphism may influence antitumor activity and the effect of antitumor cellular immunotherapy. Our study helps to provide a clearer understanding of the linkage disequilibrium among coding SNPs of the \textit{GZMB} gene. The authors expect that these new informations about QPY/RAH polymorphism of the \textit{GZMB} gene could help to assess the impact of NK cell cytotoxicity in several pathologies and aid their treatment.