A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

Yuichi Yoshida
National Institute of Informatics and Preferred Infrastructure, Inc

November 29, 2013
Property Testing

Definition

\(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is \(\epsilon \)-far from \(\mathcal{P} \) if, for any \(g : \{0, 1\}^n \rightarrow \{0, 1\} \) satisfying \(\mathcal{P} \),

\[
\Pr_{x}[f(x) \neq g(x)] \geq \epsilon.
\]
Property Testing

Definition

\[f : \{0, 1\}^n \to \{0, 1\} \] is \(\varepsilon \)-far from \(\mathcal{P} \) if, for any \(g : \{0, 1\}^n \to \{0, 1\} \) satisfying \(\mathcal{P} \),

\[\Pr_{x}[f(x) \neq g(x)] \geq \varepsilon. \]

\(\varepsilon \)-tester for a property \(\mathcal{P} \):

- Given \(f : \{0, 1\}^n \to \{0, 1\} \) as a query access.
- Proximity parameter \(\varepsilon > 0 \).
Local Testability

Definition

\mathcal{P} is *locally testable* if, for any $\epsilon > 0$, there is an ϵ-tester with query complexity that only depends on ϵ (and \mathcal{P}).

Examples of locally testable properties:

- Linearity: $O(1/\epsilon)$ [BLR93]
- d-degree Polynomials: $O(2^d + 1/\epsilon)$ [AKK+05, BKS+10]
- Fourier sparsity [GOS+11]
- Odd-cycle-freeness: $O(1/\epsilon^2)$ [BGRS12]
 \[\forall \text{ odd } k \text{ and } x_1, \ldots, x_k \text{ such that } \sum_i x_i = 0, f(x_i) = 1 \text{ for all } i. \]
- k-Juntas: $O(k/\epsilon + k \log k)$ [FKR+04, Bla09].
Affine-Invariant Properties

Definition

\(\mathcal{P} \) is **affine-invariant** if a function \(f : \mathbb{F}_2^n \to \{0, 1\} \) satisfies \(\mathcal{P} \), then \(f \circ A \) satisfies \(\mathcal{P} \) for any bijective affine transformation \(A : \mathbb{F}_2^n \to \mathbb{F}_2^n \).

Examples: Linearity, low-degree polynomials, Fourier sparsity, odd-cycle-freeness.
Affine-Invariant Properties

Definition

\(\mathcal{P} \) is **affine-invariant** if a function \(f : \mathbb{F}_2^n \to \{0, 1\} \) satisfies \(\mathcal{P} \), then \(f \circ A \) satisfies \(\mathcal{P} \) for any bijective affine transformation \(A : \mathbb{F}_2^n \to \mathbb{F}_2^n \).

Examples: Linearity, low-degree polynomials, Fourier sparsity, odd-cycle-freeness.

Q. Characterization of locally testable affine-invariant properties? [KS08]
Related Work

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]

 Ex. Linearity, low-degree polynomials, odd-cycle-freeness.
 - ⇒ is true. [BGS10]
 - ⇐ is true (if the property has bounded complexity). [BFH+13].
Related Work

- Locally testable with one-sided error \Leftrightarrow affine-subspace hereditary? \cite{BGS10}

 Example. Linearity, low-degree polynomials, odd-cycle-freeness.
 - \Rightarrow is true. \cite{BGS10}
 - \Leftarrow is true (if the property has bounded complexity). \cite{BFH+13}.

- \mathcal{P} is locally testable \Rightarrow distance to \mathcal{P} is estimable. \cite{HL13}
Related Work

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]
 Ex. Linearity, low-degree polynomials, odd-cycle-freeness.
 - ⇒ is true. [BGS10]
 - ⇐ is true (if the property has bounded complexity). [BFH+13].
- \(\mathcal{P} \) is locally testable ⇒ distance to \(\mathcal{P} \) is estimable. [HL13]
- \(\mathcal{P} \) is locally testable ⇔ regular-reducible. [This work]
Graph Property Testing

Definition

A graph \(G = (V, E) \) is \(\epsilon \)-far from a property \(\mathcal{P} \) if we must add or remove at least \(\epsilon |V|^2 \) edges to make \(G \) satisfy \(\mathcal{P} \).

