Arachidonate Cascade in the Intensive Insulin Therapy for Critically Ill Patients with Sepsis: Roles of Prostaglandins on Hyperglycemia-Impaired Immunity

Tatsurou Yagami*, Yasuhiro Yamamoto, Hiromi Kohma and Kenkichi Takase

Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 2-1, kami-ohno 7-Chome, Himeji, Hyogo, 670-8524, Japan

Received January 11, 2012: Revised February 07, 2012: Accepted February 07, 2012

Abstract: Intensive insulin therapy to control blood glucose level increases survival among critically ill patients in intensive care unit and hospital. Hyperglycemia is potentially harmful because it acts as a procoagulant, induces insulin resistance, causes apoptosis, impairs neutrophil function, increases the infection rate and is associated with the risk of morbidity and mortality. Hyperglycemia and insulin resistance are virtually universally in sepsis, which is the leading cause of death in critically ill patients. Initially, sepsis is characterized by a hyper-inflammatory response; but as sepsis persists, there is a shift toward an anti-inflammatory immunosuppressive state. The intensive insulin therapy also reduces the infection rate and the mortality in septic patients. Arachidonate cascade is one of the factors associated with hyperglycemia, sepsis and infection. The cascade is involved in the upregulation of proinflammatory cytokines and the dysfunction of immune cells. Especially, we focused on prostaglandin D2 (PGD2), which is produced from innate and adaptive immune cells. PGD2 is non-enzymatically metabolized to 15-deoxy-Δ12,14-PGJ2, (15d-PGJ2). 15d-PGJ2 is an endogenous ligand for the nuclear receptor, peroxisome proliferators-activated receptor γ (PPARγ) and induces apoptosis in the both immune cells. This review presents plausible roles of arachidonate cascade in hyperglycemia-impaired immunity. Furthermore, we shed light on therapeutic potentials of PPARγ ligands for critically ill patients under the insulin resistant state.

Keywords: Arachidonate cascade, 15-deoxy-Δ12,14-Prostaglandin J2, intensive insulin therapy, peroxisome proliferators-activated receptor γ, insulin resistance, thiazolidine.

INTRODUCTION

In 2001, a landmark paper was published. Van den Berghe et al. reported that intensive insulin therapy to control blood glucose level increases survival among critically ill patients in intensive care unit (ICU) and hospital [1]. Intensive insulin therapy does not only ameliorate the mortality by the prevention of hyperglycemia, but also does by the non-glycemic metabolic effects. The therapy partially corrects this lipid profile, which in multivariate logistic regression analysis explains a significant part of the reduced mortality and organ failure [2]. Intensive insulin therapy mitigates the cortisol response to critical illness, without altering cortisol-binding activity, which is also statistically related to improved outcome [3]. The administration of insulin resulted in lower pro-inflammatory cytokines and proteins and enhanced anti-inflammatory mediators in children with burn injury, but not a cohort of critically ill surgical patients [4]. Insulin has also shown to improve myocardial function and to protect the myocardium during endotoxic shock, acute myocardial infarction, open heart surgery and other critical conditions [5]. Endothelial dysfunction with excessive leukocyte adhesion and aggregation, in combination with accelerated intravascular coagulation and thrombosis, limits perfusion in the microcirculatory blood vessels. This results in cellular hypoxia, which can culminate in organ failure and death [6]. Therefore, prevention of endothelial dysfunction may contribute to the protective effects of insulin therapy on organ failure and death in critical illness in general and in sepsis in particular [7]. Intensive insulin therapy reduced endothelial activation, as reflected in lower levels of adhesion molecules. Conversely, intensive insulin therapy reduced the levels of asymmetric dimethylarginine [8], an endogenous inhibitor of NOS activity, which competes with cellular transport of its substrate arginine and thus interferes with NO production. The modulation of this arginine derivative by insulin is associated with a better outcome, probably mediated by reducing the inhibition of the constitutively expressed endothelial NOS [9], contributing to preservation of organ blood flow.

Hyperglycemia is common in critically ill patients, even if they have not previously had diabetes. Hyperglycemia exerts different effects on the early events of the innate immune response with interactions between leukocytes and vascular endothelium (Fig. 1). The adhesion of monocytes and neutrophils to the endothelium is mediated by integrin receptors. Hyperglycemia is correlated with increased plasma concentrations of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) [10]. Chemotaxis [11] and phagocytosis [12] of neutrophil are impaired during hyperglycemia. Plasma levels of proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) [13] and interleukin-1β (IL-1β) [14] are increased during acute hyperglycemia.
Furthermore, the incidence of septic patients with infection organ failure without detectable septic focus and severe brain failure in the multiple sepsis (Fig. 1). Hyperglycemia and sepsis. Hyperglycemia and sepsis present common symptoms, hyperinflammation and immunosupression. In hyperinflammation, proinflammatory cytokines e.g. interleukin-1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNFα), are up-regulated. Arachidonate cascade are enhanced. In immunosuppressive state, adhesion ligands e.g. intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are upregulated. Chemotactic and phagocytotic activities are suppressed in neutrophils, leading to the impairment in bactericidal capacity. Increased risk of infection, morbidity and mortality are declined by intensive insulin therapy, but not by proinflammatory cytokines-specific therapies.

