The LIM homeobox gene ceh-14 is required for phasmid function and neurite outgrowth

Hiroshi Kagoshima a,b,c, Giuseppe Cassata a,1, Yong Guang Tong d,e,2, Nathalie Pujol f,g,h, Gisela Niklaus a,3, Thomas R. Bürglin a,d,e,*

a Biozentrum, Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
b Genome Biology Laboratory, Center for Genetic Resource Information, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
c Transdisciplinary Research Integration Center, Research Organization of Information and Systems (ROIS), Toranomon 4-3-13, Minato-ku, Tokyo 105-0001, Japan
d Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83 Huddinge, Sweden
e School of Life Sciences, Södertörn University, Alfred Nobels Allé 7, SE-141 89 Huddinge, Sweden
f Centre d’Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Case 906, 13288 Marseille CEDEX 09, France
g INSERM, U1104, 13288 Marseille, France
h CNRS, UMR7280, 13288 Marseille, France

A R T I C L E I N F O

Article history:
Received 11 February 2013
Received in revised form 29 March 2013
Accepted 4 April 2013
Available online 19 April 2013

Keywords:
Homeobox gene
LIM domain
Caenorhabditis elegans
Neurite outgrowth
Neural development
Phasmds

A B S T R A C T

Transcription factors play key roles in cell fate specification and cell differentiation. Previously, we showed that the LIM homeodomain factor CEH-14 is expressed in the AFD neurons where it is required for thermotaxis behavior in Caenorhabditis elegans. Here, we show that ceh-14 is expressed in the phasmid sensory neurons, PHA and PHB, a number of neurons in the tail, i.e., PHC, DVC, PVC, PVN, PVQ, PVT, PVW and PVR, as well as the touch neurons. Analysis of the promoter region shows that important regulatory elements for the expression in most neurons reside from −4 kb to −1.65 kb upstream of the start codon. Further, within the first introns are elements for expression in the hypodermis. Phylogenetic footprinting revealed numerous conserved motifs in these regions. In addition to the existing deletion mutation ceh-14(ch3), we isolated a new allele, ceh-14(ch2), in which only one LIM domain is disrupted. The latter mutant allele is partially defective for thermosensation. Analysis of both mutant alleles showed that they are defective in phasmid dye-filling. However, the cell body, dendritic outgrowth and ciliated endings of PHA and PHB appear normal, indicating that ceh-14 is not required for growth. The loss of a LIM domain in the ceh-14(ch2) allele causes a partial loss-of-function phenotype. Examination of the neurites of ALA and tail neurons using a ceh-14::GFP reporter shows abnormal axonal outgrowth and pathfinding.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The homeodomain is an evolutionary conserved DNA-binding domain found in many eukaryotes ranging from plants to human (for review see Bürglin, 2011). The LIM homeobox (LIM-HB) genes are one class of many different types of homeobox genes and characteristically contain two LIM domains amino-terminal to the homeodomain (Hobert and Westphal, 2000; Srivastava et al., 2010). The LIM domain was named after the first three founding genes, lin-11, islet-1 and mec-3 (Freyd et al., 1990; Karlsson et al., 1990; Way and Chalfie, 1988). It consists of two zinc-finger-like motifs with a highly conserved pattern of cysteine and histidine residues, which mediate protein–protein interactions (for review see Dawid et al., 1998; Kadmos and Beckerle, 2004; Koch et al., 2012; Zheng and Zhao, 2007). LIM homeodomain (LIM-HD) proteins play pivotal roles in cell fate determination and differentiation in a variety of developmental processes. In particular, their function is critical in different aspects of neuronal development, including neuronal specification, neuronal survival, and neurotransmitter expression (e.g., Hobert and Westphal, 2000; Lundgren et al., 1995; Pfaff et al., 1996; Thaler et al., 2004; Way and Chalfie, 1988), as well as axonal outgrowth and pathfinding (e.g., Kania et al., 2000; Sharma et al., 2000; Thor et al., 1999). In flies and vertebrates, it has been shown that the cell type-specific combinatorial expression of LIM-HD factors defines the identities of subclasses of motor neurons, i.e. the specific pattern of axonal outgrowth and the targets of
their projection (O’Keefe et al., 1998; Sharma et al., 1998; Thor et al., 1999). In C. elegans, mutations in the LIM-HB genes tx3-3, lin-11 and lim-6 cause axonal defects (Hobert et al., 1998, 1997, 1999). Other classes of homeobox genes have been shown to play roles in these processes as well (Landgraf et al., 1999; Thaler et al., 1999), and in C. elegans, for example, the paired-like homeobox gene ceh-17 is involved in outgrowth of the ALA axons (Pujol et al., 2000; Van Buskirk and Sternberg, 2010).