Examples of locally testable properties:

- 3-Colorability [GGR98]
- \(H \)-freeness [AFKS00]
- Monotone properties [AS08b]
- Hereditary properties [AS08a]
Szemerédi’s regularity lemma:
Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.
A Characterization of Locally Testable Graph Properties

Szemerédi’s regularity lemma:
Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.

Theorem ([AFNS09])
A graph property \mathcal{P} is locally testable \iff whether \mathcal{P} holds is determined only by the set of densities $\{\eta_{ij}\}_{i,j}$.
A Characterization of Locally Testable Graph Properties

Szemerédi’s regularity lemma: Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.

Theorem ([AFNS09])
A graph property \mathcal{P} is locally testable \iff whether \mathcal{P} holds is determined only by the set of densities $\{\eta_{ij}\}_{i,j}$.

Q. How can we extract such constant-size sketches from functions?
Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \geq 1$, and $r : \mathbb{N} \rightarrow \mathbb{N}$, there exists C such that:

any function $f : \mathbb{F}_2^n \rightarrow \{0, 1\}$ can be decomposed as $f = f' + f''$, where

- f' is a structured part $f' : \mathbb{F}_2^n \rightarrow [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq C$,
 - P_1, \ldots, P_C are “non-classical” polynomials of degree $< d$ and rank $\geq r(C)$.
- $\Gamma : \mathbb{T}_C \rightarrow [0, 1]$ is a function.
- A pseudo-random part $f'' : \mathbb{F}_2^n \rightarrow [-1, 1]$.

The Gowers norm $\|f''\|_{U^d}$ is at most γ.

Yuichi Yoshida (NII and PFI)
Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \geq 1$, and $r : \mathbb{N} \rightarrow \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \rightarrow \{0, 1\}$ can be decomposed as $f = f' + f''$, where

- a **structured part** $f' : \mathbb{F}_2^n \rightarrow [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq \overline{C}$,
 - P_1, \ldots, P_C are “non-classical” polynomials of degree $< d$ and rank $\geq r(C)$.
 - $\Gamma : \mathbb{T}^C \rightarrow [0, 1]$ is a function.

- a pseudo-random part $f'' : \mathbb{F}_2^n \rightarrow [-1, 1]$.
- The Gowers norm $\|f''\|_{U^d}$ is at most γ.

Yuichi Yoshida (NII and PFI)
Constant Sketches for Functions

Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \geq 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as $f = f' + f''$, where

- a **structured part** $f' : \mathbb{F}_2^n \to [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq \overline{C}$,
 - P_1, \ldots, P_C are “non-classical” polynomials of degree $< d$ and rank $\geq r(C)$.
 - $\Gamma : \mathbb{T}^C \to [0, 1]$ is a function.
- a **pseudo-random part** $f'' : \mathbb{F}_2^n \to [-1, 1]$
 - The Gowers norm $\|f''\|_{U^d}$ is at most γ.
Factors

Polynomial sequence \((P_1, \ldots, P_C)\) partitions \(\mathbb{F}_2^n\) into atoms \(\{x \mid P_1(x) = b_1, \ldots, P_C(x) = b_C\}\).

The decomposition theorem says:

\[
\mathbb{F}_2^n = \Gamma(P_1, \ldots, P_C) + \Upsilon
\]
What is the Gowers Norm?

Definition

Let $f : \mathbb{F}_2^n \to \mathbb{C}$. The **Gowers norm of order d** for f is

$$\|f\|_{U^d} := \left(\mathbb{E}_{x,y_1,...,y_d} \prod_{I \subseteq \{1,...,d\}} J^{||I||} f(x + \sum_{i \in I} y_i) \right)^{1/2^d},$$

where J denotes complex conjugation.

- $\|f\|_{U^1} = |\mathbb{E}_x f(x)|$
- $\|f\|_{U^1} \leq \|f\|_{U^2} \leq \|f\|_{U^3} \leq \cdots$
- $\|f\|_{U^d}$ measures correlation with polynomials of degree $< d$.
Correlation with Polynomials of Degree $< d$

Proposition

For any polynomial $P : \mathbb{F}_2^n \to \{0, 1\}$ of degree $< d$, $\|(-1)^P\|_{U^d} = 1$.
Correlation with Polynomials of Degree \(< d\)

Proposition

For any polynomial \(P : \mathbb{F}_2^n \rightarrow \{0, 1\}\) of degree \(< d\), \(\|(-1)^P\|_{U^d} = 1\).

However, the converse does not hold when \(d \geq 4\)...
Correlation with Polynomials of Degree $< d$

Proposition

For any polynomial $P : \mathbb{F}_2^n \rightarrow \{0, 1\}$ of degree $< d$, $\|(-1)^P\|_{U^d} = 1$. However, the converse does not hold when $d \geq 4$...

Definition

$P : \mathbb{F}_2^n \rightarrow \mathbb{T}$ is a *non-classical polynomial of degree (less than) d* if

\[\|\exp(2\pi i \cdot f)\|_{U^d} = 1. \]

It turns out that the range of P is $U_{k+1} := \{0, \frac{1}{2^{k+1}}, \ldots, \frac{2^{k+1}-1}{2^{k+1}}\}$ for some k (= *depth*).
Is This Really a Constant-size Sketch?

• Structured part: $f' = \Gamma(P_1, \ldots, P_C)$.
• Γ indeed has a constant-size representation, but P_1, \ldots, P_C may not have.
• The rank of (P_1, \ldots, P_C) is high
 \Rightarrow Their degrees and depths determine almost everything.
 Ex. the distribution of the restriction of f to a random affine subspace.
Formalize “f has some specific structured part”.

Definition

A *regularity-instance* I is a tuple of

- an error parameter $\gamma > 0$,
- a structure function $\Gamma : \prod_{i=1}^{C} U_{h_{i}+1} \rightarrow [0, 1]$,
- a complexity parameter $C \in \mathbb{N}$,
- a degree-bound parameter $d \in \mathbb{N}$,
- a degree parameter $d = (d_1, \ldots, d_C) \in \mathbb{N}^C$ with $d_i < d$,
- a depth parameter $h = (h_1, \ldots, h_C) \in \mathbb{N}^C$ with $h_i < d_i$, and
- a rank parameter $r \in \mathbb{N}$.
Satisfying a Regularity-Instance

Definition

Let $I = (\gamma, \Gamma, C, d, d, h, r)$ be a regularity-instance. f satisfies I if it is of the form

$$f(x) = \Gamma(P_1(x), \ldots, P_C(x)) + \Upsilon(x),$$

where

- P_i is a polynomial of degree d_i and depth h_i,
- (P_1, \ldots, P_C) has rank at least r,
- $\|\Upsilon\|_{U^d} \leq \gamma$.

Can we test the property of satisfying I?
Testing the Property of Satisfying a Regularity-Instance

Theorem

Let $\epsilon > 0$ and $I = (\gamma, \Gamma, C, d, h, r)$ be a regularity-instance with $r \geq r(\epsilon, \gamma, C, d)$. Then, there is an ϵ-tester for the property of satisfying I with a constant number of queries.
Testing the Property of Satisfying a Regularity-Instance

Theorem

Let $\epsilon > 0$ and $I = (\gamma, \Gamma, C, d, d, h, r)$ be a regularity-instance with $r \geq r(\epsilon, \gamma, C, d)$. Then, there is an ϵ-tester for the property of satisfying I with a constant number of queries.

Q. Is this really meaningful? There might not exist a polynomial sequence of rank at least r as it depends on many parameters...
Testing the Property of Satisfying a Regularity-Instance

Theorem

Let $\epsilon > 0$ and $I = (\gamma, \Gamma, C, d, d, h, r)$ be a regularity-instance with $r \geq r(\epsilon, \gamma, C, d)$. Then, there is an ϵ-tester for the property of satisfying I with a constant number of queries.

Q. Is this really meaningful? There might not exist a polynomial sequence of rank at least r as it depends on many parameters...

