数値流体解析による橋梁基本断面の耐風安定性の評価

Evaluation of Stability of Basic Bridge Deck Cross Section in Uniform Wind

野田 博 中山 昭彦 杉山 裕樹 金治 英貞 佐藤 彰紀
Hiroshi Noda Akihiko Nakayama Hiroki Sugiyama Hidesada Kanaji Akinori Sato

1. はじめに

計算法の性能の向上と数値解析法、乱流シミュレーション法の発達により、従来風洞実験あるいは現場観測などにより調査されてきた橋梁の耐風特性が数値流体計算（CFD）にて予測できる可能性が出てきている。航空機や自動車の空力特性のCFDによる予測は進んでおり、設計開発コストの低減に活用されている。しかし橋梁は付加物の多い複雑な形状のスケールの大きい構造物でその動的耐風特性の全てを精度よく数値モデルで予測することは困難である。しかし、基本的な断面の静的あるいは2次元的な特性や、基本設計からの相対変化、支持手法や付加物の効果、など補助的基礎情報は汎用計算機にて得ることが可能になりつつあると言える（例えば参考文献1）。また計算機、計算モデルは日進月歩改良されているので、今でも非常によく近い将来数値解析が橋梁の設計に重要な要素になることは間違いないと考える。そこで現在使用可能な計算機環境で、最新の流体計算手法を用いた橋梁モデル周りの流れ場の計算を行い、耐風設計への応用のための精度・信頼性を検証する。

数値流体計算手法は様々な応用で開発され、市販汎用ソフト、公開（Open Source）コードも信頼性が向上し、実務に応用されつつある（例えば参考文献2）。しかし橋梁耐風特性に特化した市販汎用ソフトはなく、Open Sourceコードは使用上により修正・変更可能であるが、開発者は固有の手法を依存し、自前で修正する必要があると感じる。検証も必要になる。

建設工学研究所、神戸大学では従来から柱状基本物体やトラス構造の空力特性、振動特性の解析のための数値計算法、乱流モデルの開発に力を入れ、独自のコードを作成し実際の橋梁に適用する前段階まで進歩している。本論文では、これらのなかで直交格子を基にしたLarge Eddy Simulation (LES)手法を構築耐風設計に用いるよう完成させることを目指す。LES法は、普遍性の保証されない乱流モデルを用いるのではなく、個々の流れの計算で解像可能な流れの変動・乱れを、その運動方程式を解くことにより直接再現し、解像能が高く、より普遍性のあるスケール運動にのみモデルを適用する手法で（例えば参考文献5）、従来のレイノルズ平均（RANS）手法に比べ汎用性が高く、特に流体振・フラッターなど動的特性の評価に優れている。しかし力学特性に影響する非定常3次元運動の詳細を捉えなくてもならないので、計算格子を細かくとらなければならず計算量が多くなる欠点がある。また小スケール運動が重要となる場合の流れをモデル化する必要があり、モデルと数値解法を併せて検証する必要がある。

本研究では上述のLES法をバネとダンバーで支持された橋梁桁断面の周りの流れに適用し、一様風中の桁の空力特性を予測する手法を作成し、その性能を実験などと比較することにより検証する。さらに風洞振動やフラッター特性などがどの程度に再現できるかを調べるが本報では基本的な静止橋梁モデルの空力特性の検証からはじめ、後に事例のたとえによる動的振動特性の再現性に注目する。
2. 基礎式

2.1 流れの運動方程式および境界条件

空力振動する物体まわりの流れを数値解析とくに有限差分法で解く場合、絶対静止座標上の計算格子点で静止座標系の流速、圧力を解くオイラーテンソルと、振動する物体に固定された座標系で解く方法、またこれらの組み合わせのALE（Arbitrary Lagrangian Eulerian）法などがある。静止座標を用いる場合、物体境界が移動するため正確な物体境界条件の設定にはImmersed Boundary法などが必要になる。ここでは物体表面上境界条件を、物体運動に関係なく容易に組み込む物体に固定された座標系を用いる。

