Quantitative Structure–Cytotoxicity Relationship of Piperic Acid Amides

CHIYAKO SHIMADA1, YOSHIHIRO UESAWA2, MARIKO ISHIHARA3, HAJIME KAGAYA2, Taisei Kanamoto4, SHIGEMI TERAKUBO4, HIDEKI NAKASHIMA4, KOICHI TAKAO5, TAKAKI MIYASHIRO2, YOSHIKI SUGITA5 and HIROSHI SAKAGAMI1

Divisions of 1Pharmacology and 3Basic Chemistry, Meikai University School of Dentistry, Sakado, Saitama, Japan;
2Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan;
4St. Marianna University School of Medicine, Kanagawa, Japan;
5Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan

Reprinted from
ANTICANCER RESEARCH 34: 4877-4884 (2014)
Quantitative Structure–Cytotoxicity Relationship of Piperic Acid Amides

CHIYAKO SHIMADA, YOSHIHIRO UESAWA, MARIKO ISHIHARA, HAJIME KAGAYA, TAISEI KANAMOTO, SHIGEMI TERAUBO, HIDEKI NAKASHIMA, KOICHI TAKAO, TAKAKI MIYASHIRO, YOSHIKI SUGITA, and HIROSHI SAKAGAMI

Divisions of 1Pharmacology and 3Basic Chemistry, Meikai University School of Dentistry, Sakado, Saitama, Japan; 2Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan; 4St. Marianna University School of Medicine, Kanagawa, Japan; 5Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan

Abstract. Background: A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure–activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Materials and Methods: Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. Results: All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperyldopamine (8) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. Conclusion: The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides.

Correspondence to: Hiroshi Sakagami, Division of Pharmacology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan. Tel: +81 492792758, Fax: +81 492855171, e-mail: sakagami@dent.meikai.ac.jp

Key Words: Piperic acid amides, QSAR analysis, cytotoxicity, tumor selectivity, anti-HIV activity.
For the cytotoxicity assay, both human normal oral cells (gingival fibroblast, HGF; periodontal ligament fibroblast, HPLF; pulp cells, HPC) and human oral squamous cell carcinoma (OSCC) cell lines (Ca9-22, HSC-2, HSC-3, HSC-4) were used as target cells. The antitumor potential was evaluated by the tumor-selectivity index (TS), calculated by dividing the mean 50% cytotoxic concentration (CC50) against normal oral cells by that against OSCC cell lines. We have recently reported that among 24 plant extracts, leaves of *Camptotheca acuminate*, a well-known source of camptothecin, had the highest TS value (88.3) among 24 plant extracts, suggesting that the TS value determined by this method seems to reflect the antitumor potential of each plant extract, although these oral normal and OSCC cell lines of oral origin are classified as different types of cells (mesenchymal or epithelial) (19).

For the anti-HIV assay, mock- and HIV-infected human T-cell lymphotropic virus-I (HTLV-I)-carrying human T-cell line MT4 was used. The selectivity index (SI) was calculated by dividing the CC50 by the 50% HIV infection-cytoprotective concentration (EC50).

Materials and Methods

Materials. The following chemicals and reagents were obtained from the indicated companies: Dulbecco’s modified Eagle’s medium (DMEM), from GIBCO BRL, Grand Island, NY, USA; fetal bovine serum (FBS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), azidothymidine and 2',3'-dideoxycytidine from Sigma-Aldrich Inc., St. Louis, MO, USA; piperine, dimethyl sulfoxide (DMSO), dextran sulfate (molecular mass, 5 kDa) from Wako Pure Chem. Ind., Osaka, Japan; 5-fluorouracil (5-FU) from Kyowa, Tokyo, Japan; curdlan sulfate (molecular mass, 79 kDa) from Ajinomoto Co. Ltd., Tokyo, Japan. Culture plastic dishes and
plates (96-well) were purchased from Becton Dickinson Labware (Franklin Lakes, NJ, USA).

