Isotopic evidence for water-column denitrification and sulfate reduction at the end-Guadalupian (Middle Permian)

Masafumi Saitoh a,b,⁎, Yuichiro Ueno a,c, Yukio Isozaki d, Manabu Nishizawa b, Katsumi Shozugawa e, Tetsuya Kawamura a, Jianxin Yao f, Zhansheng Ji f, Ken Takai h,c,g, Naohiro Yoshida c,h, Motoyuki Matsuo e

a Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
b Laboratory of Ocean-Earth Life Evolution Research (OLE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka 237-0061, Japan
c Department of Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
d Department of Earth Science and Astronomy, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
e Laboratory of Ocean-Earth Life Evolution Research (OLE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka 237-0061, Japan
f Geology Institute, Chinese Academy of Geological Science, Beijing 100037, China
g Department of Chemistry, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
h Geology Institute, Chinese Academy of Geological Science, Beijing 100037, China
i Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka 237-0061, Japan

⁎ Corresponding author at: 2-15 Natsushima-cho, Yokosuka 237-0061, Japan. Tel.: +81 46 867 9658.
E-mail address: saito.m.ab@jamstec.go.jp (M. Saitoh).

1. Introduction

The end-Guadalupian (Middle Permian) extinction event (ca. 260 Ma) is one of the largest biodiversity crises in the Phanerozoic and preceded the latest Permian extinction by ca. 800 million years (Jin et al., 1994; Stanley and Yang, 1994; Gradstein et al., 2012). Near the Guadalupian–Lopingian (Late Permian) boundary (C–LB), various geologic phenomena in addition to the extinction have been emphasized, including: (1) the

© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.gloplacha.2014.10.014
0921-8181/© 2014 Elsevier B.V. All rights reserved.
cause of the shelf extinction because of its temporal correspondence with the extinction (e.g., Wignall et al., 2009); however, the causal link between the environmental changes around the G–LB and the extinction remains a topic of discussion (e.g., Clapham et al., 2009; Bond et al., 2010; Jost et al., 2014).

Previous stratigraphic studies across the G–LB have primarily focused on fossiliferous shallow-marine shelf carbonates and deep-sea cherts (e.g., Jin et al., 1994; Isozaki, 1997; Kato et al., 2002). The shallow-marine fossil records in the shelf shelves have demonstrated the severe extinction in the shallow sea, whereas petrological and geochemical analyses of the deep-sea cherts have suggested the onset of a prolonged oxygen depletion in the deep sea at the end-Guadalupian. However, additional information from the relatively deep disphotic zone in the oceans (typically deeper than 150 m) is critical for the overall evaluation of the environmental changes in the oceans and, particularly, for understanding the relationships between the shallow-sea extinction and the deep-sea oxygen depletion. To examine the environmental changes in the previously overlooked disphotic zone in the ocean around the G–LB, we have analyzed the Guadalupian–Lopingian shelf carbonates of the deep-water facies at the Chaotian section in northern Sichuan, South China (Fig. 1a,b; Isozaki et al., 2004, 2008; Saitoh et al., 2013a,b). Isozaki et al. (2008) and Saitoh et al. (2013a) clarified the emergence of oxygen-depleted conditions on the disphotic slope/basin prior to the end-Guadalupian extinction at Chaotian based on the characteristics of the litho- and bio-facies.

Generally, nitrate and sulfate are thought to be important oxidants in the oceanic biogeochemical cycles, particularly under oxygen-depleted conditions (e.g., Jørgensen, 1982; Codispoti and Christensen, 1985). The isotopic compositions of nitrogen and sulfur compounds in sedimentary rocks are useful to understand the nitrogen and sulfur cycles, respectively, in past oceans (e.g., Canfield, 2001a; Robinson et al., 2012). In this study, we report the total nitrogen and pyrite sulfur isotope cheemostratigraphy of the Guadalupian–Lopingian carbonates at Chaotian to investigate the fluctuations in the nitrogen and sulfur cycles in the oxygen-depleted disphotic zone around the G–LB. We also analyzed the chemical states of the iron in the rocks by 57Fe Mössbauer spectroscopy to examine the redox conditions on the disphotic slope/basin in northwestern South China in more detail. Based on the new geochemical results at Chaotian, we discuss the environmental changes in the disphotic zone in the ocean at the end-Guadalupian and their possible link to the shallow-sea extinction and the deep-sea oxygen depletion.