In ICU, multiple-organ failure with proven-septic focus is the first cause of death [1]. Sepsis represents an over-exuberant inflammatory response in which unbridled cytokine-mediated host defense mechanisms induce significant cell and organ injury. However, numerous clinical trials of cytokine or anti-inflammatory-specific agents, for example, TNF-α and IL-1β-specific therapies, either failed to improve survival in patients with sepsis or, in some cases, exacerbated the condition (Fig. 1). These failures led to a reassessment of the concept that death in sepsis is due to a hyper-inflammatory response [15]. Indeed, clinically relevant animal models of sepsis, as well as studies of patients with sepsis, showed that the initial hyper-inflammatory response in sepsis is quickly followed by the development of a sustained anti-inflammatory or immunosuppressive state [16]. Most patients with sepsis will survive in the initial few days and develop a protracted hypo-inflammatory, immunosuppressive state that is manifested by an inability to eradicate the primary infection and/or the development of new secondary infections. The fact that many of the pathogens responsible for the secondary, hospital-acquired infections are not particularly virulent in patients with normal, competent immune systems which highlights the immunosuppressed state of patients with sepsis (Fig. 1).

Intensive insulin therapy reduces the largest number of death in the multiple-organ failure with detectable septic focus. The therapy does also reduce mortalities in multiple-organ failure without detectable septic focus and severe brain damage, but not in acute cardiovascular collapse. Furthermore, the incidence of septic patients with infection is reduced by intensive insulin treatment [1]. Arachidonate cascade is one of factors associated with hyperglycemia, sepsis and infection. Furthermore, the cascade is involved in the up-regulation of proinflammatory cytokines and adhesion ligands and the dysfunction of immune cells. In this review, we presented pathological roles of arachidonate cascade in critically ill patients with sepsis, and focused on the plausible involvement of prostaglandins in hyperglycemia-impaired immunity.

ARACHIDONATE CASCADE

In the arachidonate cascade, several enzymes including phospholipase A₂ (PLA₂), cyclooxygenase (COX) and lipooxygenase (LOX) are involved (Fig. 2). PLA₂ belongs to a family of enzymes (EC3.1.1.4.) that catalyze the cleavage of fatty acids from the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids [17]. PLA₂S participate in a wide variety of physiological processes, including phospholipid digestion, remodeling of cell membranes and host defense. They also take part in other processes by producing precursors of various types of biologically active lipid mediators, such as prostaglandins (PGs), leukotrienes (LTs), thromboxanes (TXs) and platelet-activating factor. In the mammalian system, more than 20 different isoforms of PLA₂ have been identified, and different PLA₂S have been shown to participate in pathophysiological events related to cell injury, inflammation, and apoptosis [17,18]. According to their

Fig. (1). Hyperglycemia and sepsis. Hyperglycemia and sepsis present common symptoms, hyperinflammation and immunosupression. In hyperinflammation, proinflammatory cytokines e.g. interleukin-1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNFα), are up-regulated. Arachidonate cascade are enhanced. In immunosuppressive state, adhesion ligands e.g. intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are upregulated. Chemotactic and phagocytotic activities are suppressed in neutrophils, leading to the impairment in bactericidal capacity. Increased risk of infection, morbidity and mortality are declined by intensive insulin therapy, but not by proinflammatory cytokines-specific therapies.

Fig. (2). Arachidonate cascade. Phospholipase A₂ liberates free fatty acids such as arachidonic acid from the sn-2 position of glycerophospholipids. Arachidonic acid is metabolized by cyclooxygenase to prostaglandin H₂ (PGH₂), which is metabolized to PGD₂, PGF₂α, PGF₂, and thromboxanes (TXA₂) by corresponding PG synthases and TXA₂ synthase, respectively. PGD₂ is non-enzymatically metabolized to cyclopentenone PGs such as PGJ₃, L₃-PGJ₂, and 15d-PGJ₂. Arachidonic acid is also metabolized by monooxygenase to hydroxyeicosatetraenoic acids (HEPTEs) and hydroxyeicosatetraenoic acids (HEPTEs), by 5-lipoxygenase to leukotrienes (LTB₄, LTC₄, LTD₄), by 12-lipoxygenase to 12-HEPTEs and 12-HETEs and by 5-lipoxygenase to lipoxins (LXA₄, LXB₄), respectively. Proteins enclosed in square are enzymes.
biochemical features such as cellular localization, requirement of Ca\(^{2+}\), substrate specificity and the primary structure, these PLA\(_2\)s are classified into several families, including low molecular weight secretory PLA\(_2\) (sPLA\(_2\)), Ca\(^{2+}\)-sensitive arachidonoyl-specific 85-kDa cytosolic PLA\(_2\) (cPLA\(_2\)), Ca\(^{2+}\)-independent PLA\(_2\) (iPLA\(_2\)), and platelet-activating factor -acyetylhydrolase. In the mammalian, sPLA\(_2\) (IB, IIA, IIC, IID, IIE, V, X and XII), cPLA\(_2\) (IVA, IVB, IVC, IVD and IVE), iPLA\(_2\) (VIA and VIB) and platelet-activating factor -acyetylhydrolase (VIIA, VIIB, VIIIA and VIIIB) have been detected [19] (Table 1).

Secreted PLA\(_2\)s

Secretory PLA\(_2\)-IIA is found in many cells and tissues and its expression is modulated by various inflammatory cytokines (Fig. 3), such as IL-1\(\beta\) and TNF-\(\alpha\) [20]. Serum sPLA\(_2\) levels are elevated in critically ill patients, particularly in those with sepsis [21]. Higher levels of sPLA\(_2\) have been reported in septic patients who died compared with those who survived [22]. PLA\(_2\) may mediate some of the clinical features of septic shock, as parenteral administration of purified exogenous sPLA\(_2\) produces hypotension in experimental models, and sPLA\(_2\) levels have been found to correlate directly with the magnitude and duration of circulatory collapse [23]. Secretory PLA\(_2\) can interact with external cell membrane through direct binding to phospholipid or specific cell surface sPLA\(_2\) receptors (Fig. 3). The M-type sPLA\(_2\) receptors present on mast cell [24], skeletal muscle cell [25] and human neutrophils [26] belong to the superfamily of C-type lectins and bind with high affinity to the snake venom sPLA\(_2\) OS\(_1\) and OS\(_2\), sPLA\(_2\)-IB and rabbit and mouse sPLA\(_2\)-IIA, but not with bee venom sPLA\(_2\)-III and very weakly to human sPLA\(_2\)-IIA. The N-type sPLA\(_2\) receptors identified in rat brain have high affinity for OS\(_2\), sPLA\(_2\)-IB and bee venom sPLA\(_2\)-III. sPLA\(_2\)-IIA potentiates Ca\(^{2+}\) influx through L-type voltage-sensitive calcium channel [27] and induces apoptosis [28]. High-affinity binding sites of sPLA\(_2\)-IB exist on the plasma membrane [29]. Secretory PLA\(_2\)-IB also induces the excess influx of Ca\(^{2+}\) into cells via L-type voltage-sensitive calcium channel [30], and subsequently apoptosis [31].

Cytosolic PLA\(_2\)s

cPLA\(_2\) belongs to the group IV PLA\(_2\)s (Table 1). Although four isoforms, i.e., cPLA\(_2\)\(\alpha\), \(\beta\), \(\gamma\) and \(\delta\), have been identified. The 85 kDa cPLA\(_2\) has been studied most extensively. cPLA\(_2\) requires micromolar Ca\(^{2+}\) for activity;

Tables 1. Characterization of PLA\(_2\)

<table>
<thead>
<tr>
<th></th>
<th>sPLA(_2)</th>
<th>cPLA(_2)</th>
<th>iPLA(_2)</th>
<th>PAF-AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>IB, IIA, IIC,</td>
<td>IVA, IVB, IVC,</td>
<td>VIA, VIB</td>
<td>VIIB, VIIB</td>
</tr>
<tr>
<td></td>
<td>IID, IIE, IIF,</td>
<td>IVD, IVE, IVF</td>
<td></td>
<td>VIIB, VIIB</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>14kDa</td>
<td>85kDa</td>
<td>80kDa</td>
<td>50kDa</td>
</tr>
<tr>
<td>Localization</td>
<td>Extracellular</td>
<td>Cytosol</td>
<td>Cytosol</td>
<td>Extracellular</td>
</tr>
<tr>
<td>Calcium</td>
<td>Stimulated</td>
<td>Translocation</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Substrate</td>
<td>PtdCho</td>
<td>PtdCho</td>
<td>PtdCho</td>
<td>PAF</td>
</tr>
<tr>
<td>Fatty acid</td>
<td>None</td>
<td>AA</td>
<td>Linoleic acid</td>
<td>DHA, AA</td>
</tr>
</tbody>
</table>

however unlike sPLA₂, Ca²⁺ is necessary for binding ePLA₂ to membrane or phospholipids vesicles rather than for catalysis. An increase in intracellular Ca²⁺ concentration promotes binding of Ca²⁺ ions to the C2 domain and then allows ePLA₂ to translocate from the cytosol to the perinuclear region including the Golgi apparatus, endoplasmic reticulum and nuclear envelope [32,33]. Activation of ePLA₂ proceeds primarily through phosphorylation [14]. This protein is comprised of a C2 domain and multiple phosphorylation sites, including two consensus sites (Ser⁴⁰⁰ and Ser⁴⁰⁵) for phosphorylation by mitogen-activated protein kinases (MAPKs) [14] and a Ser⁵¹⁵ site for Ca²⁺/calmodulin-dependent protein kinase [34]. ePLA₂ is activated by calcium-dependent translocation of the enzyme from a cytosolic location to perinuclear membranes, and releases arachidonic acids (Fig. 3) [24-26]. ePLA₂ can also target other subcellular membranes, including mitochondrial and plasma membranes. Studies with neutrophils indicated a transient recruitment of ePLA₂ to the NADPH oxidase (NOX) complex in plasma membrane [35]. NOX is composed of the membrane-bound subunits gp91 phox (Nox2)/Nox1/Nox4 and p22 phox, and the catalytic site of the oxidase and cytosolic components p47 phox and p67 phox. Cytosolic PLA₂ specifically binds to p47 phox and that p47 phox is sufficient to anchor ePLA₂ to the assembled oxidase on the plasma membranes upon stimulation [36].

Ca²⁺-Independent PLA₂s

The iPLA₂ family is comprised of group VIA and VIIB (Table 1). Group VIA enzyme has at least five splice variants, all with ankyrin repeats, whereas group VIIB iPLA₂ lacks ankyrin repeats but consists of a signal motif for peroxisome localization. In normal rat brain, >70% of PLA₂ activity can be attributed to iPLA₂s. iPLA₂ is the dominant PLA₂ in the cytosolic fraction, and generally regarded as house keeping enzymes for the maintenance of membrane phospholipids [37]. iPLA₂ displays a substrate preference toward the fatty acid chain in the sn-2 position of phosphatidylethanolamine of linoleyl > palmitoyl > oleoyl > arachidonyl, and a head group preference for choline > ethanolamine > inositol.

Cyclooxygenase and Eicosanoids

COX is classified into three forms, a constitutive form, COX-1, a mitogen-inducible form, COX-2 and a variant of COX-1, COX-3 [38]. Once the arachidonic acid has been supplied, both isoforms of COX form PGH₂ via identical enzymatic processes (Fig. 2). Following these steps, PGH₂ can be metabolized by different enzyme pathways to a range of products with potent biological effects. The profile of products made by cells expressing COX-1/COX-3 or COX-2 is therefore determined by the presence of different downstream enzymes. Eicosanoids such as PGs and LTs are well characterized both in metabolic pathways and in signaling pathways through their respective cell surface G protein-coupled receptors [39-42]. Eicosanoids modulate cellular function during a variety of physiological and pathological processes [43]. Eicosanoids are divided into two groups according to their mechanism of action: the conventional eicosanoids, e.g., PGD₂ and PGE₂, the cyclopentenone-type PGs, e.g., PGJ₁ and PGJ₃, Δ¹²-PGJ₃, and 15-deoxy-Δ¹²,14-PGJ₂ (15d-PGJ₂) (Fig. 2) [44,45].

GLUCOSE TOXICITY

Oxidative Stress

Glucose toxicity, in its narrow sense, can indicate a clinical condition where control of diabetes in particular is poor since hyperglycemia itself reduces the insulin secretion capacity of pancreatic cells, and resultant increase in insulin resistance leads to further hyperglycemia. As shown in Fig. (4), oxidative stress is associated with the molecular mechanism of the decreased insulin biosynthesis and secretion, which is the main etiology of glucose toxicity [46]. High glucose produces reactive oxygen species (ROS), such as superoxides (O₂⁻), hydroxyl radicals (OH), peroxyl radicals (ROO•) or nitric oxide, through the activation of NADPH oxidase (NOX) [47]. On the other hand, it also decreases eNOS and Akt phosphorylation and bioavailable NO (Graphical Abstract) [48]. Hyperglycemia increases free fatty acids and various inflammatory cytokines e.g., IL-1β, IL-6 and TNF-α [49,50]. Free fatty acids and TNF-α are likely to be involved in the development of insulin resistance [51].

![Fig. (4). The increased oxidative stress in a hyperglycemic state. Hyperglycemia induces ROS through activation of the glycation reaction and electron transport chain in mitochondria. Also, advanced glycosylation end products (AGEs), insulin, and angiotensin II induce ROS through activation of NADPH oxidase (NOX). Increased ROS are involved in the development of atherosclerosis in various aspects. First, ROS decrease nitric oxide levels, which leads to endothelial cell dysfunction. Second, ROS increase expression of various adhesion molecules such as ICAM-1 and VCAM-1, which leads to inflammatory cell recruitment. Finally, ROS increase expression of inflammatory cytokines (IL-1β), IL-6 and TNF-α and activate various stress signaling such as JNK and Pim-1, which leads to the cell proliferation. Moreover, hyperglycemia activates Ca²⁺-dependent protein kinase (PKC) and PLA₂, liberates free fatty acids (FFAs) and generates PGs.](Image 335x270 to 573x448)
defects in immunity. Immunity can be divided into two systems, innate immunity and adaptive immunity. In the innate immunity, mast cells, dendritic cells, macrophage, natural killer cells, complement protein, and granulocytes including basophils and eosinophils, which contribute to this system (Table 2).

Innate immune recognition of pathogens is mediated mainly through the Toll-like receptors (TLRs) (Fig. 5), which are stimulated by different microbial stimuli [52]. Stimulation of TLRs increase eicosanoids [53], which are a class of lipid mediators involved in inflammatory as well as other physiological processes. LTC4 and PGD2 were generated in response to TLR2 agonists [54]. TLRs signal through a cytoplasmic TIR domain that associates with the adaptor protein MyD88, leading to stimulation of downstream kinases such as extracellular signal-regulated kinase and activation of cPLA2 [53]. Engagement of bacterial structures to cellular TLRs leads to the activation of the nuclear factor (NF)-κB signaling pathway [55]. NF-κB regulates the secretion of proinflammatory mediators (Fig. 5).

Specific cell populations of the innate immune system such as antigen presenting dendritic cells are critical in promoting primary T and B cells response and probably bridge the gap between innate and adaptive immunity. During the acute phase response, the release of cytokines including TNF-α, IL-1 and IL-6 from inflammatory and other cells leads to the expression of sPLA2-IIA and release of the enzyme into circulation [56]. An abnormally high value of serum PLA2 was observed in 18 of 30 patients (60%) at ICU [57]. Secretory PLA2-IIA is found in high

concentrations in the circulation of patients with acute pancreatitis and certain cancers and in the synovial fluid

| Tables 2. DP1, DP2 (CRTH2) and PPARγ |
|----------------|----------------|----------------|----------------|
| | PGs | DP1 | CRTH2 | PPARγ | 15d-PGJ2 (nM) | 15d-PGJ2 (µM) |
| Innate immune | | | | | | |
| cells | | | | | | |
| Mast cell | PGD2 | Detected | Not detected | Detected | | Apoptosis |
| Dendritic cell | PGD2 | Detected | Not detected | Detected | | Apoptosis |
| Macrophage | PGD2 | Not detected | Detected | Detected | | Apoptosis |
| Neutrophil | PGD2 | Detected | Detected | Detected | | Apoptosis |
| Eosinophil | PGD2 | Detected | Detected | Chemotaxis↓ | Priming | Apoptosis |
| Basophil | detected | Detected | Chemotaxis↓ | | | |
| Th2 cell | PGD2 | Detected | Chemotaxis↓ | Detected | | |
| B cell | | | | Proliferation | Antibody production |
| | | | | Apoptosis | |

Fig. (5). Receptors for PGD2 and 15d-PGJ2. PGD2 activates adenylate cyclase (AC) via DP1-the stimulatory GTP-binding protein (Gs) and inactivates it via DP2/CRTH2-inhibitory GTP-binding protein (Gi), respectively. Elevated level of intracellular cAMP stimulates cAMP-dependent protein kinase (PKA) and suppresses chemotaxis. 15d-PGJ2 also activates phospholipase C (PLC) via DP2/CRTH2-Gi. PLC produces inositol triphosphate (IP3) and releases calcium from endoplasmic reticulum to cytosol. Elevated level of intracellular Ca2+ activates Ca2+-dependent protein kinase (PKC) and stimulates chemotaxis. 15d-PGJ2 also stimulates chemotaxis via CRTH2-Gi and suppresses it via PPARγ.
from patients with rheumatoid arthritis [58]. Several mammalian sPLA2 such as sPLA2-IIA also bind to heparan sulfate proteoglycans like glypican-1 [58]. The binding of sPLA2-IIA to heparan sulfate proteoglycans is required for exogenous sPLA2-IIA-catalyzed AA release from apoptotic human T cells [59].

Fig. (6). Arachidonate cascade in the innate immunity. Toll-like receptors (TLRs) recognize distinct microbial- or host-derived molecules and trigger innate immune responses. Shown are signal pathways for TLR2, TLR1, 2, 4, 5, and 6 are located primarily on the plasma membrane and TLR3, 7, 8, and 9 are localized to endosomal compartments. With the exception of TLR3 and TLR4, all other TLRs solely utilize MyD88, IRAK1, IRAK4 and TAK1 as central signal transducing machinery. TAK1 activates MAPK pathway and release AA. TAK1 also activates TNF-α-induced kB inhibitor (I kB) kinase (IKK) complex composed of IKKα, IKKβ and IKKα/NEMO, which induces phosphorylation of IκB and releases NF-κB to translocate to the nucleus, and induces COX2. COX2 metabolizes AA to PGs, e.g. PGE2 and PGD2.

Inflammation

The inflammatory response that initiates the maturation and migration of innate immune cells involves soluble mediators such as cytokine, nitric oxide and prostanooids [60]. Dendritic cells predominantly produce PGE2 and TXA2, while mast cells produce PGD2 (Table 2). PGD2 is also produced in significant amounts by dendritic cells [61], macrophages [62], neutrophils [63], eosinophils [64], Th2 cells [65] and endothelial cells [66]. Two G-protein-coupled receptors for PGD2 have been described to date: type 1 receptor for PGD2 (DP1) and type 2 receptor for PGD2 (DP2)/chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2). DP1 is coupled with the stimulatory GTP-binding protein, stimulate adenylate cyclase and elevation in cyclic AMP levels, which are usually associated with the inactivation of eosinophils (Fig. 4) [67]. On the other hand, DP2/CRTH2 is also a seven transmembrane-spanning protein, activate phospholipase C via the inhibitory GTP-binding protein, elevates intracellular Ca2+ concentration and expressed by Th2 cells, eosinophils, and basophils [68] (Fig. 4). DP2/CRTH2 has been shown to have a broader spectrum of ligands, as it is also activated by several PGD2 metabolites, including 13,14-dihydro-15-keto-PGD2, PGJ_2, Δ12-PGJ2 and 15d-PGJ2 [69] as well as 9α,11β-PGF2 and its stereoisomer PGF2α [70] and a TX metabolite, 11-dehydro-TXB2 [71]. DP2/CRTH2 activation can lead to a plethora of biological effects that includes the induction of the chemotaxis of eosinophils, basophils, and Th2 cells [68,72]. DP2/CRTH2 agonists are prime eosinophils for chemotaxis toward other chemoattractants and are capable of mediating the rapid mobilization of eosinophils from the isolated hind limb of guinea pigs [73].

Hyperglycemia-Induced Immunodeficiency

Hyperglycemia in the acute phase causes the functional decline of neutrophils, and is a risk factor that causes infection in the perioperative period [74]. Recent basic researches have found that the functional decline of neutrophil is caused by a hyperglycemic state [75], and that the mechanism of this decline includes increased adhesive capacity and diminished chemotaxis, phagocytic activity [76] and bactericidal capacity [77]. A depression in primary and secondary immune responses was due to altered T-cell function and phagocytic activity in macrophages [78]. Intracellular oxidative stress initiates apoptotic processes and is toxic to primary T cells [79]. Enhanced oxidative stress plays an important role in the development of immunodeficiency [80]. The presence of high glucose in lymph node and spleen lymphocyte cultures decreased cell viability [81]. The apoptosis of macrophages might occur with high glucose concentrations, leading to the spreading of lipids from macrophages into intracellular spaces in the vessel wall [82].

SEPSIS

Sepsis is defined as a systemic inflammatory response syndrome secondary to infection. It represents a leading cause of death in critically ill patients, mainly due to the development of organ dysfunction and tissue hypoperfusion [83]. The pathogenesis of sepsis is thought to include an initial hyperinflammatory reaction evoked by infectious pathogens, followed by a hypo- or dysregulated inflammatory state [84]. Neutrophils represent the predominant cellular component at sites of acute inflammation. These cells serve a critical role in host defense with transendothelial migration of neutrophils being a crucial component of the immune/inflammatory response [85]. Emerging evidence indicates that sepsis, most commonly caused by bacteria, results in impaired host defenses, including a reduced ability of neutrophils to migrate appropriately [86]. Moreover, higher mortality rates have been observed in patients with sepsis-induced immune deactivation [87].

Sepsis-Induced Immunodeficiency

The type of immune cells lost during sepsis has been characterized by subsequent immunohistochemical analysis of the spleen of patients following autopsy [88]. These phenotypic studies reveal a striking decrease in the number of B cells and CD4+ T cells in spleens from patients with sepsis compared with spleens from critically ill control patients without sepsis [88]. Similarly, there is a remarkable
decrease in the number of follicular and interdigitating dendritic cells in spleens from patients with sepsis versus control patients without sepsis [89], but not decrease in the number of neutrophils. Chemotaxis is significantly lower in patients than in healthy controls and associated with spontaneous adherence and increased expression of adhesion molecules.

15d-PGJ2 is a ligand for the nuclear receptor, peroxisome proliferators-activated receptor (PPARγ) [90,91]. Neutrophils constitutively express PPARγ, which is up-regulated by the sepsis-induced cytokines TNF-α and IL-4. Chemotactic responses of neutrophils to formylmethionyl-leucyl-phenylalanine and IL-8 are inhibited by treatment with the PPARγ ligands, troglitazone and 15d-PGJ2, and by transfection of neutrophils-like HL-60 cells with a constitutively active PPARγ construct. Inhibition of chemotaxis by PPARγ ligands correlates with decreases in extracellular signal-regulated kinase-1 and -2 activation, actin polymerization, and adherence to a fibronectin substrate. Furthermore, neutrophilic expression of PPARγ is increased in sepsis patients and mice with either of two models of sepsis. Treatment with the PPARγ antagonist, GW9662, significantly reverses the inhibition of neutrophilic chemotaxis and increased peritoneal neutrophilic recruitment in murine sepsis. PPARγ activation is involved in chemotactic responses of neutrophils in vitro and may play a role in the migration of these cells in vivo [92].

Sepsis-Induced Apoptosis

The key role of apoptosis in patients with sepsis is shown in a unique study in which patients in ICU who died of sepsis were compared with patients in intensive-care units who died of non-septic aetiologies [93]. Autopsies of patients with sepsis reveal extensive apoptosis of lymphocytes and gastrointestinal epithelial cells. The type of immune cells lost during sepsis is characterized by subsequent immunohistochemical analysis of the spleen of patients following autopsy [89,94]. These phenotypic studies reveal a striking decrease in the number of B cells and CD4+ T cells in spleens from patients with sepsis compared with spleens from critically ill control patients without sepsis [93].

Many inflammatory mediators retard granulocyte apoptosis. PGD2 and its metabolite PGJ2 selectively induce eosinophil, but not neutrophil apoptosis. The sequential metabolites Δ12-15d-PGJ2 and 15d-PGJ2 induce caspase-dependent apoptosis in both granulocytes, an effect that does not involve de novo protein synthesis. Despite the fact that Δ12-15d-PGJ2 and 15d-PGJ2 are PPARγ activators, apoptosis was not mimicked by synthetic PPARγ and PPARδ ligands or blocked by an irreversible PPARγ antagonist. Furthermore, Δ12-15d-PGJ2 and 15d-PGJ2 inhibited lipopolysaccharide-induced IkBα degradation and subsequent inhibition of neutrophil apoptosis, suggesting that apoptosis is mediated via PPARγ-independent inhibition of NF-κB activation. TNF-α-mediated loss of cytoplasmic IkBα in eosinophils is inhibited by 15d-PGJ2 in a concentration-dependent manner [95].

PPARγ ligands, including the endogenous ligand 15d-PGJ2 and synthetic ligands like ciglitazone and troglitazone, all induce apoptosis in normal and malignant human B lymphocytes. Dominant-negative PPARγ and a PPARγ antagonist prevent PPARγ activation but do not prevent B cell apoptosis induced by 15d-PGJ2 or ciglitazone. In addition, a PPARγ agonist that is a structural analog of 15d-PGJ2, and lacks the electrophilic carbon of the 15d-PGJ2 cyclopentenone ring, activates PPARγ but does not kill B lymphocytes, further supporting a non-PPARγ-mediated mechanism. 15d-PGJ2, but not ciglitazone, potently induces reactive oxygen species in B lymphocytes, implicating the reactive nature of the 15d-PGJ2 structure in the apoptosis mechanism. In addition, 15d-PGJ2 causes an almost complete depletion of intracellular glutathione. Moreover, incubation with glutathione reduced ethyl ester, an antioxidant, prevents apoptosis induced by 15d-PGJ2, but not by ciglitazone [96].

ARACHIDONATE CASCADE-RELATED DRUGS

Specific PLA2 inhibitors have been developed recently. They are not yet commercially available or approved by regulatory agencies, but clinical studies have been launched to assess their utility in the treatment of patients with cardiovascular diseases.