Synthesis of test compounds. N-Piperoyl-ethanolamine (2), N-piperoylpiperazine (3), N-piperoylcadaverine (4), N-piperoylphe-
nethyamine (5), N-piperoyl-3-phenylpropylamine (6), N-
piperoyltyramine (7), N-piperoyldopamine (8), N-piperoylvanil-
lamine (9), N-piperoylerosamine (10), N-piperoylhistamine (11) and
N-piperoyl-2-(2-pyridinyl)ethylamine (12) (Figure 1) were
synthesized by coupling of piperic acid with the appropriate amine
by means of a modified procedure described elsewhere (20). To
a mixture of piperic acid (1.0 mmol) in CH$_2$Cl$_2$ (5 ml) was added
oxalyl chloride (10 mmol), and the mixture was stirred at room
temperature for 3 h. The solvent and excess oxalyl chloride were
then evaporated under reduced pressure. The crude acid chloride
generated was dissolved in CH$_2$Cl$_2$ or dimethylformamide (DMF)
(2 ml), and was added dropwise to a mixture of the appropriate amine
or its hydrochloride salt (1.2 mmol) and Et$_3$N (8 mmol) in
CH$_2$Cl$_2$ or DMF (5 ml) under ice-cooling. The reaction mixture
was stirred for 5 h at room temperature. Ice-water was added to
the mixture and the whole was extracted with CHCl$_3$. The organic
layer was dried over Na$_2$SO$_4$ and the solvent was evaporated under
reduced pressure. The residue was then purified by silica gel
column chromatography to give the corresponding piperic acid
amide. All the conjugates were characterized by 1H nuclear
resonance (NMR) and mass spectrometry (MS) data. All
compounds were dissolved in DMSO at 40 mM and stored at
-20°C before use.

Cell culture. HGF, HPLF and HPC cells, established from the first
premolar tooth extracted from the lower jaw of a 12-year-old girl
(21), and OSCC cell lines (Ca9-22, HSC-2, HSC-3, HSC-4), purchased from Riken Cell Bank, Tsukuba, Japan were cultured at
37°C in DMEM supplemented with 10% heat-inactivated FBS, 100
units/ml, penicillin G and 100 μg/ml streptomycin sulfate under a
humidified atmosphere with 5% CO$_2$. Cells were then harvested by
treatment with 0.25% trypsin-0.025% EDTA-2Na in phosphate-
buffered saline without calcium and magnesium [PSB(−)] and either
subcultured or used for experiments.

Assay for cytotoxic activity. Cells were inoculated at 2.5x103 cells/0.1 ml in a 96-microwell plate (Becton Dickinson Labware).
After 48 h, the medium was removed by suction with aspirator, and
replaced with 0.1 ml of fresh medium containing different
fractions of single test compounds. Control cells were treated
with the same amounts of DMSO present in each diluent solution.
Cells were incubated for 48 h, and the relative viable cell number
was then determined by MTT method. In brief, the treated cells
were incubated for another 3 h in fresh culture medium containing
0.2 mg/ml MTT. Cells were then lysed with 0.1 ml of DMSO, and
the absorbance at 540 nm of the cell lysate was determined using a
microplate reader (Biochromatic Labsystem, Helsinki, Finland).
The CC$_{50}$ was determined from the dose—response curve and the mean
value of CC$_{50}$ for each cell type was calculated from three
independent experiments.

Calculation of TS. The TS was calculated by the following equation:
TS=mean CC$_{50}$ against normal cells/mean CC$_{50}$ against tumor cells.
Since Ca9-22 cells were derived from gingival tissue (22), the
relative sensitivity of Ca9-22 and HGF was also compared.

Assay for HIV activity. HTLV-I-carrying human T-cell line MT4
cells (supplied by Dr. Naoki Yamamoto), highly sensitive to Human
Immunodeficiency Virus-1 (HIV-1), were infected with HIV-1_LIB
at a multiplicity of infection (m.o.i.) of 0.01. HIV- and mock-infected
(control) MT-4 cells were incubated for five days with different
fractions of test compounds and the relative viable cell number
was determined by MTT assay. The CC$_{50}$ and EC$_{50}$ were
determined from the dose—response curve for mock-infected and
HIV-infected cells, respectively (23). All data represent the mean
values of triplicate measurements. The anti-HIV activity was
evaluated by SI (CC$_{50}$/EC$_{50}$).