### 2. Geological setting and stratigraphy

During the Permian, South China was located on the eastern side of Pangea around the equator, and shallow–marine carbonates and terrigenous clastics with diverse fossils were extensively deposited on its continental shelves (Fig. 1b; Zhao et al., 1981; Scotese and Langford, 1995; Jin et al., 1998). Shelf carbonates of relatively deep-water facies thickly accumulated in a shelf/slope setting in northern Sichuan along the northernmost edge of South China (Fig. 1b; Wang and Jin, 2000). We have analyzed the Guadalupian–Lopingian carbonates deposited on the relatively deep shelf/slope at Chaotian in northern Sichuan (32°37′N, 105°51′E; Fig. 1; Isozaki et al., 2004, 2008; Saitoh et al., 2013a,b). The analyzed carbonate rocks (ca. 60 m thick) at Chaotian are composed of the following three stratigraphic units: (1) the early Capitanian (Late Guadalupian) Limestone Unit of the Maokou Formation; (2) the early–late Capitanian Mudstone Unit of the Maokou Formation; and (3) the lower part of the early Wuchiapingian (Early Lopingian) Wujiaquing Formation, in ascending order (Fig. 1c; Isozaki et al., 2008; Lai et al., 2008; Saitoh et al., 2013a). The Limestone Unit of the Maokou Formation is composed of massive bioclastic limestone with abundant shallow-marine fossils (e.g., calcareous algae, fusulinids, and corals) deposited on a euphotic shelf (generally shallower than 150 m) under oxic conditions.

In contrast, the Mudstone Unit is primarily composed of bedded black calcareous mudstone, black chert/siliceous mudstone, and dark gray muddy carbonates containing abundant radiolarians, conodonts, and ammonoids (Fig. 1c; Isozaki et al., 2008; Saitoh et al., 2013a). The characteristics of the litho- and bio-facies indicate that the Mudstone Unit was deposited on a relatively deep disphotic slope/basin, generally deeper than 150 m in the modern oceans, under anoxic conditions (Saitoh et al., 2013a). In contrast, the overlying lower Wujiaquing Formation is composed of bioclastic limestone with shallow-marine fossils, such as calcareous algae; the sedimentary environment returned from the disphotic slope/basin to the euphotic shelf across the G–LB. This shallowing across the G–LB at Chaotian most likely recorded a global sea-level drop based on the stratigraphic correlations around the world (Saitoh et al., 2013a). Haq and Schutter (2008) roughly estimated that the sea-level fell at most 100 m on a global scale at the end-Guadalupian. Because the sedimentary environment returned to the euphotic shelf (generally shallower than 150 m) as a result of this sea-level decrease of less than 100 m, the Mudstone Unit at Chaotian was likely deposited at a depth shallower than 250 m. Considering these upper and lower limits of the water depth, it is estimated that the Mudstone Unit at Chaotian was deposited on the disphotic slope/basin in northwestern South China at a depth of between 150 and 250 m.

### 3. Analytical methods

Rock samples were collected from the outcrop by field research and from deeper than 150 m below the surface by scientific drilling. For all of the geochemical analyses, fresh rock samples were carefully chosen based on detailed observations of polished slabs and thin sections under the petrographic microscope. In particular, the exceptionally fresh drill core samples were analyzed in the Mudstone Unit of the Maokou Formation at Chaotian.

#### 3.1. Nitrogen and organic carbon isotope analyses

Powdered sample (0.5–6.0 g) was treated with 10 M HCl for >24 h, and all of the carbonate was dissolved. After the reaction, the residue was separated by repeated centrifugation with the addition of distilled water; the sample was then dried at 70 °C for >12 h. The residue was then placed in a tin cup, and the total nitrogen and organic carbon isotopic values and the total nitrogen (TN) and total organic carbon (TOC) contents were measured using a ThermoFinnigan DELTAPlus Advantage mass spectrometer coupled with an EA 1112 Series FLASH Elemental Analyzer at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Saitoh et al. (2013a) preliminarily reported the TOC contents of the sedimentary rocks across the G–LB at Chaotian; we added new TOC data in the present study. The nitrogen and carbon isotopic compositions are reported in ‰ relative to atmospheric N2 and to the Vienna PeeDee Belemnite (VPDB) standard, respectively, according to 15N = (Rsample / Rstandard − 1) × 1000 and 13Corg = (Rsample / Rstandard − 1) × 1000, respectively, where R is the isotopic ratio (15N/14N and 13C/12C, respectively) of the sample and the standard. The analytical reproducibility of the 15N and 13Corg values determined by replicate analyses of the laboratory standards is better than 0.3‰ and 0.2‰ (1σ), respectively.

#### 3.2. Sulfur isotope analysis

Powdered sample (0.5–30.0 g) was ultrasonically washed and then soaked in a 10% NaCl solution for 24 h, rinsed with distilled water and centrifuged to remove the soluble sulfate. The residue was then washed and soaked in acetic acid for 24 h to dissolve the elemental sulfur, rinsed with distilled water and centrifuged. The residue was dried for >24 h at room temperature. The sulfide was extracted by a method modified.
from Hsieh and Shieh (1997). Less than 5 g of the dried residue and an alkaline Zn trap were placed into a 500 ml glass bottle with two stopcocks; the bottle was purged with nitrogen and then the sample was reacted with 20 ml of 5 M HCl and subsequently with a 20 ml chromium(II) solution for 48 h at room temperature (Canfield et al., 1986). Chromium(II)-reducible sulfur (CRS) was reduced to H$_2$S and then precipitated as ZnS in a 20 ml alkaline Zn trap. In this extraction procedure, acid volatile sulfur (AVS) is also reduced to H$_2$S and precipitated as ZnS, although our preliminary analysis showed that only a small amount of AVS is contained in the rock samples at Chaotian (data not shown). ZnS was then converted to Ag$_2$S by reaction with 0.1 M AgNO$_3$. The resulting Ag$_2$S was cleaned by repeated centrifugation using distilled water and dried at 70 °C for >12 h. The CRS contents of certain samples were low, and more than 5 g of the powdered sample was required to obtain a sufficient amount of Ag$_2$S for isotopic analysis. When an excessive amount of powdered sample is placed in a single glass bottle, it cannot react completely with HCl and the chromium(II) solution. In that case, we extracted CRS in several glass bottles and combined it after conversion to Ag$_2$S.

