A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

Yuichi Yoshida
National Institute of Informatics and Preferred Infrastructure, Inc

June 9, 2014
Property Testing

Definition

\(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is \(\epsilon \)-far from \(P \) if, for any \(g : \{0, 1\}^n \rightarrow \{0, 1\} \) satisfying \(P \),

\[
\Pr_{x} \left[f(x) \neq g(x) \right] \geq \epsilon.
\]
Property Testing

Definition

\(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is \(\epsilon \)-far from \(\mathcal{P} \) if, for any \(g : \{0, 1\}^n \rightarrow \{0, 1\} \) satisfying \(\mathcal{P} \),

\[
\Pr_{x}[f(x) \neq g(x)] \geq \epsilon.
\]

\(\epsilon \)-tester for a property \(\mathcal{P} \):

- Given \(f : \{0, 1\}^n \rightarrow \{0, 1\} \)
 as a query access.
- Proximity parameter \(\epsilon > 0 \).
Local Testability

Definition

\mathcal{P} is *locally testable* if, for any $\epsilon > 0$, there is an ϵ-tester with query complexity that only depends on ϵ.

Examples of locally testable properties:

- **Linearity**: $O(1/\epsilon)$ [BLR93]
- d-degree Polynomials: $O(2^d + 1/\epsilon)$ [AKK+05, BKS+10]
- Fourier sparsity [GOS+11]
- Odd-cycle-freeness: $O(1/\epsilon^2)$ [BGRS12]
 \exists odd k and x_1, \ldots, x_k such that $\sum_i x_i = 0$, $f(x_i) = 1$ for all i.
- k-Juntas: $O(k/\epsilon + k \log k)$ [FKR+04, Bla09].
Definition

\mathcal{P} is **affine-invariant** if a function $f : \mathbb{F}_2^n \to \{0, 1\}$ satisfies \mathcal{P}, then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Examples: Linearity, low-degree polynomials, Fourier sparsity, odd-cycle-freeness.
Affine-Invariant Properties

Definition

\(\mathcal{P} \) is **affine-invariant** if a function \(f : \mathbb{F}_2^n \rightarrow \{0, 1\} \) satisfies \(\mathcal{P} \), then \(f \circ A \) satisfies \(\mathcal{P} \) for any bijective affine transformation \(A : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \).

Examples: Linearity, low-degree polynomials, Fourier sparsity, odd-cycle-freeness.

Q. Characterization of locally testable affine-invariant properties? [KS08]
Related Work

- Locally testable with one-sided error \Leftrightarrow affine-subspace hereditary? [BGS10]

 Example. Linearity, low-degree polynomials, odd-cycle-freeness.

 - \Rightarrow is true. [BGS10]
 - \Leftarrow is true (if the property has bounded complexity). [BFH+13].

- P is locally testable \Rightarrow distance to P is estimable. [HL13]

- P is locally testable \Leftrightarrow regular-reducible. [This work]
Related Work

- Locally testable with one-sided error \iff affine-subspace hereditary? [BGS10]
 - Ex. Linearity, low-degree polynomials, odd-cycle-freeness.
 - \Rightarrow is true. [BGS10]
 - \Leftarrow is true (if the property has bounded complexity). [BFH+13].
- \mathcal{P} is locally testable \Rightarrow distance to \mathcal{P} is estimable. [HL13]
Related Work

- Locally testable with one-sided error ⇔ affine-subspace hereditary? [BGS10]
 - Ex. Linearity, low-degree polynomials, odd-cycle-freeness.
 - ⇒ is true. [BGS10]
 - ⇐ is true (if the property has bounded complexity). [BFH+13].
- \mathcal{P} is locally testable ⇒ distance to \mathcal{P} is estimable. [HL13]
- \mathcal{P} is locally testable ⇔ regular-reducible. [This work]
Graph Property Testing

Definition

A graph $G = (V, E)$ is ϵ-far from a property \mathcal{P} if we must add or remove at least $\epsilon|V|^2$ edges to make G satisfy \mathcal{P}.

Examples of locally testable properties:

- 3-Colorability [GGR98]
- H-freeness [AFKS00]
- Monotone properties [AS08b]
- Hereditary properties [AS08a]
A Characterization of Locally Testable Graph Properties

Szemerédi’s regularity lemma:
Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.
A Characterization of Locally Testable Graph Properties

Szemerédi’s regularity lemma:
Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.

Theorem ([AFNS09])
A graph property \mathcal{P} is locally testable \iff whether \mathcal{P} holds is determined only by the set of densities $\{\eta_{ij}\}_{i,j}$.