Estimation of CC$_{50}$ values. Original data contain the sign of
inequality such as“>”. For the convenience of analysis, these values
were changed into forms suitable for arithmetic calculation. Since
“>400” is equal to “from 400 to ∞”, we calculated the harmonic
mean as follows: 1/average(1/400,1/∞)=800. Since the CC$_{50}$ values
had a distribution pattern close to a logarithmic normal distribution,
we used the pCC$_{50}$ (i.e., the $-\log$ CC$_{50}$) for the comparison of the
cytotoxicity between the compounds. The mean pCC$_{50}$ values for
normal cells and tumor cell lines were defined as N and T,
respectively (24).

Calculation of the representative value for tumor selectivity. Tumor
selectivity is defined by the balance between pCC$_{50}$ values for
normal (N) and tumor (T) cells. The difference (T−N) was used as
a tumor-selectivity index only for the following QASR analyses.

Calculation of chemical descriptors. Each chemical structure was
optimized by the LowModeMD method (25), a suitable search
method for minimum energy conformers of flexible molecules, with
Merck Molecular Force Field (MMFF94x) in Molecular Operating
Environment (MOE) 2013.08 (Chemical Computing Group Inc.,
Quebec, Canada). Each structure was refined with density functional
theory (DFT-B3LYP/6-31G**) by using Spartan10 for Windows
(Wavefunction, Inc., Irvine, CA, USA) (26). During each step of the
calculation, quantum chemical, molecular shape, and molecular
property parameters including the partial equalization of orbital
electronatgbivties (PEOE) and vsurf descriptors, were obtained. The
parameters used were: a$_{hyd}$ (number of hydrophobic atoms), a$_{nO}$
(number of oxygen atoms), logP(o/w) (log of the octanol/water
partition coefficient), logS (log of the aqueous solubility),
PEOE_VSA_FNEG (fractional negative van der Waals surface area),
PEOE_VSA_FPOS (fractional positive van der Waals surface area),
PEOE_VSA_NEG (total negative van der Waals surface area),
PEOE_VSA_PNEG (total negative polar van der Waals surface area),
PEOE_VSA_POL (total polar van der Waals surface area),
PEOE_VSA_PPOS (total positive polar van der Waals surface area),
PEOE_VSA+4 (sum of vi where qi is in the range 0.20-0.25; vi and
qi denote the van der Waals surface area and the partial charge of
a atom i, respectively), vsurf_EWmin1 (lowest hydrophilic energy 1),
vsurf_HB6 (H-bond donor capacity 6), vsurf_HB7 (H-bond donor
capacity 7), vsurf_IW7 (hydrophilic interaction-energy moment 7),
vsurf_IW8 (hydrophilic interaction-energy moment 8), vsurf_W7
(hydrophilic volume 7).

Statistical analysis. The relation among cytotoxicity, tumor-
specificity and chemical descriptors was investigated using simple
regression analyses by JMP Pro version 10.0.2 (SAS Institute Inc.,
Cary, NC, USA). The significance level was set at p<0.05.
Results

Cytotoxicity. Compared to the positive control, 5-FU, piperine exhibited minor tumor specificity (Table I). Among 11 other analogs, compound [8] exhibited the highest tumor specificity, whereas other compounds [2-7, 9-12] exhibited much lower tumor specificity (Table I).

Anti-HIV activity. In contrast to the higher anti-HIV activity of positive controls (dextran sulfate, curdlan sulfate, azidothymidine, 2',3'-dideoxycytidine) (SI=1789-15882), none of the piperic acid amides [1-12] were able to protect cells from cytopathic effect of HIV infection (SI<1) (Table II). Based on these data, the subsequent QSAR analysis was focused on the cytotoxicity of piperic acid amides.

Computational analysis. Cytotoxicity of piperic acid amides against tumor cells (defined by T) correlated with the partial equalization of orbital electronegativity in total negative van der Waals surface area ($r^2=0.751$, $p<0.0005$), fractional positive van der Waals surface area ($r^2=0.701$, $p<0.0001$), fractional negative van der Waals surface area ($r^2=0.701$, $p<0.0001$), log of the octanol/water partition coefficient ($r^2=0.492$, $p<0.05$), number of hydrophobic atoms ($r^2=0.473$, $p<0.05$) and log of the aqueous solubility ($r^2=0.432$, $p<0.05$) (Figure 2A).