For the isotopic analyses, Ag$_2$S was reacted with excess F$_2$ at 300 °C in a nickel reaction tube overnight to produce SF$_6$, which was then purified using cryogenic techniques and gas chromatography. The isotopic composition of SF$_6$ was determined using a ThermoFinnigan MAT253 mass spectrometer equipped with a dual inlet system at the Tokyo Institute of Technology. The sulfur isotopic compositions are reported in ‰ relative to the Vienna Canion Diabrot Troilite (V-CDT) standard.
an average value of +10.1 iron (FeP) and paramagnetic Fe $^{2+}$ (high spin). No ferric oxide Mössbauer spectra of the black calcareous mudstone from the Mudstone Formation at Chaotian. Fig. 4a and b shows the representative producibility of the topic ratio ($\delta^{34}$S/$\delta^{32}$S) of the sample and the standard. The analytical reproducibility of the $\delta^{34}$S values determined by replicate analyses of the international reference material, IAEA-S1, is 0.4‰ (1σ).

3.3. $^{57}$Fe Mössbauer spectroscopic analysis

To investigate the redox conditions of the Mudstone Unit at Chaotian in detail, we analyzed the chemical states of the iron in the rock samples by $^{57}$Fe Mössbauer spectroscopy (Matsumoto et al., 2003). In this method, gamma-ray absorption spectra of the iron in the analyzed sample are measured utilizing the resonance absorption of a gamma ray by an iron nucleus called the Mössbauer effect (e.g., Tominaga and Minai, 1984). The peak number and positions of the absorption spectrum reflect an interaction between the nucleus and the surrounding electrons, providing information on the chemical states of the iron in the sample. The $^{57}$Fe Mössbauer spectroscopic analysis is a useful method for clarifying the chemical states of iron in geological samples, such as deep-sea pelagic chert (Sato et al., 2011), without a sequential wet extraction procedure.

For the present analysis, black calcareous mudstone and dark gray muddy limestone samples with relatively high iron contents in the Mudstone Unit at Chaotian were chosen. Powdered sample (ca. 400 mg) was mounted in a sample holder (16 mm in diameter, 2 mm thick); the Mössbauer spectra were measured with an Austin Science S-600 Mössbauer spectrometer at the University of Tokyo using a 1.11 GBq $^{57}$Co/Rh source at room temperature. Isomer shifts (I.S.) were expressed with respect to the centroid of the spectrum of a metallic iron foil. The Doppler velocity was set to ±10.0 mm/s. Gamma rays at 14.4 keV were collected from each sample for 3 or 4 days. The Mössbauer spectra were fitted using a least-squares method with restrictions on the intensity and half width (H.W.) of the peaks. All doublets were treated as symmetric. The relative content (%) of the individual iron species in an analyzed sample was calculated as the peak area in the Mössbauer spectrum.

4. Results

Table 1 lists all of the measurements of the $\delta^{15}$N, $\delta^{13}$C$_{org}$, and $\delta^{34}$S values; the TN, TOC, and CRS contents; and the TOC/TN atomic ratios of the samples collected from the study section. Certain TOC values previously reported in Saitoh et al. (2013a) are also shown in Table 1. Fig. 2 shows the chemostrophic profiles of the $\delta^{15}$N, $\delta^{34}$S, and $\delta^{13}$C$_{org}$ values; the TOC, TN, and CRS contents; and the TOC/TN ratios across the G–LB at Chaotian. Fig. 3 shows the geochemical cross-plots of the analyzed samples. The $\delta^{15}$N values range from +2.7 to +13.9‰, with an average value of +10.1‰. The $\delta^{13}$C$_{org}$ values range from −30.9 to −24.7‰, with an average value of −27.4‰, and the $\delta^{34}$S values range from −41.5 to +10.0‰, with an average value of −22.1‰. The TN contents range from 5 to 7235 ppm, with an average value of 1381 ppm, and the TOC contents range from 0.0 to 16.1%, with an average value of 2.6%. The CRS contents range from 16 to 23,891 ppm, with an average value of 4427 ppm, and the TOC/TN ratios range from 6.1 to 68.0, with an average value of 34.9.