A series of experiments in which the LIM domain was truncated or mutated suggested that it might act as an intramolecular negative regulatory element by inhibiting the DNA binding activity of the homeodomain (Sánchez-García et al., 1993). Thus, such LIM-disrupted LIM-HB genes would encode gain-of-function forms of LIM-HD transcription factors (Agulnick et al., 1996). However, the disruption of the LIM domain of the LIM-HB genes apterous and lim3 showed phenotypes similar to the null mutations of the corresponding genes in Drosophila (O’Keefe et al., 1998; Thor et al., 1999). These results suggest that the LIM domain is also required for the function and LIM-disruption mutations result in loss-of-function mutations.

We previously described the role of ceh-14 in thermosensation in C. elegans (Cassata et al., 2000a). ceh-14 belongs to the LIM3 (Lhx3/Lhx4) family of LIM-HB genes and is orthologous to fly Lim3 and vertebrate Lhx3 and Lhx4 (Bürglin, 2011; Hobert and Westphal, 2000). In the present paper, we examine the expression pattern of ceh-14 in the nervous system and other tissues using a series of deletion reporter constructs. We find that ceh-14 is involved in neurite outgrowth in subsets of neurons and essential for the proper function of the phasmid sensory neurons. We also present data for a ceh-14(ch2) mutation allele, in which a LIM domain has been deleted, and which causes partial loss-of-function phenotypes.

Materials and methods

Reporter constructs

General DNA manipulations were carried out as described (Ausubel et al., 1987; Sambrook and Russell, 2001). plZ14-2 is a lacZ reporter construct (Fire et al., 1990), containing 4.8 kb of upstream sequence together with the coding sequence up to the splice acceptor of the fifth exon of ceh-14. pHK103 and pHK107 are green fluorescent protein (GFP) reporters, containing 4.0 kb of upstream sequence and the first 16 amino acids of CEH-14, with or without a SV40 nuclear localization signal (NLS). pHK106 and pHK108 contain 4.0 kb of upstream sequence and the entire coding sequence of ceh-14 fused to GFP, with or without NLS. GFP reporter constructs were made by a two-step long-range PCR method (Cassata et al., 1998). pHK160 has the same sequences as pHK103, except that it contains a GFP-lacZ double reporter. Reporter constructs for promoter analysis (pHK162–pHK167) were made by restriction enzyme digestion and ligation from pHK103, pHK160 and plZ14-2.

Constructs are referred to here based on the genomic sequence coordinates, which are numbered with respect to the ATG. In brackets the plasmid names are given, some of which are also used in previous publications. In square brackets the sequence coordinates are given based on cosmid F46CB (accession # U41624); the ATG start codon is from −19206 to −19204. List of reporter constructs:

<table>
<thead>
<tr>
<th>Construct</th>
<th>Coordinates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p4770E5::lacZ (plZ14-2)</td>
<td>−4771 to 2727 [−28091 to −20593], 4.77 kb promoter, ends at exon 5.</td>
<td></td>
</tr>
<tr>
<td>p4000full::GFP (pHK106)</td>
<td>−4011 to 4113 [−27331 to −19207], 4 kb promoter, full length ceh-14.</td>
<td></td>
</tr>
<tr>
<td>p4000full::ΔNGFP (pHK108)</td>
<td>−4011 to 4113 [−27331 to −19207], like p4000full::GFP, but no NLS.</td>
<td></td>
</tr>
<tr>
<td>p4000E1::GFP (pHK103)</td>
<td>−4011 to 47 [−27331 to −23273], 4 kb promoter, ends in exon 1.</td>
<td></td>
</tr>
<tr>
<td>p4000E1::ΔNGFP (pHK107)</td>
<td>−4011 to 47 [−27331 to −23273], like p4000E1::GFP, but no NLS.</td>
<td></td>
</tr>
<tr>
<td>p4000E1::GFP lacZ (pHK160):</td>
<td>−4011 to 47 [−27331 to −23273], like p4000E1::GFP, plus lacZ.</td>
<td></td>
</tr>
<tr>
<td>p1650E1::GFP (pHK162):</td>
<td>−1654 to 47 [−24974 to −23273], 1.65 kb promoter, ends in exon 1.</td>
<td></td>
</tr>
<tr>
<td>p1240E1::GFP (pHK163):</td>
<td>−1242 to 47 [−24562 to −23273], 1.24 kb promoter, ends in exon 1.</td>
<td></td>
</tr>
<tr>
<td>p240E1::GFP (pHK164):</td>
<td>−237 to 47 [−23557 to −23273], 240 bp promoter, ends in exon 1.</td>
<td></td>
</tr>
<tr>
<td>p240E1::GFP lacZ (pHK167):</td>
<td>−237 to 47 [−23557 to −23273], like p240E1::GFP, plus lacZ.</td>
<td></td>
</tr>
<tr>
<td>p240E5::lacZ (pHK166):</td>
<td>−237 to 2727 [−23557 to −20593], 240 bp promoter to exon 5.</td>
<td></td>
</tr>
</tbody>
</table>