On the other hand, cytotoxicity of piperic acid amides against normal cells (defined by N) was correlated with hydrophilic interaction-energy moment 7 ($r^2=0.530$, $p<0.01$), lowest hydrophilic energy 1 ($r^2=0.491$, $p<0.05$), H-bond donor capacity 7 ($r^2=0.484$, $p<0.05$), hydrophilic volume 7 ($r^2=0.484$, $p<0.05$), H-bond donor capacity 6 ($r^2=0.476$, $p<0.05$) (Figure 2B).

Table I. Cytotoxic activity of twelve piperic acid amides. Each value represents the mean ± S.D. of triplicate assays.

<table>
<thead>
<tr>
<th>Piperic acid amide</th>
<th>Human oral squamous cell carcinoma cell line</th>
<th>Human normal oral cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca9-22 HSC-2 HSC-3 HSC-4 mean±S.D.</td>
<td>HGF HPLF HPC mean±S.D.</td>
</tr>
<tr>
<td>Piperic acid amide</td>
<td>(A) (B) (C) (D/B) (C/A)</td>
<td>(E) (F) (G) (H/G) (I/J)</td>
</tr>
<tr>
<td>1</td>
<td>128±14 512±38 583±202 600±24 456±222</td>
<td>473±22 513±13 501±39 496±21 1.1 3.6</td>
</tr>
<tr>
<td>2</td>
<td>239±50 335±54 487±57 450±72 378±113</td>
<td>539±19 510±70 518±19 522±15 1.4 2.3</td>
</tr>
<tr>
<td>3</td>
<td>103±15 114±14 134±14 122±11 118±13</td>
<td>81±22 127±15 137±13 115±30 1.0 0.8</td>
</tr>
<tr>
<td>4</td>
<td>107±76 118±51 170±31 152±18 137±29</td>
<td>122±8.0 137±7.0 131±47 130±7.5 1.0 1.1</td>
</tr>
<tr>
<td>5</td>
<td>7.4±0.8 13±2.1 73±23 199±174 73±89</td>
<td>21±4.0 68±4.5 82±31 57±32 0.8 2.8</td>
</tr>
<tr>
<td>6</td>
<td>13±4.6 18±7.0 81±2.1 208±88 80±91</td>
<td>16±3.8 41±2.6 19±1.5 25±14 0.3 1.3</td>
</tr>
<tr>
<td>7</td>
<td>11±0.1 16±6.4 18±4.2 14±2.5 15±3.0</td>
<td>13±0.58 23±3.2 20±1.0 19±5.1 1.3 1.2</td>
</tr>
<tr>
<td>8</td>
<td>38±8.5 51±13 131±60 80±17 75±41</td>
<td>>800 >800 >800 >800 >10.7 >21.1</td>
</tr>
<tr>
<td>9</td>
<td>79±11 447±331 97±3.2 >800 >356</td>
<td>535±8.7 535±13 573±26 548±22 <1.5 6.8</td>
</tr>
<tr>
<td>10</td>
<td>33±12 15±38 7.2 58±15 45±12</td>
<td>41±1.7 46±2.3 75±12 54±18 1.2 1.2</td>
</tr>
<tr>
<td>11</td>
<td>455±123 696±105 >800 500±53 >613</td>
<td>658±36 617±33 680±41 652±32 <1.1 1.4</td>
</tr>
<tr>
<td>12</td>
<td>183±9.0 262±14 268±6.5 250±3.5 241±39</td>
<td>343±104 497±5.5 467±50 436±82 1.8 1.9</td>
</tr>
<tr>
<td>5-FU</td>
<td>88±11 24±7.8 38±7.6 28±4.9 45±30</td>
<td>>1000 >1000 >1000 >1000 >22.2 >11.4</td>
</tr>
</tbody>
</table>

HGF: Human gingival fibroblast; HPC, human pulp cells; HPLF, human periodontal ligament fibroblast; Ca9-22, HSC-2, HSC-3, HSC-4: human oral squamous cell carcinoma cell lines; TS: tumor-selectivity index; CC₅₀: 50% cytotoxic concentration; 5-FU: 5-fluorouracil.

Table II. Anti-HIV activity of piperic acid amides and chemotherapeutic agents. Each value represents the mean of triplicate determinations.