Table 2 lists the analytical results of the $^{57}$Fe Mössbauer spectroscopic analyses of the rock samples in the Mudstone Unit of the Maokou Formation at Chaotian. Fig. 4a and b shows the representative Mössbauer spectra of the black calcareous mudstone from the Mudstone Unit. Two iron species were identified in the present study: pyrite iron (FeP) and paramagnetic Fe $^{2+}$ (high spin). No ferric oxide (e.g., hematite and magnetite) iron was recognized. Pyrite iron is dominant (90–90%) in all of the analyzed samples in the Mudstone Unit. In addition to the rocks in the Mudstone Unit, we preliminarily analyzed bioclastic limestones in the Limestone Unit of the Maokou Formation at Chaotian, but could not detect any Mössbauer spectrum in the shelf limestones due to their low iron contents.

5. Discussion

5.1. Preservation of the original isotopic compositions

Post-depositional processes may have changed the original isotopic compositions in the analyzed rocks at Chaotian. To evaluate the diagenetic imprints, we examined the relationships between the TN, TOC, and CRS contents and the observed isotopic compositions of the analyzed samples (Fig. 3). The TN and TOC contents of the samples are strongly correlated (Fig. 3a), indicating that the main source of nitrogen in the rocks is sedimentary organic matter. A certain amount of organic nitrogen may have been lost during sinking in the water column and/or after burial because the C/N ratios are generally higher than 6.6 (the Redfield value).

Generally, the $\delta^{15}$N value of the organic matter in the sediments would increase due to a preferential $^{14}$N loss during burial and early sedimentary diagenesis, including thermal maturation (e.g., Altabet and Francois, 1994; Williams et al., 1995; Jia and Kerrich, 2004; Robinson et al., 2012); in that case, a negative correlation between the $\delta^{15}$N value and the TN content in the sedimentary records would be expected (Cremonese et al., 2013). No strong negative correlation between the $\delta^{15}$N values and the TN contents is observed in the analyzed samples at Chaotian (Fig. 3c), implying that the selective $^{15}$N loss after burial is negligible. However, the $\delta^{13}$N values and the C/N ratios are negatively correlated in the Maokou and Wujiaping Formations (Fig. 3f), indicating that the diagenesis of the organic matter led to lower $\delta^{13}$N values. However, the supposed isotopic change appears smaller than the observed stratigraphic variation between the Maokou and Wujiaping Formations; the diagenetic $^{15}$N loss cannot explain the systematic difference between the high $\delta^{13}$N values in the Maokou Formation and the low $\delta^{13}$N values in the Wujiaping Formation. Even if a certain amount of diagenetic $^{15}$N loss may have occurred, it remains likely that the systematic difference in the $\delta^{15}$N value between the sedimentary units and, particularly, the high $\delta^{15}$N values in the Mudstone Unit reflects the primary isotopic trends. No positive correlation between the $\delta^{15}$N and $\delta^{13}$C$_{org}$ values is observed in the analyzed samples (Fig. 3h). A positive correlation between the $\delta^{15}$N and $\delta^{13}$C$_{org}$ values may suggest a preferential loss of $^{14}$N and $^{12}$C by hydrothermal alteration and/or metamorphic devolatilization (Pinti et al., 2009); this is not likely the case at Chaotian. The C/N ratios are relatively low in the Mudstone Unit of the Maokou Formation at Chaotian (Fig. 2), suggesting that little selective N loss occurred during diagenesis and the primary $\delta^{15}$N values are preserved in the unit. The Mudstone Unit was deposited under anoxic conditions (Isozaki et al., 2008; Saitoh et al., 2013a), which may have been suitable to preserve the original $\delta^{15}$N signatures (Altabet et al., 1999; Thomazo et al., 2011). In summary, the observed $\delta^{15}$N values at Chaotian, including the high values in the Mudstone Unit, likely represent the primary isotopic compositions.

No strong correlation between the $\delta^{13}$C$_{org}$ value and the TOC content is observed in the analyzed samples (Fig. 3d), suggesting that the preferential $^{13}$C loss during degradation is not significant (Hayes et al., 1983; Ueno et al., 2004). A weakly negative correlation is recognized in the black mudstone in the Mudstone Unit, which may affect selective $^{13}$C loss after burial. However, no negative correlation between the $\delta^{13}$C$_{org}$ value and the TOC content is observed in the dark gray muddy limestone that alternates with the black mudstone in the Mudstone Unit. The $\delta^{13}$C$_{org}$ value of the dark gray muddy limestone is likely more susceptible to preferential $^{13}$C loss than the black mudstone because the TOC contents of the dark gray muddy limestone are systematically lower than those of the black mudstones (Figs. 2 and 3d); no linear correlation between the $\delta^{13}$C$_{org}$ value and the TOC content in the dark gray muddy limestone implies that the observed weakly
negative correlation in the black mudstones is not a result of diageneric 13C loss. No positive correlation between the $\delta^{15}$N and $\delta^{13}$Corg values is observed in the analyzed samples, as noted above (Fig. 3h), suggesting that the diageneric loss of 14N and 13C may have had only a minor influence on the isotopic compositions (Pinti et al., 2009). A positive correlation between the TOC content and the TOC/TN atomic ratio in the rocks would be expected if selective addition or loss of carbon occurred during diagenericization (e.g., Calvert, 2004). In contrast, if the sediments sustained significant thermal maturation after burial, TOC contents and TOC/TN ratios would decrease and increase, respectively; in that case, a negative correlation between the TOC content and the TOC/TN ratio would be expected (Bristow et al., 2009). No strong correlation between the TOC content and the TOC/TN atomic ratio in the rocks (Figs. 1c and 2) across the Guadalupian – LB at Chaotian suggests that the selective $34S$/$32S$ loss during diagenesis was not significant and that the observed $34S$ values represent the original isotopic signatures.