Ectopic expression constructs: full length ceh-14 cDNA was amplified by PCR using p14-31_for (GGTCCATGGATCTTCTGGTCAACACACATTTTG, contains an NcoI site) and p14-32_rev GTCACTGTTATTGCAAGTTGTTATGGTTGATTGTG (contains an NcoI site) and cloned via the NcoI site into prbGFPim3 (generous gift by M. Nonet, http://thalamus.wustl.edu/nonetlab/ResourcesF/seqinfo.html). The ceh-14 LIM domain only region was amplified with primers Ceh14lim_for (AGTACCAGTGTCTGACCACACACTTACCAT, containing an Agel site) and Ceh14lim_rev (AGACACATGTTATCAATGTTTATCTC, containing an NcoI site) and cloned into prbGFPim3 using Agel and NcoI.

ceh-14 genomic deletion derivatives

Details of two ceh-14 deletion alleles, ceh-14(ch1) and ceh-14 (ch3), are described previously (Cassata et al., 2000a). The third allele, ceh-14(ch2), was isolated in the same fashion. The deletion in each allele lacks the following sequences: ceh-14(ch1): −21271 to −20937, ceh-14(ch2): −21966 to −20938, ceh-14(ch3): −21980 to −20704 (Cosmid F46CB numbering). The ceh-14(ch2) deletion lies between the second intron and the third intron. At the deletion point, an additional seven nucleotides (5′-GTGGTGT-3′) are inserted. The resulting transcript lacks the third exon, but the second exon can splice in frame to the fourth exon.

Worm strains

C. elegans strains were maintained by standard methods (Epstein and Shakes, 1995; Hope, 1999; Wood, 1988). The C. elegans strains used in this study were: Bristol strain (N2), MT2709 [rol-6 (n1270e187)II], CB1372 [daf-2(e1372)III], CB3775 [dpy-20(e2017)IV], YK11 [mut-2 (r459)]; dpy-19 (n1347)I; ceh-14 (ms11; Ti1)X, TB527 [ceh-14(ch2)X], TB528 [ceh-14(ch3)X], TB521 [ceh-14(ch2)X]; dpy-20 (e2017)IV], TB522 [ceh-14(ch3)X; dpy-20(e2017)IV], TB513 [chIs13(pHK106, pMH86)V; dpy-20(e2017)IV], TB534 [chIs13(pHK106, pMH86)V; dpy-20(e2017)IV; ceh-14(ch2)X], and TB535 [chIs13(pHK106, pMH86)V; dpy-20(e2017)IV; ceh-14(ch3)X], and IB16 [ceh-17(np1)] (Pujol et al., 2000).

Germline transformation

Germline transformation was performed by coinjecting reporter DNA at a concentration of 30–100 μg/ml and marker DNA at a concentration of 5–20 μg/ml into the gonad of animals (Mello et al., 1991). Three transgenic markers were: plasmid pRF4 containing rol-6 (su1006) for selecting rolling phenotype, cosmID DE9 containing daf-7 (+) for rescuing the dauer constitutive defect of daf-7(e1372) at 25 °C.
and plasmid pH86 containing dpy-20(+) for rescuing dpy-20(e2017) (Han and Sternberg, 1991). Multiple independent lines were established for each construct, prob-3::CEH14::GFP and prob-3::CEH14-UM-only::GFP was injected at 70 μg/ml and coinjected with the marker elt-2::mCherry at 45 μg/ml.

Staining of worms

LacZ staining: worms were washed off the plates in water, centrifuged several times and resuspended in water, frozen at −70 °C, and freeze-dried in a lyophilizer. They were calculated using the equation, $v = \frac{1}{4} \frac{s}{l}$ (s = area of longitudinal section, l = length, average radius of worms = $s/(2l)$), by assuming that animals have a cylindrical shape.

Measurement of body sizes

Embryos were collected by sodium-hypochlorite treatment of adult animals as described by Lewis and Fleming (Epstein and Shakes, 1995), and incubated in S-basal buffer for 24 h at 25 °C to synchronize at L1 stage. L1 larvae were allowed to develop on NGM plates at 20 °C. The photographs of animals, at 0 h, 24 h, 48 h, and 72 h after L1-arrest release were taken with an Axioplan 2 microscope (Carl Zeiss) and analyzed with AQUACOSMOS (Hamamatsu Photonics). The length (l) and the area of the longitudinal section (s) of animals were measured with ImageJ (http://rsb.info.nih.gov/ij/) using a Burker-Turk chamber as size standard. Body volumes (v) were calculated using the equation, $v = \frac{1}{4} \frac{s}{l}$ (s = area of longitudinal section, l = length, average radius of worms = $s/(2l)$), by assuming that animals have a cylindrical shape.