図-1に静止座標x_iと物体に固定した移動回転座標$	ilde{x}_j$、およびそれぞれの座標での流速と境界条件の関係を示す。$x_i(=x)$は静止時の風方向、$x_j(=y)$は流れ上方向、x_jは移動方向で本解析では橋桁断面一部を扱うので水平方向と仮定する。\tilde{x}_jはその原点が静止座標上の位置$r_0(t)$で、x_j軸周りに$\theta(t)$（図-1の反時計方向を正）回転したものとすると、これらの座標の関係は

$$x_i = r_0(t) + Q(t) \tilde{x}_j , \quad \tilde{x}_j = Q^T(t)(x_j - r_0(t))$$

で与えられる。ここで、$Q(t)$は次の成分の座標変換テンソルである。

$$Q(t) = \begin{bmatrix}
\cos \theta(t) & -\sin \theta(t) & 0 \\
\sin \theta(t) & \cos \theta(t) & 0 \\
0 & 0 & 1
\end{bmatrix}$$

静止座標系での速度ベクトル\tilde{u}_jと移動回転座標上での速度ベクトル\tilde{u}_iの関係は

$$\tilde{u}_i = Q(t)\tilde{u}_j + \frac{dQ(t)}{dt} \tilde{x}_j$$

である。

静止座標系と移動座標系での流体の運動方程式は慣性項のみが異なり、圧力、粘性項は変わらない。境界条件は物体表面および物体から離れた遠方位置での流速もそれぞれの座標から見た位置との相対流速で与えられることになる。またLESでは空間フィルタ平均量を計算するが、瞬時瞬時の空間フィルタ平均は座標の運動に依存しない。物体に固定された座標$	ilde{x}_j$上でのフィルタ平均流速ベクトル$	ilde{u}_j$とフィルタ平均圧力$p$についての運動方程式と連続の式は

図-1 静止座標と移動回転座標との関係

\[
\left(\frac{D\tilde{u}_i}{Dt} \right)_a = \frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} + \frac{d^2 r_i}{dt^2} + 2\varepsilon_{ijk}\omega_j\tilde{u}_k + \varepsilon_{ijk}\varepsilon_{ilm}\omega_j\omega_l r_{mk} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 \tilde{u}_i}{\partial x_i \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}
\]

(4)

\[
\frac{\partial \tilde{u}_i}{\partial x_i} = 0
\]

(5)

である。ここで \(D/Dt_a\) は絶対静止座標上実質微分、 \(a\) は回転角速度ベクトルで成分は \((0, 0, \omega z)\)、 \(\tau_{ij}\) はフィルタ平均により発生するサブグリッド応力成分、 \(\rho, \nu\) は空気の密度と動粘性係数、また \(\varepsilon_{ijk}\) は交差テンソルである。

サブグリッド応力 \(\tau_{ij}\) には Nakayama & Noda が用いられたものと同様、標準スモージタクスキー・モデルを用い、壁面近傍は Van Driest 型の減衰関数を適用する。壁面近傍は格子幅を小さくとり、粘着条件を用いる。

一様な風中の横断の場合、静止座標系での計算領域外側境界条件は、風上流入面 \((x_i = x_m)\) で \(x_j\) 方向に一定風速 \(V_m\)、術の上方、下方の境界面 \((x_2 = y_{up}, y_{do})\) では風方向に抵抗ゼロのスリップ面、風下面で放射流出である。すなわち

\[
x_1 = x_{in} \quad \overline{u}_1 = V_{in}, \overline{u}_2 = \overline{u}_3 = 0
\]

(6)

\[
x_2 = y_{up}, x_3 = y_{do} \quad \overline{u}_2 = 0, \quad \frac{\partial \overline{u}_1}{\partial x_2} = \frac{\partial \overline{u}_3}{\partial x_2} = 0
\]

(7)

\[
x_1 = x_{out} \quad \frac{\partial \overline{u}_1}{\partial t} + U_j \frac{\partial \overline{u}_i}{\partial x_j} = 0, \quad U_1 = V_{in}, U_2 = U_3 = 0
\]

(8)

である。移動・回転座標上では流入条件(6)式は

\[
\tilde{u}_1 = V_{in} \cos \theta - \frac{d r_{o1}}{dt} \cos \theta - \frac{d r_{o2}}{dt} \sin \theta + a \tilde{x}_2
\]