<table>
<thead>
<tr>
<th>Piperic acid amides</th>
<th>CC₅₀ (μM)</th>
<th>EC₅₀ (μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>324</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>2</td>
<td>253</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>3</td>
<td>112</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>4</td>
<td>89</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>6</td>
<td>279</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>8</td>
<td>46</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>9</td>
<td>688</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>10</td>
<td>279</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>>800</td>
<td><1</td>
</tr>
<tr>
<td>12</td>
<td>175</td>
<td>>800</td>
<td><1</td>
</tr>
</tbody>
</table>

Positive controls

Dextran sulfate (μg/ml) | 621 | 0.05 | 12363 |
Cardiol sulfate (μg/ml) | >1000 | 0.18 | 5523 |
Azidothymidine | 233 | 0.015 | 15882 |
2',3'-Dideoxycytidine | 2145 | 1.2 | 1789 |

CC₅₀: 50% Cytotoxic concentration; EC₅₀: 50% effective concentration; SI: selectivity index (CC₅₀/EC₅₀).
Figure 2. Correlation coefficient of chemical descriptors and cytotoxicity of piperic acid amides against tumor cells (defined as T) (A) and normal cells (defined as N) (B). The mean (pCC50, i.e., the −log CC50) values for normal cells and tumor cell lines were defined as N and T, respectively. The descriptors used were: a_hyd (Number of hydrophobic atoms), logP(o/w) (Log of the octanol/water partition coefficient), logS (Log of the aqueous solubility), PEOE_VSA_FNEG (Fractional negative van der Waals surface area), PEOE_VSA_FPOS (Fractional positive van der Waals surface area), PEOE_VSA_NEG (Total negative van der Waals surface area), vsurf_EWmin1 (Lowest hydrophilic energy 1), vsurf_HB6 (H-bond donor capacity 6), vsurf_HB7 (H-bond donor capacity 7), vsurf_IW7 (Hydrophilic interaction-energy moment 7), vsurf_W7 (Hydrophilic volume 7).
p<0.05) and total positive polar van der Waals surface area ($r^2=0.425$, $p<0.05$) (Figure 2B).

Tumor selectivity of piperic acid amides (defined by T–N) correlated with the v_{surf} descriptor in standard hydrophilic interaction-energy moment 8 (v_{surf}.IW) ($r^2=0.638$, $p<0.005$), the partial equalization of orbital electronegativity in total polar van der Waals surface area ($r^2=0.609$, $p<0.005$), sum of van der Waals surface area in atoms with the partial charge ($r^2=0.583$, $p<0.005$), fractional positive van der Waals surface area ($r^2=0.583$, $p<0.005$),

Figure 3. Correlation coefficient of chemical descriptors and tumor specificity of piperic acid amides, defined as T–N. The descriptors used were: a_{NO} (Number of oxygen atoms), PEOE_VSA_PNEG (Total negative polar van der Waals surface area), PEOE_VSA_POL (Total polar van der Waals surface area), PEOE_VSA_PPOS (Total positive polar van der Waals surface area), PEOE_VSA+4 (Sum of v_i where q_i is in the range [0.20,0.25]; v_i and q_i denote the van der Waals surface area and the partial charge of atom i, respectively), v_{surf}.IW (Hydrophilic interaction-energy moment 8).
total negative polar van der Waals surface area ($r^2=0.519$, $p<0.01$) and number of oxygen atoms ($r^2=0.467$, $p<0.05$) (Figure 3).

Discussion

The present study demonstrated for the first time that piperine has minor antitumor potential but no anti-HIV activity, and introduction of a catechol moiety [8] significantly enhanced the tumor specificity. We found that TS values determined by two different equations (either D/B or C/A, see Table I) were considerably variable, suggesting the considerable difference in sensitivity of seven cell lines used to the 12 piperlic acid amide derivatives. It is, thus, necessary that we should use more than three cell lines for both normal and tumor cell groups. Based on these experimental data, we performed the QASR analysis using the D/B value.

We could not obtain significant descriptors for T from the quantum chemical approaches. Therefore, with the assistance of descriptors calculated by MOE, a total 330 parameters were searched. We found that many PEOE descriptors, which provide information on electric charge, and vsurf descriptors, which reflect the molecular shape, explain well the cytotoxicity and tumor-selectivity of piperic acid amides. The PEOE method of calculating atomic partial charges (27) is a method in which charge is transferred between bonded atoms until equilibrium. The vsurf descriptors are similar to the VolSurf descriptors (28), and depend on the structure connectivity and conformation. We found good correlation of T with van der Waals surface area (total negative, fractional positive and negative) and hydrophobic property (Figure 2A). N correlated well with hydrophilic interaction-energy moment and energy, H-bond donor capacity and volume, and total positive polar van der Waals surface area (Figure 2B). The tumor selectivity (T−N) correlated well with van der Waals surface area (total polar, positive polar and negative polar), and number of oxygen atoms (Figure 3). Compound [8] had the highest tumor specificity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest PEOE and vsurf descriptors.