No correlation between the $34S$ value and the CRS content is observed in the analyzed samples (Fig. 3e). If a preferential loss of heavy/light sulfur occurred after burial, a linear relationship between the $34S$ value and the CRS content would be expected, similar to that in the nitrogen and carbon cases. The observation that there was no correlation between the TOC content and the TOC/TN ratio is observed in the analyzed samples at Chaotian (Fig. 3b), suggesting that the grade of thermal maturity is low.

5.2. Environmental changes in the disphotic zone at the end-Guadalupian

5.2.1. Water-mass anaerobic respiration

At Chaotian, the $34S$ values increase from +8 to +14‰ in the topmost Maokou Formation and then drop below +6‰ across the G–LB (Fig. 2). The $34S$ value of up to +14‰ in the Mudstone Unit is considerably high in the Phanerozoic (e.g., Kidder and Worsley, 2010). The most plausible explanation for the high $34S$ values is denitrification in the Capitanian ocean, where $15N$-rich residual nitrate was assimilated and finally preserved into sedimentary organic matter after isotopic fractionation by denitrification (ca. 25‰) (e.g., Sigman et al., 2009). The denitrification likely occurred in the water column because denitrification within the sediment exhibits little isotope fractionation and cannot explain the $34S$ increase at Chaotian (Brandes and Devol, 2002). Terrestrial plants generally exhibit relatively low $34S$ values and high C/N ratios compared with marine algae (Peters et al., 1978; Meyers, 1994). The systematically low C/N ratios in the Mudstone Unit at Chaotian imply that the high $34S$ values in the Mudstone Unit may also be partly attributed to the decreasing input of terrestrial organic matter due to deepening (Figs. 1c and 2). The $34S$ values significantly decrease below +6‰ across the G–LB, suggesting a decline in the water-mass denitrification and/or enhanced nitrogen fixation producing a $15N$-depleted fixed nitrogen pool (0 to −7‰ relative to paleo-atmospheric $N_2$; e.g., Minagawa and Wada, 1986; Nishizawa et al., 2007; Nishizawa et al., 2014; Zhang et al., 2014), in the aftermath of the end-Guadalupian extinction. The increasing contribution of the terrestrial plants of relatively low $34S$ values after shallowing may be an additional mechanism underlying the lower $34S$ values in the Wujaping Formation.

The $34S$ values are relatively scattered in the shallow bioclastic limestone of the Limestone Unit of the Maokou Formation and then decrease to consistently low values of approximately −37‰ in the overlying Mudstone Unit of the deep-water facies (Fig. 2). Above the G–LB, the $34S$ values are again scattered from −39 to +7‰ in the Wujaping bioclastic limestone. Generally, microbial sulfate reduction produced $34S$-depleted sulfide because of the large kinetic isotopic effects (e.g., Canfield, 2001a, 2001b). The scattered and high $34S$ values in the shallow marine limestones at Chaotian suggest sulfate reduction in a closed system within the sediments (Jørgensen, 1979). In contrast, the consistently low $34S$ values in the Mudstone Unit indicate that sulfate-reduction operated in an open system, most likely within the water column, which was enriched in sulfate (e.g., Wijman et al., 2001).