(9)

\[
\tilde{u}_2 = -V_{in} \sin \theta + \frac{d r_{o1}}{dt} \sin \theta - \frac{d r_{o2}}{dt} \cos \theta - a \tilde{x}_1
\]

(10)

\[
\tilde{u}_3 = -\frac{d r_{o3}}{dt}
\]

(11)

となる。上下端境界条件 (式(7)) は、 \(\tilde{x}_2 = \tilde{y}_{up}, \tilde{x}_3 = \tilde{y}_{do}\)

\[
-\tilde{u}_1 \sin \theta + \tilde{u}_2 \cos \theta + \frac{d r_{o2}}{dt} \sin \theta + a \tilde{x}_1 = 0
\]

(12)

\[
-\frac{\partial \tilde{u}_1}{\partial x_1} \sin \theta + \frac{\partial \tilde{u}_1}{\partial x_2} \cos \theta \cos \theta + \left(\frac{\partial \tilde{u}_2}{\partial x_1} \sin \theta + \frac{\partial \tilde{u}_2}{\partial x_2} \cos \theta \right) \sin \theta - \omega \cos \theta = 0
\]

(13)

\[
\frac{\partial \tilde{u}_1}{\partial x_2} = 0
\]

(14)

である。さらに下流端条件(8)は

\[
\frac{\partial}{\partial t} \left(Q_y \tilde{u}_j + \frac{d Q_{y1}}{dt} \tilde{z} \right) + U_j \frac{\partial}{\partial x_1} \left(Q_y \tilde{u}_j + \frac{d Q_{y1}}{dt} \tilde{z} \right) = 0, \quad x_1 = r_{o1} + \tilde{x}_1 = x_{out}
\]

(15)

となる。

\(\tilde{x}_1(= \tilde{z} = z)\) 方向境界は、計算領域と同じ流れ場が繰り返し合うとし、周期境界条件、すなわち流速圧力も手前の面と奥の面で瞬時値が等しいとする。物体表面は滑面とし、境界条件は、物体に固定された移動座標では流速は速度ゼロの粘着条件である。
2.2 物体の運動方程式

本解析では、長大傾斜橋の代表的部の橋軸に直交な面内の運動を対象とする。計算対象部は剛体で近似出来、計算対象以外の部分及び浮力支持は変形するが、対象部をパネとダンバーで支持しているものと解釈する。流れは次元流で、桁断面も正確には3次元形状であるが橋軸方向に対称で、同一基本区間が幾つも続いているうちに一区間に解析対象としているので、計算対象断面に働く力と運動は桁断面を含む面内の平面的なものとする。これは長大橋梁の一部が風荷重によりたわみとねじれ変形を起こす場合の近似である。時間 \(t \) での、解析対象断面の風方向、鉛直方向の変位を \(x(t), y(t), \) 回転角を \(\theta(t) \) とすると、これらについての運動方程式は

\[
[M][\ddot{X}(t)] + [C][\dot{X}(t)] + [K][X(t)] = \{f(t)\}
\]

と書ける。ここで

\[
[X(t)] = \begin{bmatrix}
X(t) \\
y(t) \\
\theta(t)
\end{bmatrix}, \quad \{f(t)\} = \begin{bmatrix}
f_x(t) \\
f_y(t) \\
f_{\theta}(t)
\end{bmatrix}, \quad \{\dot{X}(t)\} = \begin{bmatrix}
\dot{X}(t) \\
\dot{y}(t) \\
\dot{\theta}(t)
\end{bmatrix}, \quad \{\ddot{X}(t)\} = \begin{bmatrix}
\ddot{X}(t) \\
\ddot{y}(t) \\
\ddot{\theta}(t)
\end{bmatrix}
\]