COX inhibitors are commercially available as non-steroidal anti-inflammatory drugs. Inflammation participates in the pathogenesis of type 2 diabetes (T2D) [97] which increases the production of proinflammatory cytokines and chemokines (e.g., IL-1β, TNF-α and IL-6). Inflammatory mediators induce insulin resistance locally in fat and liver, and systemically in skeletal muscle. Salicylates lower glucose in patients with diabetes [98], while nonacetylated (e.g., sodium salicylate, salalsate, and trilisate) and acetylated forms (aspirin) of salicylate are widely available. Even at low doses, aspirin effectively inhibits cyclooxygenase enzymes, COX-1 and COX-2, through covalent transacetylation of active site serine residues; this irreversibly inactivates the enzymes and prevents catalysis of the committed step in prostaglandin synthesis [99]. Lacking an acetyl group, nonacetylated salicylates do not modify cyclooxygenase enzymes. At significantly higher concentrations than those required for COX inhibition, both nonacetylated salicylates and aspirin inhibit the IKKβ/NF-κB axis [100], a pharmacologically distinct drug target. While a 2-week course of high-dose (approximately 7 g/d) aspirin reduces glucose and lipid levels and improves insulin sensitivity in patients with diabetes [101], prolonged exposure to such high doses of aspirin would have unacceptable side effects, especially potentially serious gastrointestinal bleeding. Salsalate, a produrg form of salicylate, improves in vivo glucose and lipid homeostasis, and support targeting of inflammation and NF-κB as a therapeutic approach in T2D [97].

PPARγ agonists, thiazolidinediones (TZDs), have been used for the treatment of hyperglycemia in T2D. Troglitazone was the first TZD to be introduced into clinical practice, but was withdrawn due to hepatitis. Currently, pioglitazone can be used as monotherapy or in combination with other glucose-lowering agents. The recent PROspective pioglitAzone Clinical Trial in macroVascular Events (PROactive) study provided tentative evidence that
pioglitazone may have a beneficial effect on cardiovascular risk in T2D, an effect independent of its glucose-lowering properties [102]. TZDs decrease insulin levels, suggesting that they act as insulin sensitizers and enhance glucose uptake by insulin-sensitive tissues via PPARγ [103]. The activated receptors alter the expression of genes involved in lipid metabolism and promote fatty acid uptake and storage in adipose tissue. Elevated FFA levels are associated with insulin resistance. PPARγ activation by TZDs reduces the amount of circulating FFA in the body via adipocyte differentiation and apoptosis. As lipolysis and levels of circulating FFA are reduced by PPARγ activation, adipose tissue mass is increased, so other insulin-sensitive tissues such as liver, skeletal muscle and possibly pancreatic β-cells are spared the harmful metabolic effects of high concentrations of FFA that induce insulin resistance [104].

Glucose metabolism by liver and muscle is therefore improved. The ‘lipotoxicity’ in pancreatic β-cells from elevated fat content is also reduced, which leads to decreased β-cell apoptosis, improved β-cell mass and therefore insulin secretion in T2D subjects [104]. TZDs also reduce macrophage numbers via PPARγ in adipose tissue. The expression of proinflammatory genes is inhibited, and production of the cytokines IL-6 and TNF-α is reduced [105]. Expression of insulin receptor substrate-2, a protein with a facilitatory role in the insulin signaling pathway, is increased in adipose tissue cultured with PPARγ agonists with subsequent enhancement of insulin sensitivity [106]. Treatment with PPARγ agonists results in significantly improved glycaemia in diabetic mice and is associated with an increase in circulating adiponectin levels [107]. Nanomolar levels of natural (15d-PGJ2) or synthetic PPARγ ligands enhanced B cell proliferation and significantly stimulated plasma cell differentiation and antibody production [108].

CONCLUSIONS

Hyperglycemia induces insulin resistance and increases the risk of morbidity and mortality substantially among critically ill patients. Arachidonate metabolites are increased, and proinflammatory cytokines are produced under the condition of high glucose. Hyperglycemia is potentially harmful because it acts as a procoagulant [109], induces apoptosis [110], impairs neutrophil function, increases the risk of infection and is associated with an increased risk of death. Sepsis is the leading cause of death in critically ill patients. Hyperglycemia and insulin resistance are virtually universal in sepsis. Initially, sepsis is characterized by increases in inflammatory mediators; but as sepsis persists, there is a shift toward an anti-inflammatory immunosuppressive state [111,112]. If hyperglycemia is observed, all patients are recommended to receive glucose testing on admission to the hospital and glucose-lowering therapy. While conventional glucose-lowering interventions that aim to maintain blood glucose levels between 140–180 mg/dL are recommended for critically ill patients [113], intensive glucose-lowering protocols having target glucose levels set at <110 mg/dL remain controversial [114]. Thus, insulin is recommended in the treatment of acute hyperglycemia in critically ill patients. Since hyperglycemia induces insulin resistance, we shed light on therapeutic potentials of PPARγ ligands for critically ill patients under the insulin resistant state. Further investigation of aggressive glucose-lowering therapy in specific patient populations is required.

CONFLICT OF INTEREST

Declared none.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

prostaglandins and intensive insulin therapy

Word, C.; Dransfield, I.; Murray, J.; Farrow, S. N.; Haslett, C.; Rossi, A. G. Prostaglandin D2 and its metabolites induce caspase-