Curcumin (diferuloylmethane), a natural compound extracted from Curcuma longa L., has been reported by many investigators to inhibit the proliferation of various tumor cells in culture, prevent carcinogenesis and inhibit the growth of implanted tumors (29). However, the evaluation system used herein for TS demonstrated that curcumin had a very narrow therapeutic window (TS=1.7) (30). Previous attempts to enhance the antitumor potential of curcumin by introducing piperic acid and glycine (31) or demethoxy, bisdemethoxy or piperoyl (32) groups were unsuccessful.

In conclusion, the present study demonstrates there are many chemical descriptors specific to cytotoxicity against normal and tumor cells, and TS. Tumor selectivity was well-correlated with molecular shape and electrostatic interaction. Multivariate statistics with these chemical descriptors may be useful for designing the most favorable compound with higher tumor selectivity.

References

26 http://www.computational-chemistry.co.uk/

Received May 26, 2014
Revised June 30, 2014
Accepted July 1, 2014
Instructions to Authors 2014

General Policy. ANTICANCER RESEARCH (AR) will accept original high quality works and reviews on all aspects of experimental and clinical cancer research. The Editorial Policy suggests that priority will be given to papers advancing the understanding of cancer causation, and to papers applying the results of basic research to cancer diagnosis, prognosis, and therapy. AR will also accept the following for publication: (a) Abstracts and Proceedings of scientific meetings on cancer, following consideration and approval by the Editorial Board; (b) Announcements of meetings related to cancer research; (c) Short reviews (of approximately 120 words) and announcements of newly received books and journals related to cancer, and (d) Announcements of awards and prizes.

The principal aim of AR is to provide prompt publication (print and online) for original works of high quality, generally within 1-2 months from final acceptance. Manuscripts will be accepted on the understanding that they report original unpublished works on the cancer problem that are not under consideration for publication by another journal, and that they will not be published again in the same form. All authors should sign a submission letter confirming the approval of their article contents. All material submitted to AR will be subject to review, when appropriate, by two members of the Editorial Board and by one suitable outside referee. The Editors reserve the right to improve manuscripts on grammar and style.

The Editors and Publishers of AR accept no responsibility for the contents and opinions expressed by the contributors. Authors should warrant due diligence in the creation and issuance of their work.

NIH Open Access Policy. The journal acknowledges that authors of NIH funded research retain the right to provide a copy of the final manuscript to the NIH four months after publication in ANTICANCER RESEARCH, for public archiving in PubMed Central.

Copyright. Once a manuscript has been published in ANTICANCER RESEARCH, which is a copyrighted publication, the legal ownership of all published parts of the paper has been transferred from the Author(s) to the journal. Material published in the journal may not be reproduced or published elsewhere without the written consent of the Managing Editor or Publisher.

Format. Two types of papers may be submitted: (i) Full papers containing completed original work, and (ii) review articles concerning fields of recognisable progress. Papers should contain all essential data in order to make the presentation clear. Reasonable economy should be exercised with respect to the number of tables and illustrations used. Papers should be written in clear, concise English. Spelling should follow that given in the “Shorter Oxford English Dictionary”.

Manuscripts. Submitted manuscripts should not exceed fourteen (14) pages (approximately 250 words per double-spaced typed page), including abstract, text, tables, figures, and references (corresponding to 4 printed pages). Papers exceeding four printed pages will be subject to excess page charges. All manuscripts should be divided into the following sections:

(a) First page including the title of the presented work [not exceeding fifteen (15) words], full names and full postal addresses of all Authors, name of the Author to whom proofs are to be sent, key words, an abbreviated running title, an indication “review”, “clinical”, “epidemiological”, or “experimental” study, and the date of submission. (Note: The order of the Authors is not necessarily indicative of their contribution to the work. Authors may note their individual contribution(s) in the appropriate section(s) of the presented work); (b) Abstract not exceeding 150 words, organized according to the following headings: Background/Aim - Materials and Methods/Patients and Methods - Results - Conclusion; (c) Introduction; (d) Materials and Methods/Patients and Methods; (e) Results; (f) Discussion; (g) Acknowledgements; (h) References. All pages must be numbered consecutively. Footnotes should be avoided. Review articles may follow a different style according to the subject matter and the Author's opinion. Review articles should not exceed 35 pages (approximately 250 words per double-spaced typed page) including all tables, figures, and references.