Bioinformatics

The CEH-14 ChIP-seq data (Niu et al., 2011) were extracted, and the target gene list was used to retrieve gene information, expression information, and GO term information from WormMart (current data release WS220). The data was imported into GORilla (Eden et al., 2009). For the multiple sequence alignment, genomic sequences were retrieved from WormBase (www.wormbase.org), aligned with SEAVIEW using the exons of ceh-14 and dpy-7 as anchors (Galtier et al., 1995), and incubated in S-basal buffer for 24 h at 25 °C to synchronize at L1 stage. L1 larvae were allowed to develop on NGM plates at 20 °C. The photographs of animals, at 0 h, 24 h, 48 h, and 72 h after L1-arrest release were taken with an Axioplan 2 microscope (Carl Zeiss) and analyzed with AQUACOSMOS (Hamamatsu Photonics). The length (l) and the area of the longitudinal section (s) of animals were measured with ImageJ (http://rsb.info.nih.gov/ij/) using a Burker-Turk chamber as size standard. Body volumes (v) were calculated using the equation, $v = \frac{1}{4} \frac{s}{l}$ (s = area of longitudinal section, l = length, average radius of worms = $s/(2l)$), by assuming that animals have a cylindrical shape.

Behavioral analyses

Single worm thermotaxis assays were performed as previously described (Cassata et al., 2000a; Hedgecock and Russell, 1975; Mori and Ohshima, 1995). The classification of the phenotypes was performed following the criteria shown in (Cassata et al., 2000a). Animals that did not move were not taken into account. Touch sensitivity assays of worms were performed as described (Chalfie and Sulston, 1981).
Results

Expression pattern of ceh-14 reporter constructs

To investigate the function of the LIM-HB gene ceh-14, we first analyzed the temporal and spatial expression pattern of ceh-14 promoter reporter constructs (p4000E1::GFP) in transgenic worms (Figs. 1 and 2). ceh-14 expression starts around the 280 min stage mainly in the anterior part of the embryo (Fig. 2A and B). In later stages (comma stage), the expression is seen in more cells in the head, but also in some cells in the tail (Fig. 2C and D). Judged by position and shape, most of them are neuronal precursors, although we have not precisely identified them. From larval to adult stages, neuronal expression is observed in the ALA interneuron and a pair of sensory neurons, AFDL/R, in the head, and in the BDUL/R interneurons in the anterior body (see also Cassata et al., 2000a). In the tail, we see expression in the sensory- and interneurons PHAL/R, PHBL/R, PHCL/R, DVC, PVCL/R, PVNL/R, PVQL/R, PVT, PVWL/R and PVR (Fig. 2H–L). The neuronal expression in the head and tail is confirmed by an anti-CEH-14 rabbit antisera (Fig. 2E–G). We also note expression in the six touch neurons ALML/R, AVM, PVM and PLML/R (Fig. 2I–K), although it is seen only in strains with integrated reporter constructs. Detailed examination of the integrated reporter constructs shows that the expression of ceh-14 in AFD is reduced in the ceh-14(ch3) mutant background compared to wild type or other neurons (see examples in Fig. 2B and C). This observation suggests that ceh-14 is auto-regulated at least in the AFD neurons. GFP expression levels in the other neurons did not appear to be down-regulated. In addition to the neuronal expression, ceh-14 expression is also seen in the hypodermis and spermatheca as previously described (Kagoshima et al., 2000).

Large scale ChIP-seq experiments conducted as part of modENCODE identified about 880 open reading frames, in the promoter
region of which CEH-14 is potentially bound at the L2 stage (Niu et al., 2011). We examined this target gene list in order to determine, whether these genes are expressed in the cells we identified. We extracted annotation data for these genes (Supplementary Table I). Parsing of the data revealed 50 possible target genes that are expressed in the spermatheca, and 84 in the hypodermis, with 23 of them being expressed in both tissues. Neither visual inspection of these lists, nor analysis of the GO terms revealed any obvious enrichment. Possible target genes in the hypodermis linked to the cytoskeleton are *erm-1* (cytoskeletal linker), *tbb-2* (beta-tubulin), and *unc-115* (binds actin filaments). CEH-14 was shown to be a negative regulator of the collagen gene *col-43* in the spermatheca (Bando et al., 2005), though it is not present in this ChIP-seq list. About 180 genes have annotations relating to the nervous system, however, like quite a number of other genes, most of these are rather ubiquitously expressed. Only for a few genes were specific neuronal cell identifications made that allowed cross-referencing with the *ceh-14* expression pattern (Supplementary Table I). In AFD two interesting possible targets emerged, i.e. *ttx-7*, a myoinositol monophosphatase member, and *pck-1*(*txt-4*), a protein kinase C member, both of which have been shown to play a role in thermosensation (Okochi et al., 2005; Tanizawa et al., 2006). An interesting putative target in the touch neurons is *mec-12*, an alpha-tubulin that is required for mechanosensory touch, specifically for the 15-protofilament microtubules in the touch cells (Fukushige et al., 1999). However, we did not observe a touch sensation defect in *ceh-14(ch3)* (Cassata et al., 2000a), and numerous genetic screens for touch sensation defects (Ernstrom and Chalfie, 2002; Syntichaki and Tavernarakis, 2004) did not yield any *ceh-14* mutations so far. Thus, while *ceh-14* may be involved in regulating *mec-12*, it could be redundant with other genes, for example, the LIM-HB gene *mec-3* that is required for touch neuron differentiation (Way and Chalfie, 1988).

Dissection of the *ceh-14* promoter

We examined the expression pattern of promoter deletion derivatives to identify important regulatory regions for the *ceh-14* expression. The largest constructs p4000full::GFP and p4770ES::lacZ, containing promoter as well as large introns, show expression in all *ceh-14*-positive neurons (Fig. 2L), the spermatheca and the hypodermis. p4000E1::GFP, a promoter fusion construct, shows the same expression pattern as p4000full::GFP, except for a lack of hypodermal expression (Fig. 1). A deletion construct, p1650E1::GFP that removes the upstream 2.35 kb shows expression in AFD, BDU, PVQ and the spermatheca, but has lost expression in ALA, and most of the tail neurons and the touch neurons. The shorter p1240E1::GFP construct expresses in AFD, BDU, PVQ and the spermatheca, but BDU expression is lost. A minimal construct p240E1::GFP shows expression in the spermatheca and very faint expression in AFD, while p240E1::GFP::lacZ shows weak expression only in the spermatheca (Fig. 1). In conclusion, the regulatory region for the full expression is located in a region from 4 kb upstream to the fifth exon (regions A–E in Fig. 1). Region A, located from 4 kb to 1.65 kb upstream, is the important regulatory region for expression in ALA, the touch neurons and most of the tail neurons (DVC, PHA, PHB, PHC, PVC, PVN, PVT, PVW and PVR). The other elements for the expression map to region B for BDU, region C for AFD and PVQ, region D for the spermatheca, and to regions D and E, which encompasses the first introns, for the hypodermis (Fig. 1, Kagoshima et al., 2000).
We compared the genomic sequences of *C. elegans*, *C. briggsae* and *C. remanei* over the regions A–E in order to identify conserved sequence elements. It revealed several regions with numerous conserved blocks (Supplementary Fig. 1). Three of these regions are in A (A1–A3), one in C (C1), and one in the first large intron (E1), and presumably contain the key elements for *ceh-14* regulation, e.g., E1 in intron 1 would be the prime candidate for driving expression in the hypodermis. Within the well conserved areas of A3 and E1 we note that recently two small non-coding RNAs (ncRNA) have been predicted by mod-ENCODE (Gerstein et al., 2011), which are transcribed in the opposite direction of *ceh-14* (Fig. 1, Supplementary Fig. 1). We identified near or within each region (A1, A3, and C1) three putative sites each (TAATTA consensus, Supplementary Fig. 1), and one in E1. Two of the sites in A3, and the one in E1 overlap with the ncRNAs. It is intriguing to speculate, whether the ncRNAs may be involved in regulating *ceh-14* by blocking transcription factor binding sites, while they are being transcribed.

Loss of a single LIM domain causes thermotaxis defects

We previously described two deletion mutant alleles: *ceh-14 (ch1)*, which deletes only intron sequences, and *ceh-14(ch3)*, which is a loss of function deletion (Fig. 1, Cassata et al., 2000a). Here, we present one further allele, *ceh-14(ch2)*. Genomic sequencing revealed that *ceh-14(ch2)* corresponds to a...
Phasmid dye-filling defects in ceh-14 mutants

The PHA and PHB pairs of neurons are the main sensory neurons in the phasmid sensilla located in the tail. They have ciliated endings at the tip of the dendrites that are open to the environment (White et al., 1986; Wood, 1988), and function as chemosensory cells that negatively modulate reversals to repellents (Hilliard et al., 2002). A simple test, dye-filling, can show if amphid and phasmid neurons are open towards the environment and are able to take up dye through their dendritic endings (Hedgecock et al., 1985; Ohkura and Bürglin, 2011; Perkins et al., 1986; Tong and Bürglin, 2010). The fluorescent dye DiI can stain strongly the sensory neurons ASH, ASJ, ASK, ADL (and weakly AWB, ASI) in the head, and PHA, PHB in the tail. We examined all three alleles of ceh-14 for their dye-filling properties using DiI. ceh-14(ch1), with lacks only intron sequences and produces a wild-type transcript, has a wild-type percentage (97%) of dye-filling in phasmid neurons. In ceh-14(ch2), the animals are almost wild-type for dye-filling at the adult stage, whereas larvae show consistent defects (64%) at late L2 to L3. The null mutant ceh-14(ch3) shows almost no (1%) dye-filling (Table 2).