Q. How can we extract such constant-size sketches from functions?
Szemerédi’s regularity lemma:
Every graph can be partitioned into a constant number of parts so that each pair of parts looks random.

Theorem ([AFNS09])

A graph property P is locally testable \iff whether P holds is determined only by the set of densities $\{\eta_{ij}\}_{i,j}$.

Q. How can we extract such constant-size sketches from functions?
Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \geq 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that:

any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as $f = f' + f''$, where

- a structured part $f' : \mathbb{F}_2^n \to [0, 1]$, where $C \leq \overline{C}$,
 - P_1, \ldots, P_C are "non-classical" polynomials of degree $< d$ and rank $\geq r(C)$,
 - $\Gamma : T^C \to [0, 1]$ is a function.
- a pseudo-random part $f'' : \mathbb{F}_2^n \to [-1, 1]$.
- The Gowers norm $\|f''\|_{U^d}$ is at most γ.

Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \geq 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists \overline{C} such that: any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as $f = f' + f''$, where

- a **structured part** $f' : \mathbb{F}_2^n \to [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq \overline{C}$,
 - P_1, \ldots, P_C are “non-classical” polynomials of degree $< d$ and rank $\geq r(C)$.
- $\Gamma : \mathbb{T}^C \to [0, 1]$ is a function.

The Gowers norm $\|f''\|_{U^d}$ is at most γ.
Theorem (Decomposition Theorem [BFH+13])

For any $\gamma > 0$, $d \geq 1$, and $r : \mathbb{N} \to \mathbb{N}$, there exists C such that:
any function $f : \mathbb{F}_2^n \to \{0, 1\}$ can be decomposed as $f = f' + f''$, where

- a structured part $f' : \mathbb{F}_2^n \to [0, 1]$, where
 - $f' = \Gamma(P_1, \ldots, P_C)$ with $C \leq C$,
 - P_1, \ldots, P_C are “non-classical” polynomials of degree $< d$ and rank $\geq r(C)$.
 - $\Gamma : \mathbb{T}^C \to [0, 1]$ is a function.

- a pseudo-random part $f'' : \mathbb{F}_2^n \to [-1, 1]$
- The Gowers norm $\|f''\|_{U^d}$ is at most γ.

Factors

Polynomial sequence \((P_1, \ldots, P_C)\) partitions \(\mathbb{F}_2^n\) into atoms \(\{x \mid P_1(x) = b_1, \ldots, P_C(x) = b_C\}\).

The decomposition theorem says:

\[
f = \bigoplus_{\Gamma(P_1, \ldots, P_C)} + \gamma
\]
What is the Gowers Norm?

Definition

Let \(f : \mathbb{F}_2^n \to \mathbb{C} \). The **Gowers norm of order** \(d \) for \(f \) is

\[
\| f \|_{U^d} := \left(\mathbb{E}_{x, y_1, \ldots, y_d} \prod_{I \subseteq \{1, \ldots, d\}} J^{\|I\|} f(x + \sum_{i \in I} y_i) \right)^{1/2^d},
\]

where \(J \) denotes complex conjugation.

- \(\| f \|_{U^1} = | \mathbb{E}_x f(x) | \)
- \(\| f \|_{U^1} \leq \| f \|_{U^2} \leq \| f \|_{U^3} \leq \cdots \)
- \(\| f \|_{U^d} \) measures correlation with polynomials of degree \(< d \).
Proposition

For any polynomial $P : \mathbb{F}_2^n \to \{0, 1\}$ of degree $< d$, $\|(−1)^P\|_{U^d} = 1$.

However, the converse does not hold when $d \geq 4$...

Definition

$P : \mathbb{F}_2^n \to T$ is a non-classical polynomial of degree $< d$ if $\|\exp(2\pi i \cdot f)\|_{U^d} = 1$.

It turns out that the range of P is $U^k+1 := \{0, 1, 2^k+1, \ldots, 2^k+1-1\}$ for some k (depth).
Correlation with Polynomials of Degree $< d$

Proposition

*For any polynomial $P : \mathbb{F}_2^n \rightarrow \{0, 1\}$ of degree $< d$, $\|(-1)^P\|_{U^d} = 1$.***

However, the converse does not hold when $d \geq 4$. ...
Correlation with Polynomials of Degree $< d$

Proposition

For any polynomial $P : \mathbb{F}_2^n \rightarrow \{0, 1\}$ of degree $< d$, $\|(-1)^P\|_{U^d} = 1$.

However, the converse does not hold when $d \geq 4$...

Definition

$P : \mathbb{F}_2^n \rightarrow \mathbb{T}$ is a *non-classical polynomial of degree* $< d$ if $\|\exp(2\pi i \cdot f)\|_{U^d} = 1$.

It turns out that the range of P is $\mathbb{U}_{k+1} := \{0, \frac{1}{2^{k+1}}, \ldots, \frac{2^{k+1} - 1}{2^{k+1}}\}$ for some k (= depth).
Is This Really a Constant-size Sketch?

- Structured part: $f' = \Gamma(P_1, \ldots, P_C)$.
- Γ indeed has a constant-size representation, but P_1, \ldots, P_C may not have (even if we just want to specify the coset $\{P \circ A\}$).
- The rank of (P_1, \ldots, P_C) is high
 \Rightarrow Their degrees and depths determine almost everything.
 Ex. the distribution of the restriction of f to a random affine subspace.
Regularity-Instance

Formalize “f has some specific structured part”.

Definition

A \textit{regularity-instance} \(I \) is a tuple of

- an error parameter \(\gamma > 0 \),
- a structure function \(\Gamma : \prod_{i=1}^{C} \bigcup_{h_i+1} \rightarrow [0, 1] \),
- a complexity parameter \(C \in \mathbb{N} \),
- a degree-bound parameter \(d \in \mathbb{N} \),
- a degree parameter \(d = (d_1, \ldots, d_C) \in \mathbb{N}^C \) with \(d_i < d \),
- a depth parameter \(h = (h_1, \ldots, h_C) \in \mathbb{N}^C \) with \(h_i < \frac{d_i}{p-1} \), and
- a rank parameter \(r \in \mathbb{N} \).
Satisfying a Regularity-Instance

Definition

Let $I = (\gamma, \Gamma, C, d, d, h, r)$ be a regularity-instance. f satisfies I if it is of the form

$$f(x) = \Gamma(P_1(x), \ldots, P_C(x)) + \Upsilon(x),$$

where

- P_i is a polynomial of degree d_i and depth h_i,
- (P_1, \ldots, P_C) has rank at least r,
- $\|\Upsilon\|_{U^d} \leq \gamma$.

Yuichi Yoshida (NII and PFI)
Testing the Property of Satisfying a Regularity-Instance

Theorem

Let $\epsilon > 0$ and $I = (\gamma, \Gamma, C, d, h, r)$ be a regularity-instance with $r \geq r(\epsilon, \gamma, C, d)$. Then, there is an ϵ-tester for the property of satisfying I with a constant number of queries.
A property \mathcal{P} is **regular-reducible** if for any $\delta > 0$, there exists a set \mathcal{R} of constant number of high-rank regularity-instances with constant parameters such that:

$$ f \in \mathcal{P} \quad \leq \delta $$

$$ \geq \epsilon - \delta $$

$g : \epsilon$-far from \mathcal{P}
Our Characterization

Theorem

An affine-invariant property \mathcal{P} is locally testable \iff \mathcal{P} is regular-reducible.
Proof Sketch

• Regular-reducible \Rightarrow Locally testable
 Combining the testability of regularity-instances and [HL13], we can estimate the distance to \mathcal{R}.

• Locally testable \Rightarrow Regular-reducible
 The behavior of a tester depends only on the distribution of the restriction to a random affine subspace. Since Γ, \mathbf{d}, and \mathbf{h} determines the distribution, we can find \mathcal{R} using the tester.
Testability of the Property of Satisfying a Regularity-Instance

Input: $f : \mathbb{F}_2^n \to \{0, 1\}$, $I = (\gamma, \Gamma, C, d, d, h, r)$, and $\epsilon > 0$.

1. Set δ small enough and m large enough.
2. Take a random affine embedding $A : \mathbb{F}_2^m \to \mathbb{F}_2^n$.
3. If $f \circ A$ is δ-close to satisfying I then accept.
4. Else reject.
Testability of the Property of Satisfying a Regularity-Instance

Input: $f : \mathbb{F}_2^n \to \{0, 1\}$, $I = (\gamma, \Gamma, C, d, d, h, r)$, and $\epsilon > 0$.

1: Set δ small enough and m large enough.
2: Take a random affine embedding $A : \mathbb{F}_2^m \to \mathbb{F}_2^n$.
3: if $f \circ A$ is δ-close to satisfying I then accept.
4: else reject.