Figures. All figures (whether photographs or graphs) should be clear, high contrast, at the size they are to appear in the journal: 8.00 cm (3.15 in.) wide for a single column; 17.00 cm (6.70 in.) for a double column; maximum height: 20.00 cm (7.87 in.). Graphs must be submitted as photographs made from drawings and must not require any artwork, typesetting, or size modifications. Symbols, numbering and lettering should be clearly legible. The number and top of each figure must be indicated. Colour plates are charged.

Tables. Tables should be typed double-spaced on a separate page, numbered with Roman numerals and should include a short title.

Clinical Trials. Authors of manuscripts describing clinical trials should provide the appropriate clinical trial number in the correct format in the text.

For International Standard Randomised Controlled Trials (ISRCTN) Registry (a not-for-profit organization whose registry is administered by Current Controlled Trials Ltd.) the unique number must be provided in this format: ISRCTNXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by "ISRCTN"). Please note that there is no space between the prefix “ISRCTN” and the number. Example: ISRCTN47956475.

For Clinicaltrials.gov registered trials, the unique number must be provided in this format: NCTXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by 'NCT'). Please note that there is no space between the prefix 'NCT' and the number. Example: NCT00001789.

Ethical Policies and Standards. ANTICANCER RESEARCH agrees with and follows the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" established by the International Committee of Medical Journal Editors in 1978 and updated in October 2001 (www.icmje.org). Microarray data analysis should comply with the "Minimum Information About Microarray Experiments (MIAME) standard". Specific guidelines are provided at the "Microarray Gene Expression Data Society" (MGED) website. Presentation of genome sequences should follow the guidelines of the NHGRI Policy on Release of Human Genomic Sequence Data. Research involving human beings must adhere to the principles of the Declaration of Helsinki and Title 45, U.S. Code of Federal Regulations, Part 46, Protection of Human Subjects, effective December 13, 2001. Research involving animals must adhere to the Guiding Principles in the Care and Use of Animals approved by the Council of the American Physiological Society. The use of animals in biomedical research should be under the careful supervision of a person adequately trained in this field and the animals must be treated humanely at all times. Research involving the use of human foetuses, foetal tissue, embryos and embryonic cells should adhere to the U.S. Public Law 103-41, effective December 13, 2001.

Submission of Manuscripts. Please follow the Instructions to Authors regarding the format of your manuscript and references. There are 3 ways to submit your article (NOTE: Please use only one of the 3 options. Do not send your article twice.):
1. To submit your article online please visit: IIAR-Submissions (http://www.iiar-anticancer.org/submissions/login.php)
2. You can send your article via e-mail to journals@iiar-anticancer.org. Please remember to always indicate the name of the journal you wish to submit your paper. The text should be sent as a Word document (*.doc) attachment. Tables, figures and cover letter can also be sent as e-mail attachments.
3. You can send the manuscript of your article via regular mail in a USB stick, DVD, CD or floppy disk (including text, tables and figures) together with three hard copies to the following address:
 John G. Delinasios
 International Institute of Anticancer Research (IIAR)
 Editorial Office of ANTICANCER RESEARCH,
 IN VIVO, CANCER GENOMICS and PROTEOMICS.
 1st km Kapandritiou-Kalamou Road
 P.O. Box 22, GR-19014 Kapandriti, Attiki
 GREECE

Submitted articles will not be returned to Authors upon rejection.

Galley Proofs. Unless otherwise indicated, galley proofs will be sent to the first-named Author of the submission. Corrections of galley proofs should be limited to typographical errors. Reprints, PDF files, and/or Open Access may be ordered after the acceptance of the paper. Requests should be addressed to the Editorial Office.

Copyright© 2014 - International Institute of Anticancer Research (J.G. Delinasios). All rights reserved (including those of translation into other languages). No part of this journal may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher.