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We propose a scheme for the resonant generation of counter-polarized single photons in double asymmetric
cavities with a small Kerr optical nonlinearity (as that created by a semiconductor quantum well) compared to
the mode broadening. Due to the interplay between spatial intercavity tunneling and polarization coupling, by
weakly exciting with circularly polarized light one of the cavities, we predict strong antibunching of counter-
polarized light emission from the non-pumped auxiliary cavity. This scheme due to quantum interference is
robust against surface scattering of pumping light, which can be suppressed both by spatial and polarization
filters.

Single photons play an essential role in quantum in-
formation technologies and their generation is a fasci-
nating subject in the fields of quantum optics and con-
densed matter physics. As deterministic (on-demand)
sources of single photons, single semiconductor quan-
tum dots embedded in optical microcavities have been
investigated with impressive results in the case of non-
resonant excitation.1–6 However, if one wishes to build
an array of single-photon emitters with intentional pat-
tern on the same wafer, the completely random position
of self-organized quantum dots is by definition a kind of
limitation. In the case of non-resonant generation, the
repetition rate of the single-photon source is limited by
the relatively slow relaxation time of the injected carriers
in the semiconductor device. For higher repetition rates
and freedom in array design, the resonant photon block-
ade in photonic pillars including a Kerr medium has been
proposed, where the nonlinear medium is a simple semi-
conductor quantum well,7 which can be patterned with
great flexibility. Unfortunately, the non-trivial difficulty
of such approach is that the strength of the Kerr nonlin-
earity must be much larger than the mode broadening,
thus requiring in practice the use of ultrasmall photonic
resonators with very high quality factors.
In a recent letter,8 it has been proved that by using

two coupled pillars (a double cavity system or photonic
‘molecule’) it is possible to get very pure single-photon
emission with a nonlinearity surprisingly small with re-
spect to the losses. As analytically shown in Ref. 9,
the antibunching originates from the destructive quan-
tum interference between excitation and tunneling paths
of photons. However, a practical hurdle still remains:
in the proposed scheme,8,9 single photons are emitted
from the excited cavity with the same polarization of the
pump. Hence, spurious effects as pump surface scatter-
ing could mask such an effect. In the present paper, we
propose another scheme based on the generalization of
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FIG. 1. (a) Sketch of the system consisting of two coupled
micropillars: due to the shape anisotropy, the photon eigen-
modes have orthogonal linear polarizations. The mode with
ξ polarization in pillar j is denoted as jξ, and the energy
levels for the single photon states in each pillar are depicted.
By illuminating circularly polarized light on pillar A, counter-
polarized single photons are emitted from pillar B even with
a small nonlinearity. (b) The equal-time second-order cor-

relation functions {g
(2)
jξjξ(τ = 0)} are plotted as functions of

nonlinearity U normalized to broadening γ. The tunneling
strength is J = 5γ, the polarization splitting is ∆ = 2.5γ, and
the pump frequency is tuned as δE = E − ~ωp = 0.2772γ. In
addition to the antibunching of the pumped mode A+, nearly
perfect antibunching is obtained in mode B− with the rela-
tively small nonlinearity U = 0.0438γ.

the photonic molecule approach by taking advantage of
the polarization degree of freedom in asymmetric cavities
having a frequency splitting between modes with orthog-
onal linear polarizations. We show how to get counter-
polarized single-photons from the non-pumped auxiliary
cavity, thus providing a way to get rid of the pump spuri-
ous scattering by both spatial and polarization filtering.

As a realistic system, we consider two spatially
separated semiconductor micropillars with asymmetric
shape,10 coupled with a photonic tunneling strength J .
Each pillar has two different linearly polarized photonic
modes (x and y directions), energetically split by 2∆ due
to the shape anisotropy. Fig. 1(a) shows a sketch of con-
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sidered system. The Hamiltonian is represented as

Ĥ =
∑

j={A,B}

[

(E +∆)â†jxâjx + (E −∆)â†jy âjy

]

+
∑

ξ={x,y}

J(â†AξâBξ +H.c.) + (F e−iωptâ†A+ +H.c.)

+
∑

j={A,B},ξ={+,−}

Uâ†jξ â
†
jξ âjξ âjξ. (1)

Here, âjξ is the annihilation operator of a photon with
polarization ξ in pillar j. The relation between circularly
and linearly polarized modes is given by the standard op-
erator expression âj± = (âjx±iâjy)/

√
2. We consider the

configuration where pillar A is pumped with σ+-circular
polarization, being ωp and F the pump frequency and
amplitude respectively. The pumping strength is mod-
erate to guarantee the average number of photons in
the system not exceeding unity. If the average num-
ber is increased, antibunching is worsened, because the
quantum interference in the present scheme is valid if
three-photon subspace can be neglected, as in the pre-
viously considered scenario.8,9 The nonlinearity is repre-
sented by the last term in Eq. (1) conserving the total
spin of two photons. The effective nonlinearity can be
mediated by the presence of a quantum well excitonic
resonance,11 but this effective Kerr term is quite gen-
eral for systems with a third-order nonlinearity. The

cross-polarized term such as Ucrossâ
†
j+â

†
j−âj−âj+ is not

considered in the present paper, because Ucross is usu-
ally much smaller than U ,12 but it could be added with-
out qualitative changes (not shown). By using the the-
oretical method detailed in Ref. 7, we have numerically

calculated second-order correlation functions g
(2)
jξj′ξ′(τ) =

〈â†jξ â
†
j′ξ′(τ)âj′ξ′(τ)âjξ〉/〈â

†
jξ âjξ〉〈â

†
j′ξ′ âj′ξ′〉 at the steady

state under continuous pumping and a dissipation of pho-
tons with a rate γ/~ in each mode.

In Fig. 1(b), we plot equal-time correlations {g(2)jξjξ(τ =

0)} as a function of nonlinearity U normalized to γ.
We consider the tunneling strength J = 5γ, polariza-
tion splitting ∆ = 2.5γ, and pump detuning δE =
E − ~ωp = 0.2772γ. In addition to antibunching at
the pumped mode A+ due to the previously proposed
scheme8,9 strong antibunching is achieved for mode B−
with the (small) optimal nonlinearity U = 0.0438γ. In

the weak pumping limit, g
(2)
B−B−(τ = 0) is reduced to

zero. The underlying destructive quantum interference is
different from the previous one in Refs. 8 and 9. By de-
riving the equations of motions for the amplitudes of the
possible Fock states for the zero-, one- and two-photon
states (generalizing the method in Ref. 9) we have de-
rived the optimal conditions of the counter-polarized an-
tibunching and found the interference paths leading to
the antibunching in mode B−. In Fig. 2(a), the zero-
, one-, and two-photon state manifolds are depicted and
labeled as |0〉, |jξ〉, and |jξ, j′ξ′〉, respectively. The paths
responsible to antibunching in mode |B−, B−〉 are the J-
assisted (spatial tunneling) path from |A−, B−〉 and the

FIG. 2. (a) Sketch of all the transition paths between zero-
photon |0〉, one-photon |jξ〉, and two-photon states |jξ, j′ξ′〉.
The antibunching of mode B− is due to the destructive quan-
tum interference between the two paths from |A−, B−〉 and
|B+, B−〉 to |B−, B−〉. (b) Pictorial representation. If there
is already a “−” photon in pillar B, another “−” photon can-
not exists in the same pillar because of the interference be-
tween the J-assisted (spatial tunneling) path from “−” pho-
ton in pillar A and the∆-assisted (polarization coupling) path
from “+” photon in pillar B. This quantum interference oc-
curs for an optimal value of the nonlinearity and laser detun-
ing.

∆-assisted (polarization coupling) one from |B+, B−〉:
destructive interference occurs for an optimal value of
the nonlinearity U , which is much smaller than the in-
verse of the cavity lifetime. Fig. 2(b) shows a pictorial
interpretation. In presence of “−”-photon in cavity B,
another photon cannot enter the same pillar due to the
quantum interference. The presence of a cross-polarized
nonlinear term Ucross would not change this picture (not
shown) and it does not create a new path to |B−, B−〉.
Furthermore, while identical pillars are supposed in the
reported calculation, we have numerically checked that
nearly perfect antibunching in mode B− can be obtained
even under a deviation of the order of γ on eigen frequen-
cies E and splitting ∆ between the two pillars, and also
tunneling strength J between two polarizations, while
the pumping frequency ωp should be properly tuned.

From the equations of motions of up to the two-photon
Fock states, we have calculated the optimal nonlinearity
Uopt for the perfect antibunching under the weak pump-
ing limit. Fig. 3(a) shows Uopt as a function of ∆/γ,
and Fig. 3(b) represents the ratio between the average

photon number nB− = 〈â†B−âB−〉 in mode B− and the

total number ntotal =
∑

j,ξ〈â
†
jξ âjξ〉 for the correspond-

ing Uopt. The minimum nonlinearity that is required for
the antibunching is decreased by the increase of J , and
the required nonlinearity is decreased together with the
splitting∆ (or the opposite behavior when J < ∆). How-
ever, together with the decrease of Uopt, the occupation
probability of mode B− is significantly decreased as seen
in Fig. 3(b). For Uopt < 0.1γ, the curve in Fig. 3(b) is
almost saturated at J = 5γ, and we can obtain a proba-
bility nB−/ntotal ∼ 10−2, which corresponds to a gener-
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FIG. 3. (a) Optimal nonlinearities Uopt are plotted as a func-
tion of ∆/γ for tunneling strengths J/γ = 2, 3, and 5. (b)
Under the optimal conditions, the ratios between the average
number nB− of photons in mode B− and the number ntotal

in the total system are plotted for corresponding Uopt/γ. (c)

The obtainable g
(2)
B−B−

(τ = 0) are plotted versus the dephas-
ing rate Γ normalized to γ. The tunneling strength is J = 5γ,
energy splitting ∆ and pumping frequency are chosen to give
the nearly perfect antibunching for each nonlinearity U in the
absence of pure dephasing.

ation rate of the order of 100 MHz for a cavity lifetime
in the picosecond rage. This rate is higher than that of
the quantum dots1–6 by one order of magnitude.

Finally, we have examined the robustness of the
present scheme against dephasing of photons. Since
quantum interferences are responsible in the present and
previous schemes,8,9 pure dephasing can decrease the
quality of the antibunching. By using the standard
pure dephasing model due to quadratic coupling with
a reservoir,13 we consider dephasing with a rate Γ/~ af-
fecting linearly polarized modes of each pillar (the re-
sults shown below are not significantly modified even if
the dephasing is supposed to affect the circularly polar-

ized modes). Fig. 3(c) shows g
(2)
B−B−(τ = 0) as a func-

tion of Γ/γ. The tunneling strength is J = 5γ, and
the splitting ∆ is chosen to give perfect antibunching
for each nonlinearity U in the absence of the dephasing.
As clearly shown, the antibunching can be significantly

worsened in presence of pure dephasing for a given value
of the nonlinearity. However, even if the nonlinearity
is quite small, for example U = 0.05γ, antibunching is
still observable if Γ = 10−2γ and becomes very strong if
Γ = 10−3γ. The curves in Fig. 3(c) does not strongly
depend on the tunneling strength J if the nonlinearity U
is large enough compared to the corresponding minimum
shown in Fig. 3(a). Since the optimal nonlinearity can
be weak in the present scheme, one can consider cavities
with relatively small photon lifetime (small quality fac-
tor) in a regime where the pure dephasing time can be
thus neglected, a very promising outlook.
In conclusion, we have proposed a scheme of single-

photon generation due to a destructive quantum interfer-
ence effect in a weakly nonlinear double cavity system,
where each cavity have two linearly polarized, frequency-
split modes. Due to the spatial tunneling between the
two cavities and the coupling between opposite circular
polarizations, we have found that strong antibunching of
counter-polarized emission can be obtained at the non-
pumped auxiliary pillar. This new effect is of practical
implications, because it provides a direct way to suppress
the pump scattering via spatial and polarization filters.
This scheme can also exported to arrays of nonlinear pho-
tonic molecules.
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