The Dyf phenotype of ceh-14(ch3) is rescued by a full-length construct p4000full::ΔNGFP (Fig. 3E and F, Table 2), while the negative control p4000E1::ΔNGFP is not able to rescue the defect (Fig. 3G and H, Table 2). We examined rescue with construct p4000full::ΔNGFP in synchronized ceh-14(ch2) worms at the late L2 to L3 stage. ceh-14(ch2) animals show dye-filling that can be rescued to 96% by p4000full::ΔNGFP. Control construct p4000E1::ΔNGFP has only 35% dye-filling, which is more severe than ceh-14(ch2) alone (Table 2). This enhanced phenotype is reminiscent of the thermotaxis phenotype observed with p4000E1::ΔNGFP in ceh-14(ch2). The ceh-14(ch2) allele may be a particularly sensitized mutant, as the severity of the mutant phenotype diminishes during development. To determine whether ceh-14(ch2) and ceh-14(ch3) are loss-of-function alleles, we examined heterozygous worms containing the mutation over a wild-type allele. The results show that their dye-filling capacity is substantially restored compared to the homozygous mutants, reaching wild-type levels for ceh-14(ch2), and 70% for ceh-14(ch3) (Table 2). We thus propose that the two alleles are both loss-of-function mutants with respect to dye-filling.

The Dyf phenotype of ceh-14 mutants is not due to the loss of phasmid neurons or failure in outgrowth of the dendrites. We investigated this by examining wild-type and ceh-14(ch3) animals carrying the gpa-13::GFP reporter, which visualizes the cell body and dendrites of AD, AW, ASH, and AS in the head, and PHA, PHB in the tail (Fig. 3A, D). ceh-14(ch3) animals show the same dye-filling pattern in the head as wild-type animals, whereas PHA and PHB fail to take up DiI in ceh-14(ch3). Although the phasmid dendrites are somewhat shorter than those of wild type, the length of the cilia structures appears normal in ceh-14(ch3) animals (Fig. 3D). Loss of dye-filling can be due to a number of defects that cause changes in cell morphology, i.e. loss of the sensory neuron, loss of dendrites, loss of the sensory cilia, or cilia that are not full length. This is not the case for ceh-14, where cell morphology and cilia length is wild-type, suggesting that the dye-filling defect may be caused by a failure of the phasmid endings to open to the environment. Alternatively, uptake or transport of the dye could be affected.

Since the dendrites are a bit shorter in ceh-14 mutants than in wild type, and we had noted that ceh-14 mutant animals seem generally smaller, we investigated the body size in ceh-14(ch3). The body length and volume of ceh-14 mutants is similar to those of N2 until 48 h (from L1 to young adult stage), but ceh-14 mutants are significantly smaller at 72 h after L1-arrest release (82% length, 56% volume, Supplementary Fig. 2). Judging from the gonadal morphology, the timing of larval development was indistinguishable between N2 and ceh-14 mutants, indicating that body size deletion that extends from the second intron to the third intron, removing the third exon (Fig. 1). Since the second exon can splice in frame to the fourth exon, a transcript can be generated that encodes a protein lacking a major part of the first LIM domain. The presence of such a transcript was confirmed by sequencing RT-PCR products from ceh-14(ch2). Northern blot analysis shows a transcript of similar size and intensity to wild type, which is consistent with the notion that a stable message is generated (data not shown).

We have previously shown that the null mutation ceh-14(ch3) animals have severe defects in performing isothermal tracking (Table 1, Cassata et al., 2000a). ceh-14(ch2) animals display a mild, but clear athermotactic phenotype (Table 1). Rescue experiments of ceh-14(ch2) show a small restoration of thermotaxis by p4000full::ΔNGFP, which carries the entire coding sequence of ceh-14, although the difference is statistically not significant (Table 1). At the same time, we also observed an enhancement of the athermotactic phenotype in the case of p4000E1::ΔNGFP, which contains only a part of the first exon of ceh-14 and was used as control. This effect could be caused by a titration of ceh-14 regulating factors by multiple copies of the promoter sequence in the p4000E1::ΔNGFP array. We cannot unequivocally conclude that ceh-14(ch2) is rescued by p4000full::ΔNGFP from these results, however, it is consistent with the notion that ceh-14(ch2) is a loss-of-function mutation.

Table 1

<table>
<thead>
<tr>
<th>Thermotaxis (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
</tr>
<tr>
<td>N2*</td>
<td>94</td>
</tr>
<tr>
<td>ceh-14(ch2)</td>
<td>50</td>
</tr>
<tr>
<td>ceh-14(ch3)*</td>
<td>33</td>
</tr>
<tr>
<td>ceh-14(ch2)+p4000E1::ΔNGFP</td>
<td>18</td>
</tr>
<tr>
<td>ceh-14(ch2)+p4000full::ΔNGFP</td>
<td>56</td>
</tr>
<tr>
<td>ceh-14(ch3)+p4000full::ΔNGFP*</td>
<td>63</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Phasmid dye filling (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
</tr>
<tr>
<td>N2</td>
<td>96.9</td>
</tr>
<tr>
<td>ceh-14(ch1)</td>
<td>97.0</td>
</tr>
<tr>
<td>ceh-14(ch2)</td>
<td>64.0</td>
</tr>
<tr>
<td>ceh-14(ch2)+p4000E1::ΔNGFP</td>
<td>84.3</td>
</tr>
<tr>
<td>ceh-14(ch2)+p4000full::ΔNGFP</td>
<td>85.1</td>
</tr>
<tr>
<td>ceh-14(ch3)</td>
<td>95.6</td>
</tr>
<tr>
<td>ceh-14(ch3)+p4000E1::ΔNGFP</td>
<td>1.3</td>
</tr>
<tr>
<td>ceh-14(ch3)+p4000full::ΔNGFP</td>
<td>70.0</td>
</tr>
<tr>
<td>ceh-14(ch3)+p4000E1::ΔNGFP</td>
<td>8.7</td>
</tr>
<tr>
<td>ceh-14(ch3)+p4000full::ΔNGFP</td>
<td>84.7</td>
</tr>
</tbody>
</table>
reduction in ceh-14 mutants is not due to developmental retarda-
tion. Although ceh-14 is expressed in the hypodermis, we have not
formally proven that ceh-14(ch2) causes the phenotype. However,
the shortening of the dendrites may simply be due to the general
reduced body size of the ceh-14(ch2) strain.

The ChIP-seq data of Niu et al. (2011) revealed the transcription
factor DAF-19 as a possible target of CEH-14 (Supplementary Table.
1). daf-19 encodes an RFX transcription factor that functions in all
ciliated neurons, is required for the formation of the cilia, and
mutants are Dyf (Swoboda et al., 2000). However, since ceh-14
mutants have cilia in the phasmid and AFD neurons (Cassata et al.,
2000a), the Dyf and thermotaxis phenotypes would be unlikely
due to a downregulation of daf-19.

Axonopathfinding abnormalities in ceh-14 mutant worms

The ceh-14 expressing neuron ALA is a single cell situated in
the dorsal ganglion just behind the nerve ring. Two major bilaterally
symmetrical processes leave the cell body and run right and left
around the nerve ring, leaving it laterally and running down the
length of the animal (White et al., 1986). ceh-14(ch3) mutant worms
have the ALA cell body at the normal position, however, in virtually all
animals one or both axons do not run into the lateral cord, but into
the ventral nerve cord (VNC) and stop just behind the posterior
pharynx (Fig. 4Aa and B, Table 3). ceh-14(ch2) shows similar defects
with less penetrance, but axons mostly continue to extend to the tail
region (Table 3). Several worms had loop-shaped ALA axons at the
point where they normally turn into the lateral cord or else in the
VNC (Fig. 4C). We also observed high percentages of abnormal axons
of the tail neurons, aberrant projection, extra-branching, and pre-
mature termination in ceh-14(ch3) (Fig. 4D and E) and ceh-14(ch2)
mutants (Fig. 4F and G). In contrast, the axonal projections from the
head neurons, AFD and BDU, seemed to be normal at least by the light
and fluorescent microscopic observation of integrated p4000E1::
ΔNGFP transgenic animals.

The paired-like homeobox gene ceh-17 has been shown to be
expressed in ALA and to affect outgrowth of its axons (Pujol et al.,
2000). Examination of the expression of ceh-14::GFP (p4000E1::
GFP) in ceh-17(np1) mutant animals showed that expression is still
seen in ALA. Conversely, using antibody staining, we were able to
detect CEH-17 expression in ALA in ceh-14(ch2), although the
staining efficiency was not monitored (data not shown).

To test whether neuronal fates could be altered we ectopically
expressed CEH-14 throughout the nervous system. Full-length ceh-14
as well as the LIM domains only of ceh-14 were separately fused to the
pan-neuronal rab-3 promoter and GFP. However, these strains showed
high levels of embryonic and early larval lethality; prob-3::CEH-14::
GFP: 82% (N=79) arrested; prob-3::CEH-14-LIM-only::GFP: 63%
(N=43) arrested; probGFPrim3 control: 21% (N=47) arrested. Possibly
the overexpression of CEH-14 or its LIM domains in the nervous system
sequesters interacting factors such as LDB-1 (Cassata et al.,
2000a), and in turn impairs the function of other LIM-HD factors.