で、\(f_x, f_y, f_{\theta} \) はそれぞれ、\(x, y \) 方向の風力とピッチングモーメント、\(m, l \) は質量および慣性モーメント、\(s_x, s_y \) は基準軸から重心までの距離、\(e_x, e_y \) は基準軸から剛心までの距離、\(C_x, C_y, C_{\theta} \) はそれぞれ、\(x, y \) 方向、ねじれ方向の減衰係数でそれぞれの方向の速度にのみ依存すると仮定、\(K_x, K_y, K_{\theta} \) はそれぞれ、\(x, y \) 方向、ねじれ方向の剛性である。以下の計算では \(s_x = s_y = e_x = e_y = 0 \) としているので、\(x, y \) 方向、ねじれ方向の振動は独立に計算している。

3. 計算手法

流れの数値計算法は非等間隔直交格子上で HSMAC 法に準じた方法を、まず運動方程式(4)を陰的に差分化し、時間進行させ流速の予測値をもとめる。次にその差分値が連続の式(5)を満たすように、二階と速度成分を反復修正して行う方法である。計算格子は必要限度の道に粗、ただし前進法には3次精度風側差分、時間積分は3次精度 Adams-Bashforth 法を用いている。

物体の運動方程式は Newmark-β法で差分化して解く。すなわち上付き \(n \) で、間隔 \(\Delta t \) で送る時刻ステップ \(t_n \) での値を表すと、

\[
\dddot{X}_{n+1} = f_{\Delta t} - C \left(\dddot{X}_n + \frac{1}{2} \dddot{X}_{n+1} \Delta t \right) - K \left(\dddot{X}_n + \dddot{X}_{n+1} \Delta t + (0.5 - \beta) \dddot{X}_n \Delta t^2 \right)
\]

\[
\frac{m}{1 + 2C\Delta t + \beta K \Delta t} \Delta t
\]

\[
\dddot{X}_n = \dddot{X}_n + \frac{1}{2} (\dddot{X}_{n+1} + \dddot{X}_n) \Delta t
\]

\[
X_{n+1} = X_n + \dddot{X}_n \Delta t + (0.5 - \beta) \dddot{X}_n \Delta t^2 + \beta \dddot{X}_{n+1} \Delta t^2
\]

の3ステップで計算する。なお \(\beta = 1/4 \) の場合平均加速度法、\(\beta = 1/6 \) の場合線形加速度法である。
4. 解析対象断面と解析条件

解析は張出板、高欄など付加物のない基本断面と張出板および高欄のある場合について行われた。図-2にこれらの断面図を示す。図-2(a)が付加物のない基本断面、図-2(b)が床版天端を延長した張出板と高欄平付きである。スケールは風洞模型スケールで、基本断面幅員 \(B = 34.75 \) cm、桁高さ \(H = 3.4 \) cm、張出長さ \(0.625 \) cmある。各図の左半分は床板と1桁を、右半分は横桁のある断面を示す。厚さ1.13cmの床板を横桁が支え、その桁を2本の橋軸方向I型が支える構造である。横桁は橋軸方向に19.2cmピッチで設置されているので、数値解析には横桁を中心にスパン1=19.2cmの部分を対象とする。高欄は左右端と中央に高さ1.25cmの位置のレールと、間隔2.7cmで7本の柱からなる。

図-3 に直交座標系計算格子で表現されたそれぞれの形状を示す。格子数は \(x, y, z \) 方向に \(213 \times 135 \times 49 \) である。最小格子幅は横桁近傍で同方向に0.3, 0.15, 0.4cm、桁から離れるにつれ徐々に間隔が広がる不等間隔である。計算領域は横桁寄り風上に0.88、風下方向に1.88、上下方に0.58の領域をとっている。以前の研究より、トラス構造などの部材にかかる抵抗を精度よく算定するにはその断面を最低2x2の格子で解像することを勧めているが、本計算では断面幅を単一の格子で表している部分がある。最少格子幅は解析対称とする付加物の流れへの影響と、それにかかる風力を解像できる大きさで、ワークステーションレベルの計算機で扱える格子数に収まるよう決められた。

計算は \(x \) 軸に沿った一様な流れを流入面に仮定する。計算の初期も \(x \) 方向一様風からスタートする。桁の振動する場合は静止桁で計算を進めば定常に対応したところから振動計算を始める。固有振動周期は約1/3秒で、流れの混雑時間スケールに比べ非常に大きいので、流れ計算の各時間ステップ（以下の計算では、風速の変化場合でも1.0×10^{-4}sec）での振動計算は必要で、計算負荷は大きくないので、毎時間ステップ振動計算を行っている。

5. 解析結果と実験値との比較

計算はまず静止桁について流れの計算結果より、横桁モデルにかかる抗力、揚力、ピッチングモーメントの計算を行い、結果の妥当性を確認した上でその動きが振動する桁についての計算を行う。条件は本桁モデルに相当する模型について
5.1 流れ場と静的空力特性

図4に近似風速$V_a=5m/s$の場合の、瞬時流れ場を流速ベクトルと等圧線で示す。双方とも計算法領域全体で一様な流れ場の初期条件を計算をはじめ、平均的に流入面から流入した空気が流出面から流れ出す時間を経過した後ものである。図は模様のある断面よりやや手前の鉛直面での分布である。図4（a）の基本断面ケースでは主に1桁により生じる乱れと風上側前線からの剓離流れによる乱れが見られる。風上側の1桁により剓離した流れは風下側の桁にあたる前に桁下面に再付着しており、風下側の桁下流の剓離域は風上側よりも小さくなっている。付加物ありの場合、高欄の影響で桁上方にも乱れが生じ、後流幅がやや広くなっている。これには定性的にではあるが何れも妥当な結果とされる。

上記の計算より得られた物体表面応力を積分して得られる抗力D、揚力Lおよび桁中央床面上面の点を中心とする回転モーメントMを求めた。図5は抗力係数$C_D (=D/(1/2 \rho V_a^2 W))$、揚力係数$C_L (=L/(1/2 \rho V_a^2 W))$、およびピッチングモーメント係数$C_M (=M/(1/2 \rho V_a^2 W^3))$の経時変化である。それぞれ時間変動は大きいが、角柱の場合C_DのRMS振動幅は平均値の約5%で本計算結果が似たような値である。付加物、高欄付きのケースは基本断面に比べ抵抗が大きく、揚力も下向きに大きくなっており、付加物の影響が大きい事を示している。張出板、高欄付きケースは風洞実験で調べられておりその時間平均値は図4-1に示されている。張出板、高欄付ケース結果はピッチングモーメントがやや大きいが、概して実験と良く合っている事が分かった。
5. 2. たわみ振動特性

計算方法は風方向、鉛直方向の振動およびねじれ振動の3自由度運動について解析可能であるが、一様風によるたわみによる鉛直上下振動を含め考慮するため、張出板のない基本断面について表-2に示す係数を使用して計算を行った。

表-2に示されているようにたわみ固有振動数が約2.66Hzであるので、計算ケースの3m/s, 5m/sおよび7m/sの無次元風速

\[U = U_0 \\frac{V}{V_0} \]

はそれぞれ33.2, 55.3, 77.4である。本計算は気象データに基づき十分な範囲と間隔の風速の計算を行っていないので、実際の風速、フラッターなどの発生条件は確認が必要である。表-3は3m/sから7m/sにかけて振動振幅が増加する傾向である。

図-7に示されるようにたわみ振動は、たわみ振動全振幅 \(A_t \) による風速による変化と本計算結果を併せて示す。十分な時間にわた
図-6 たわみ変位

図-7 たわみ振幅

計算結果で、本計算結果は実験値よりもやや低めであるが、傾向は一致している。今回は無次元速度 90 以上の高速不安定条件での計算結果は得られていないが、今後検討予定である。

6. 結論

パネとダンパーで支持された橋梁桁断面の周りの流れにラージ・エディー・シミュレーション（LES）を適用し、一様風中の橋桁の空力特性を予測する手法を作成し、その性能を実験などと比較することにより検証した。基本的静止橋
参考文献

著者

野田 博 近畿大学教授，博士（工学），風工学
中山 昭彦 所長，Ph.D.，流体工学，水理学
杉山 裕樹 阪神高速道路株式会社，修士（工学）構築工学
金治 英貞 阪神高速道路株式会社，博士（工学）構築工学
佐藤 彰紀 阪神高速道路株式会社，修士（工学）構築工学