The $34C_{org}$ values are relatively low (−31 to −28‰) in the Limestone Unit of the Maokou Formation at Chaotian (Fig. 2). In contrast, the $34C_{org}$ values are high (−28 to −25‰) in the overlying Mudstone Unit. In the lower Wujaping Formation, the $34C_{org}$ values remain high (−28 to −26‰), although they are slightly lower than those in the Mudstone Unit (Fig. 3h). We interpret the $34C_{org}$ increase across the
Limestone/Mudstone unit boundary to be due to the decreasing contribution of the terrestrial plants as a result of deepening because land plants generally exhibit relatively low $\delta^{13}C_{org}$ values compared with marine plankton, particularly in low latitudes (Fig. 1; Sackett and Thompson, 1963; Peters et al., 1978). In land plants, carbon isotopic fractionations in C4 photosynthesis and in crassulacean acid metabolism (CAM) are relatively small compared with that in C3 photosynthesis (Bender, 1971; Smith and Epstein, 1971); the $\delta^{13}C_{org}$ values of the C4 and CAM plants are close to that of marine plankton, complicating an estimation of the sources of the organic matter in the shelf sediments (e.g., Goñi et al., 1997). However, the contributions of C4 and CAM plants to the sedimentary organic matter may not have been significant in the Paleozoic because it is likely that the C4 and CAM plants have thrived primarily in the late Mesozoic to Cenozoic (e.g., Sage, 2004; Silvera et al., 2010). The relatively high $\delta^{13}C_{org}$ values in the Mudstone Unit may also be attributed partly to increased primary productivity and enhanced organic carbon burial, implied by the high TOC contents in the unit, and/or increased contribution of organic compounds from green sulfur bacteria of relatively high $\delta^{13}C_{org}$ value (Sirevåg et al., 1977), associated with euxinia in the unit (see Section 5.2.2). In contrast, across the G–LB at Chaotian, the increasing contribution of terrestrial plants as a result of shallowing may have led to slightly lower $\delta^{13}C_{org}$ values in the Wujiaping Formation, although they remain higher than those in the Limestone Unit of the Maokou Formation. The relatively high $\delta^{13}C_{org}$ values in the lower Wujiaping Formation may be partly attributed to the high primary productivity in the surface ocean in the aftermath of the end-Guadalupian extinction. The enhanced nitrogen fixation in the early Wuchiapingian ocean, suggested by the decreased $\delta^{15}N$ values ($<+6$‰), may have promoted the oceanic primary productivity. Generally, denitrification and sulfate reduction are important biogeochemical pathways under oxygen-depleted conditions (e.g., Jørgensen,
The enhanced anaerobic respiration in the Mudstone Unit at Chaotian is consistent with the oxygen depletion in the unit that was suggested by the characteristics of the litho- and bio-facies (Isozaki et al., 2008; Saitoh et al., 2013a) (Fig. 1c). Moreover, the present nitrogen and sulfur isotopic results at Chaotian indicate that the oxygen depletion was not restricted within the sediments but, rather, prevailed in the water column in the disphotic zone in the Capitanian oceans, promoting water-mass anaerobic respiration.

5.2.2. Emergence of a sulfidic water mass

The enhanced sulfate reduction in the anoxic water column, based on the δ34S records of the Mudstone Unit at Chaotian, may have caused the accumulation of hydrogen sulfide on the disphotic slope/basin, resulting in the emergence of a sulfidic deep-water mass (Fig. 5). The pyrite framboids of relatively small size (mostly 5–7 μm in diameter) occur abundantly throughout the Mudstone Unit (Saitoh et al., 2013a), and it is compatible with the emergence of the sulfidic water mass (Wilkin et al., 1996). To investigate the redox conditions of the Mudstone Unit in more detail, we analyzed the chemical states of the iron in the rock samples. Iron speciation in rock samples is useful to reconstruct the redox conditions of the sedimentary environments (Raiswell and Canfield, 1998; Poulton and Canfield, 2005), and, in particular, the ratio of the chemically highly reactive iron to total iron (FeHR/FeT) and the proportion of FeHR bound as the sulfide phase.
dithionite-extractable iron and FeP (Raiswell and Canfield, 2005). The degree of pyritization (DOP) was defined as the ratio of FeP to the sum of FeP and HCl-extractable Fe as an indicator of a euxinic condition (Berner, 1970; Raiswell et al., 1988). Because HCl-extractable Fe includes a certain amount of iron from sheet silicates, the DOP has recently tended to be replaced by FeP/FeHR (e.g., Canfield et al., 2008; Reinhard et al., 2009). When the FeHR/FeT and FeP/FeHR ratios of a sample are greater than 0.38 and 0.8, respectively, the deposition under sulfidic conditions is indicated based on the analyses of modern marine sediments from various locations worldwide (Raiswell and Canfield, 1998).

In the present study, the iron speciation of the sedimentary rocks of the Mudstone Unit at Chaotian was examined by $^{57}$Fe Mössbauer spectroscopy (Matsuo et al., 2003). The present results show that pyrite Fe is dominant in all of the analyzed samples, and the FeP/FeT ratio is consistently greater than 0.9 in the Mudstone Unit (Fig. 4a,b; Table 2). Generally, the FeHR/FeT and FeP/FeHR ratios are consistently higher than the FeP/FeT ratio because FeHR is higher than FeP and lower than FeT. The present $^{57}$Fe Mössbauer spectrocop results at Chaotian show that the FeHR/FeT and FeP/FeHR ratios are greater than 0.9 throughout the Mudstone Unit, indicating that the unit was deposited under sulfidic conditions.

### Table 2

<table>
<thead>
<tr>
<th>Formation/unit</th>
<th>Sample ID</th>
<th>Lithology</th>
<th>Thickness (m)</th>
<th>Fe species</th>
<th>Peak area (%)</th>
<th>I.S. (mm/s)</th>
<th>Q.S. (mm/s)</th>
<th>H.W. (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>E72</td>
<td>Black calcareous mudstone</td>
<td>35.7</td>
<td>Pyrite</td>
<td>92.4</td>
<td>0.318</td>
<td>0.607</td>
<td>0.285</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>E48</td>
<td>Black calcareous mudstone</td>
<td>34.9</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.311</td>
<td>0.591</td>
<td>0.284</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>E31</td>
<td>Dark gray muddy limestone</td>
<td>34.4</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.295</td>
<td>0.572</td>
<td>0.249</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>E26</td>
<td>Black calcareous mudstone</td>
<td>34.3</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.304</td>
<td>0.603</td>
<td>0.285</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>E21</td>
<td>Black calcareous mudstone</td>
<td>34.1</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.304</td>
<td>0.607</td>
<td>0.291</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>E13</td>
<td>Black calcareous mudstone</td>
<td>34.0</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.305</td>
<td>0.602</td>
<td>0.287</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>E1</td>
<td>Dark gray muddy limestone</td>
<td>33.8</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.303</td>
<td>0.599</td>
<td>0.292</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>D85</td>
<td>Black calcareous mudstone</td>
<td>32.4</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.303</td>
<td>0.603</td>
<td>0.291</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>D71</td>
<td>Black calcareous mudstone</td>
<td>31.9</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.304</td>
<td>0.601</td>
<td>0.284</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>D59</td>
<td>Black calcareous mudstone</td>
<td>31.6</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.300</td>
<td>0.602</td>
<td>0.284</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>D53</td>
<td>Dark gray muddy limestone</td>
<td>31.4</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.309</td>
<td>0.647</td>
<td>0.328</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>D12</td>
<td>Black calcareous mudstone</td>
<td>29.8</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.308</td>
<td>0.597</td>
<td>0.289</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>C62</td>
<td>Black calcareous mudstone</td>
<td>28.8</td>
<td>Pyrite</td>
<td>91.5</td>
<td>0.31</td>
<td>0.604</td>
<td>0.297</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>C55</td>
<td>Black calcareous mudstone</td>
<td>28.4</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.300</td>
<td>0.588</td>
<td>0.300</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>C43</td>
<td>Dark gray muddy limestone</td>
<td>28.1</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.295</td>
<td>0.579</td>
<td>0.311</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>C10</td>
<td>Dark gray muddy limestone</td>
<td>27.1</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.300</td>
<td>0.592</td>
<td>0.295</td>
</tr>
<tr>
<td>Mudstone Unit of Maokou Fm</td>
<td>B16</td>
<td>Dark gray muddy limestone</td>
<td>26.5</td>
<td>Pyrite</td>
<td>100.0</td>
<td>0.302</td>
<td>0.609</td>
<td>0.271</td>
</tr>
</tbody>
</table>

FeP/FeHR are robust redox indicators of past oceans (e.g., Canfield et al., 2007, 2008). FeHR was originally defined as the sum of the dithionite-extractable iron and FeP (Raiswell and Canfield, 1998), although the definition has been slightly modified to the sum of iron oxide, carbonate, and sulfide minerals, after Poulton and Canfield (2005). The degree of pyritization (DOP) was defined as the ratio of FeP to the sum of FeP and HCl-extractable Fe as an indicator of a euxinic condition (Berner, 1970; Raiswell et al., 1988). Because HCl-extractable Fe includes a certain amount of iron from sheet silicates, the DOP has recently tended to be replaced by FeP/FeHR (e.g., Canfield et al., 2008; Reinhard et al., 2009). When the FeHR/FeT and FeP/FeHR ratios of a sample are greater than 0.38 and 0.8, respectively, the deposition under sulfidic conditions is indicated based on the analyses of modern marine sediments from various locations worldwide (Raiswell and Canfield, 1998).

In the present study, the iron speciation of the sedimentary rocks of the Mudstone Unit at Chaotian was examined by $^{57}$Fe Mössbauer spectroscopy (Matsuo et al., 2003). The present results show that pyrite Fe is dominant in all of the analyzed samples, and the FeP/FeT ratio is consistently greater than 0.9 in the Mudstone Unit (Fig. 4a,b; Table 2). Generally, the FeHR/FeT and FeP/FeHR ratios are consistently higher than the FeP/FeT ratio because FeHR is higher than FeP and lower than FeT. The present $^{57}$Fe Mössbauer spectrocop results at Chaotian show that the FeHR/FeT and FeP/FeHR ratios are greater than 0.9 throughout the Mudstone Unit, indicating that the unit was deposited under sulfidic conditions.

#### 5.2.3. Possible relationship with the deep-sea anoxia and the shallow-sea extinction

It should be considered whether the development of anoxic/sulfidic waters in the Capitanian oceans was a regional event around Chaotian in the eastern Tethys or was a global phenomenon (Fig. 1b). Yan et al. (2013) recently suggested the development of anoxic deep-water corresponding to the end-Guadalupian extinction at Tieqiao in Guangxi, South China, based on the sulfur isotope records of carbonate-associated sulfate. Schoepfer et al. (2012) reported high $^{15}$N values (up to +10‰) in the Middle Permian Ranger Canyon Formation at the Opal Creek section in southwestern Alberta, Canada (Fig. 1b); the high $^{15}$N values imply denitrification in the mid-water oxygen minimum zone in the Capitanian. The presence of the anoxic water in the Middle Permian at Opal Creek was also supported by sulfide sulfur isotope records and trace element enrichments (Schoepfer et al., 2013). During the Permian, Opal Creek was located on the northwestern margin of Pangaea and on the opposite side of the globe from Chaotian (and Tieqiao) in South China (Fig. 1b). Although an extensive unconformity across the G–LB (ranging over 5–7 million years) and the thin Middle–Upper Permian strata (less than 4 m thick in total) at Opal Creek prevent an exact correlation with the present results at Chaotian (Schoepfer et al., 2012, 2013), the previous and present results suggest that the anoxic/sulfidic deep-water masses in which the anaerobic respiration
was enhanced were widespread in the Capitanian oceans on a global scale.

Because the disphotic zone is between the shallow- and deep-sea areas in the oceans, the environmental changes in the disphotic zone at the end-Guadalupian suggested in this study might have been associated with the onset of deep-sea oxygen depletion and the shallow-sea extinction (Fig. 5). The water-mass anaerobic respiration in the disphotic zone suggested by the present results at Chaotian was possibly enhanced by an expansion of the oxygen minimum zone (OMZ) in the oceans because anaerobic respiration is generally promoted under oxygen-depleted conditions. The increased primary productivity in the surface oceans and the enhanced biological pumps in the Capitanian, suggested by the high δ13C values of the shelf carbonates on a global scale named the “Kamura event” (Isozaki et al., 2007, 2011), may have expanded the OMZ. Additionally, the expansion of the OMZ at the end-Guadalupian might have corresponded to the onset of the prolonged oxygen depletion in the deep sea around the G–LB (Isozaki, 1997), although the details of the deep-ocean redox conditions during the late Permian remain a topic of discussion (Algeo et al., 2010; Wignall et al., 2010).

The bio- and chemo-stratigraphic relationships across the G–LB at Chaotian clearly indicate that the sulfidic deep-water mass emerged on the disphotic slope/basin prior to the end-Guadalupian extinction on the shallow shelves (Figs. 1 and 2; Saitoh et al., 2013a). This stratigraphic relationship implies that the sulfidic deep-waters have possibly acted as a stress to the shallow-marine biota by upwelling along the continental margin, as suggested by the δ13C records at Chaotian (Fig. 5; Saitoh et al., 2013b). During the Permian, Chaotian was located on the western side of South China and most likely faced the eastern Paleo-Tethys around the equator; the location may have been suitable for an upwelling caused by the trade winds, as observed in the modern oceans. Moreover, the fossil records have demonstrated that benthic invertebrates, such as brachiopods, fusulines, and rugose corals, were eliminated on a large scale during the end-Guadalupian extinction (e.g., Stanley and Yang, 1994; Clapham et al., 2009); these taxa are generally susceptible to hydrogen sulfide and the extinction pattern is compatible with the upwelling scenario. The eruption of the Emeishan flood basalts in South China has been regarded as a major candidate for the cause of the extinction because the timing of the eruption corresponds with that of the extinction (e.g., Zhou et al., 2002; Wignall et al., 2009; Bond et al., 2010). Although the present results at Chaotian do not exclude other factors, including the eruption of the Emeishan flood basalts, as the cause of the shelf extinction, the sulfidic deep–waters in the disphotic zone may also have contributed to the environmental deterioration on the shallow shelves by the upwelling along the continental margin at the end-Guadalupian. The influence of the sulfidic deep-water to the shelf extinction can be evaluated by further stratigraphic studies across the G–LB in various sections around the world, particularly focusing on the previously overlooked disphotic zone in the oceans.

6. Conclusions

To examine the environmental changes in the relatively deep disphotic zone in the ocean at the end-Guadalupian (Middle Permian), focusing on their possible relationships with the deep-sea oxygen depletion and the shallow-sea extinction, the nitrogen and sulfur isotope geochemistry of the Guadalupian–Lopingian (Upper Permian) shelf carbonates were analyzed at Chaotian in northern Sichuan, South China. Moreover, the chemical states of the iron in the rocks were analyzed by 57Fe Mössbauer spectroscopy to investigate the redox conditions on the disphotic slope/basin in northwestern South China at the end-Guadalupian. The following new results were obtained:

1. Substantially high δ15N values of total nitrogen (up to +14‰) and consistently low δ34S values of pyrite (ca. −37‰) in the topmost Maokou Formation, immediately below the Guadalupian–Lopingian boundary, indicate water-column denitrification and sulfate reduction, respectively, in the previously overlooked disphotic zone in the Capitanian (Late Guadalupian) oceans.

2. The enhanced water-mass sulfate reduction likely resulted in the emergence of a sulfidic deep-water mass on the disphotic slope/basin at Chaotian, which is supported by the high proportions of pyrite Fe to highly reactive Fe in the sedimentary rocks.

3. An expansion of the oxygen minimum zone (OMZ) caused by the increased primary productivity in the surface oceans in the Capitanian may have enhanced the anaerobic respiration in the disphotic zone; the OMZ expansion may also have corresponded to the onset of deep-sea oxygen depletion. An upwelling of the sulfidic deep-water from the disphotic zone to the shallow shelves along the continental margin might have stressed the shallow-marine biota at the end-Guadalupian.

Acknowledgments

This study was supported by JSPS KAKENHI (16204040, 20224012, 22310006, 26610159) and CGS (1212011120116, 1212011120143). Y.U. is supported by the NEXT program of JSPS. Two anonymous reviewers gave us constructive comments to improve the manuscript. M. Nakagawa assisted with the S isotope analysis.