Lemma (Polynomial regularity lemma [BFH+13])

For any $d \in \mathbb{N}$ and $r : \mathbb{N} \rightarrow \mathbb{N}$, there is a function $\bar{C} : \mathbb{N}$ s.t. there is a polynomial sequence P with $|P| \leq \bar{C}$, degree $\leq d$, and rank $\geq r(|P|)$.
A property \mathcal{P} is **regular-reducible** if for any $\delta > 0$, there exists a set \mathcal{R} of constant number of regularity-instances with constant parameters and a **high rank** (depending on δ) such that:
Our Characterization

Theorem

An affine-invariant property \mathcal{P} is locally testable

\iff

\mathcal{P} is regular-reducible.
Proof Sketch

- Regular-reducible \Rightarrow Locally testable
 Combining the testability of regularity-instances and [HL13], we can estimate the distance to \mathcal{R}.

- Locally testable \Rightarrow Regular-reducible
 The behavior of a tester depends only on the distribution of the restriction to a random affine subspace. Since Γ, \mathbf{d}, and \mathbf{h} determines the distribution, we can find \mathcal{R} using the tester.
Testability of the Property of Satisfying a Regularity-Instance

Input: $f : \mathbb{F}_2^n \to \{0, 1\}$, $I = (\gamma, \Gamma, C, d, d, h, r)$, and $\epsilon > 0$.

1. Set δ small enough and m large enough.
2. Take a random affine embedding $A : \mathbb{F}_2^m \to \mathbb{F}_2^n$.
3. **if** $f \circ A$ is δ-close to satisfying I **then** accept.
4. **else** reject.
Testability of the Property of Satisfying a Regularity-Instance

Input: $f : \mathbb{F}_2^n \rightarrow \{0, 1\}$, $I = (\gamma, \Gamma, C, d, d, h, r)$, and $\epsilon > 0$.

1. Set δ small enough and m large enough.
2. Take a random affine embedding $A : \mathbb{F}_2^m \rightarrow \mathbb{F}_2^n$.
3. If $f \circ A$ is δ-close to satisfying I then accept.
4. Else reject.

Q. If f satisfies I, $f \circ A$ is close to I?
Q. If f is far from I, $f \circ A$ is far from I?
If \(f \) satisfies \(I \)

- \(f(x) = \Gamma(P(x)) + \Upsilon(x) \) with \(\| \Upsilon(x) \|_{U_d} \leq \gamma \).
- \(f(Ax) \) almost satisfies \(I \):
 - \(f(Ax) = \Gamma(P(Ax)) + \Upsilon(Ax) \) with \(\| \Upsilon(Ax) \|_{U_d} \leq \gamma + o(\gamma) \).
 - \(P(Ax) \) meets the requirement of \(I \).
- By perturbing \(f(Ax) \) up to \(\delta \)-fraction, we obtain a function satisfying \(I \).
If \(f \) is \(\epsilon \)-far from \(I \)

- Suppose that \(f \circ A \) is \(\delta \)-close to satisfying \(I \) with high probability.
 - \(\delta \)-close: \(f(Ax) = \Gamma(P'(x)) + \Upsilon'(x) + \Delta'(x) \).
 - Decomposition:
 \[
 f(x) = \Sigma(R(x)) + \text{noise} \Rightarrow f(Ax) = \Sigma(R(Ax)) + \text{noise}.
 \]
- We “lift” \(P' \cup (R \circ A) \) to \(P \cup R \) using the high-rank conditions.
 - \(\Sigma(R(x)) = \Gamma(P(x)) + \Upsilon(x) \) with \(\|\Upsilon\|_{U^d} \leq \gamma + o(\gamma) \).
 - \(P \) meets the requirement of \(I \).
- By perturbing \(f \) up to \(\epsilon \)-fraction, we get a function satisfying \(I \), contradiction.
Conclusions

• Easily extendable to \mathbb{F}_p for a prime p.
• Query complexity is actually unknown due to the Gowers inverse theorem. Other parts requires Ackermann-type complexity.
Conclusions

• Easily extendable to \mathbb{F}_p for a prime p.

• Query complexity is actually unknown due to the Gowers inverse theorem. Other parts requires Ackermann-type complexity.

Open Problems

• \mathcal{P} is locally testable with one-sided error $\Leftrightarrow \mathcal{P}$ is affine-subspace hereditary? [BFH+13]

• Characterizations of proximity oblivious testing?

• Why is affine-invariance easier to deal with than permutation-invariant properties?