Q. If f satisfies I, $f \circ A$ is close to I?
Q. If f is far from I, $f \circ A$ is far from I?
If f satisfies I:

- $f(x) = \Gamma(P(x)) + \Upsilon(x)$ with $\|\Upsilon(x)\|_{U^d} \leq \gamma$.
- $f(Ax)$ almost satisfies I:
 - $f(Ax) = \Gamma(P(Ax)) + \Upsilon(Ax)$ with $\|\Upsilon(Ax)\|_{U^d} \leq \gamma + o(\gamma)$.
 - $P(Ax)$ meets the requirement of I.
- By perturbing $f(Ax)$ up to δ-fraction, we obtain a function satisfying I.
If \(f \) is \(\epsilon \)-far from \(I \)

We will show that “\(f \circ A \) is \(\delta \)-close to \(I \)” implies “\(f \) is \(\epsilon \)-close to \(I \).”

- \(\delta \)-close: \(f(Ax) \approx \Gamma(P'(x)) \).
- Decomposition: \(f(x) \approx \Sigma(R(x)) \).

\[\Rightarrow f(Ax) \approx \Sigma(R'(x)), \text{ where } R' = R \circ A. \]
If f is ϵ-far from I

We will show that “$f \circ A$ is δ-close to I” implies “f is ϵ-close to I.”

- δ-close: $f(Ax) \approx \Gamma(P'(x))$.
- Decomposition: $f(x) \approx \Sigma(R(x))$.
 \[\Rightarrow f(Ax) \approx \Sigma(R'(x)), \text{ where } R' = R \circ A. \]

\[\Sigma(R'(x)) \approx \Gamma(P'(x)). \]
If f is ϵ-far from I

We will show that “$f \circ A$ is δ-close to I” implies “f is ϵ-close to I.”

- δ-close: $f(Ax) \approx \Gamma(P'(x))$.
- Decomposition: $f(x) \approx \Sigma(R(x))$.

 $\Rightarrow f(Ax) \approx \Sigma(R'(x))$, where $R' = R \circ A$.

$$\Sigma(R'(x)) \approx \Gamma(P'(x)).$$

We can find an extension \overline{R}' of R' (of high rank) such that:

$P_i = \Gamma_i(\overline{R}'(x))$ for some Γ_i.

$$\Rightarrow \Sigma(R'(x)) \approx \Gamma(\Gamma_1(\overline{R}'(x)), \ldots, \Gamma_C(\overline{R}'(x))).$$
If \(f \) is \(\epsilon \)-far from \(I \)

Lemma

The identity holds for every value in the range of \(R' \).
If \(f \) is \(\epsilon \)-far from \(I \)

Lemma

The identity holds for every value in the range of \(\overline{R'} \).

We can replace \(\overline{R'} \) (on \(m \) variables) by a polynomial sequence \(\overline{R} \) on \(n \) variables such that \(\overline{R} \circ A = \overline{R'} \).

\[\Rightarrow f(x) \approx \sum(\overline{R}(x)) \approx \Gamma(\Gamma_1(\overline{R}(x)), \ldots, \Gamma_C(\overline{R}(x))) := \Gamma(\overline{P}(x)). \]
If f is ϵ-far from I

Lemma

The identity holds for every value in the range of $\overline{R'}$.

We can replace $\overline{R'}$ (on m variables) by a polynomial sequence \overline{R} on n variables such that $\overline{R} \circ A = \overline{R'}$.

$\Rightarrow f(x) \approx \Sigma(\overline{R}(x)) \approx \Gamma(\Gamma_1(\overline{R}(x)), \ldots, \Gamma_C(\overline{R}(x))) := \Gamma(\overline{P}(x))$.

Lemma

With high probability $\overline{P}(x)$ is consistent with I.

$\Rightarrow f$ is ϵ-close to satisfying I.

\Rightarrow Contradiction.
Conclusions

• Easily extendable to \mathbb{F}_p for a prime p.

• Query complexity is actually unknown due to the Gowers inverse theorem. Other parts involve Ackermann-like functions.
Conclusions

- Easily extendable to \mathbb{F}_p for a prime p.
- Query complexity is actually unknown due to the Gowers inverse theorem. Other parts involve Ackermann-like functions.
 ⇒ Obtaining a tower-like function is a big improvement!
Open Problems

• Characterization based on function (ultra)limits?
• locally testable with one-sided error \Leftrightarrow affine-subspace hereditary? [BFH$^+$13]
• Characterization of linear-invariant properties?
 • Abelian \Rightarrow higher order Fourier analysis developed [Sze12].
 • Non-Abelian \Rightarrow representation theory?
• Why is affine invariance easier to deal with than permutation invariance?