Table 3

<table>
<thead>
<tr>
<th>ALA axons in lateral path (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>83.0</td>
</tr>
<tr>
<td>ceh-14(ch2)</td>
<td>11.9</td>
</tr>
<tr>
<td>ceh-14(ch3)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Discussion

ceh-14 function in the nervous system

The neuronal expression of ceh-14 starts around 280 min of
embryonic development, which is the time for the developmental
switch from generating neurons to starting axonal outgrowth
(Sulston et al., 1983). The expression is maintained throughout
the life time, from embryo to adult, suggesting that ceh-14 is
required for late functions of the neurons. ceh-14 seems to be
involved in two aspects of neuronal differentiation. One is to
control expression of determinants that give specific terminal
identities or characteristics to particular types of neurons, as seen
in AFD and the phasmid sensory neurons. The other is neurite
outgrowth, as seen in ALA and tail neurons.

The phasmid neurons have no major abnormality in axonal and
dendritic outgrowth in ceh-14 mutants, which suggests they are
almost complete, but fail to adopt their terminal identity. In the case
of AFD, ceh-14 mutants cannot respond to temperature properly, but
only the finger-like structures at the tip of the dendrites are enlarged,
otherwise the morphology of the neurons is normal (Cassata et al.,
2000a). ceh-14 has been shown to be located towards the end of the
regulatory cascade in AFD, where it is regulated by the paired-like
homeobox gene tx-1 that plays a critical role for the identity of the
AFD neurons (Satterlee et al., 2001).

Serependitously we isolated a deletion allele, ceh-14(ch2), which
lacks one LIM domain. Our analysis shows that this results most
likely in a partial loss-of-function phenotype, in line with similar
observations from flies (O’Keefe et al., 1998; Thor et al., 1999) and
vertebrates (Cheah et al., 2000). The mutant phenotypes in AFD,
PHA, and PHB are probably due to a lack of interaction with co-factor(s), such as LDB-1. We showed that point mutations in the
LIM domains of CEH-14 abolish the interaction with C. elegans
LDB-1 in yeast, and that ldb-1 is expressed - amongst many other
cells - in the phasmid sensory neurons (Cassata et al., 2000b). The
ceh-14(ch2) allele has the special trait that the phasmid Dyf
phenotype diminishes with age. This observation indicates that
this is not a permanent developmental defect, but function can be
restored even in late stages. A late or subtle role for ceh-14 also
exists in the DVC neuron, where ceh-14 and ceh-63 together
regulate the transcription factor MBR-1, though no phenotypes
have been observed so far (Feng et al., 2012).

ceh-14 plays an important role in the axonal outgrowth of ALA,
since it is required for the initial pathfinding, and abnormal
migration into the VNC is seen in mutants. By contrast, the
paired-like homeobox genes ceh-17 and ceh-10 are involved in
antero-posterior axonal growth of the AFD axons (Pujol et al.,
2000; Van Buskirk and Sternberg, 2010), ceh-14, ceh-17, and ceh-10
act in separate pathways, although ceh-14 and ceh-17 are linked
via cross-regulation (Van Buskirk and Sternberg, 2010). The ceh-14
analyses of Van Buskirk and Sternberg (2010) show some dis-
crepancies with our data, however, most of this is probably
explained by the use of different reporter constructs (see
Supplementary Fig. 1) and methods, as well as the markers used
to examine axonal outgrowth (ceh-14::GFP versus unc-53::GFP,
which is downregulated in ceh-14(ch3)).

The outgrowth defects of ceh-14 mutants in tail neurons have
not been examined in detail yet. Only in PVT ceh-14 has been
shown to play a subtle role in axon guidance, where it is required
for the regulation of several zig genes (Aurelio et al., 2003).
In animals mutant in both the LIM-HB gene lim-6 and ceh-14
flip-over defects along the axonal paths in the VNC are observed.
Furthermore, ceh-14 was implicated to also in the flip-over process
by regulating adhesion molecules in the PVQ neurons.

In conclusion, ceh-14 plays many different roles that cannot be
reduced to one common denominator, rather it is required for

diverse aspects of terminal neuronal differentiation. To unravel these functions, the full complement of target genes needs to be identified in each cell. The 880 putative targets from the mod-ENCODE ChIP-seq data (Niu et al., 2011) represent a starting point that needs further verification, but there may still be scores of additional, unknown targets.

Note added in proof

Movies of spatio-temporal (4D) ceh-14::GFP expression during embryogenesis are available at http://www.endrov.net/paper/ceh14.

Acknowledgments

We would like to thank I. Mori and her group for critical advice in identification of neurons and performing thermotaxis assays. Further we thank C. Van Buskirk and P. Sternberg for sharing of unpublished information. We thank A. Fire for providing vectors and G. Jansen for the gpa-13::GFP reporter plasmid, Y. Andachi and Y. Kohara for providing the Tc1 insertion strain VK11, M. Koga for some strains and markers, M. Nonet for prabGFPim3, and G. Aspöck, C. Dozier, J. Ewbank and Y. Ohsima for helpful advice and discussion. Nematode embryos and markers, M. Nonet for prabGFPim3, and M. Koga for some strains were provided by M. Bürglin for the study. H. Kagoshima et al. / Developmental Biology 380 (2013) 314–323

References

