Quantitative Structure–Cytotoxicity Relationship of 3-Styryl-2H-chromenes

YOSHIHIRO UESAWA¹, HIROSHI SAKAGAMI², MARIKO ISHIHARA³, HAJIME KAGAYA¹, Taisei Kanamoto⁴, SHIGEMI TERAKUBO⁴, HIDEKI NAKASHIMA⁴, HIDEAKI YAHAGI⁵, KOICHI TAKAO⁵ and YOSHIKI SUGITA⁵

¹Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan; Divisions of ²Pharmacology and ³Basic Chemistry, Meikai University School of Dentistry, Sakado, Saitama, Japan; ⁴St. Marianna University School of Medicine, Kanagawa, Japan; ⁵Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan

Reprinted from
ANTICANCER RESEARCH 35: 5299-5308 (2015)
Quantitative Structure–Cytotoxicity Relationship of 3-Styryl-2H-chromenes

YOSHIHIRO UESAWA1, HIROSHI SAKAGAMI2, MARIKO ISHIHARA3, HAJIME KAGAYA1, TAISEI KANAMOTO4, SHIGEMI TERAKUBO4, HIDEKI NAKASHIMA4, HIDEAKI YAHAGI5, KOICHI TAKAO4 and YOSHIKI SUGITA5

1Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan; Divisions of 2Pharmacology and 3Basic Chemistry, Meikai University School of Dentistry, Sakado, Saitama, Japan; 4St. Marianna University School of Medicine, Kanagawa, Japan; 5Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan

Abstract. Background: Sixteen 3-styryl-2H-chromene derivatives were subjected to quantitative structure–activity relationship analysis based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find their new biological activities. Materials and Methods: Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines, three mesenchymal and two epithelial normal oral cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide method. Tumor-selectivity (TS) was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal human oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Potency-selectivity expression (PSE) was determined by the ratio of TS/CC50 against OSCC. Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method. Results: All 3-styryl-2H-chromene derivatives showed relatively high tumor selectivity. Especially, the compound that has a methoxy group at 7-position of the chromene ring and chlorine at 4’-position of phenyl group in styryl moiety [12] showed the highest TS and PSE values, exceeding those of resveratrol, doxorubicin and 5-FU. All compounds showed no anti-HIV activity. Among 330 chemical descriptors, 8, 74 and 16 descriptors significantly correlated to the cytotoxicity of normal and tumor cells, and tumor-specificity, respectively. Conclusion. Multivariate statistics with chemical descriptors for molecular shape and flatness may be useful for the evaluation of tumor-specificity of 3-styryl-2H-chromenes.

Benzopyran (called chromene by IUPAC nomenclature) is a polycyclic organic compound that results from the fusion of a benzene ring to a heterocyclic pyran ring. There exist two isomers of benzopyran that vary by the orientation of the fusion of the two rings compared to the oxygen, resulting in 1-benzopyran (chromene) and 2-benzopyran (isochromene). It has been reported that [(2S)-methyl-2-methyl-8-(3’’-methylbut-2’’-enyl)-2-(4’’-methylpent-3’’-enyl)-2H-chromene-6-carboxylate], having electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity (1). 4H-chromenes have strong cytotoxicity against a panel of human cancer cell lines involving pathways that include microtubule depolarization and tumor vasculature disruption (2). A chromene analog, Crolibulin™ (EPC2407) is currently in Phase I/II clinical trials for the treatment of advanced solid tumors (3). Substituted (E)-3-styryl-2H-chromenes demonstrated profound cytotoxic activity against MCF-7 cell line, via its electron-donation via [4 + 2] Diels-Alder cycloaddition (4). Also, (E)-3-styryl-2H-chromene showed potent anti-human rhinovirus activity by interfering with the early stages of virus infection probably at the adsorption and/or uncoating level (5). However, the cytotoxicity of these compounds against malignant and non-malignant cells have not been evaluated at the same time.

In order to further explore novel biological activities of 3-styryl-2H-chromenes, we recently synthesized a series of sixteen 3-styryl-2H-chromene derivatives (Figure 1). In the present study, we investigated their cytotoxicity and anti-HIV activity and then performed the quantitative structure–activity relationship (QSAR) analysis.

Correspondence to: Yoshihiro Uesawa, Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-858, Japan. Tel/Fax: +81 424958892, e-mail: uesawa@my-pharm.ac.jp

Key Words: 3-styryl-2H-chromenes, QSAR analysis, cytotoxicity, tumor selectivity, anti-HIV activity.
For the cytotoxicity assay, both human normal oral cells (gingival fibroblast, HGF; pulp cells, periodontal ligament fibroblast, HPLF; pulp cell, HPC) and human oral squamous cell carcinoma (OSCC) cell lines (Ca9-22, HSC-2, HSC-3, HSC-4) were used as target cells. The anti-tumor potential was evaluated by the tumor-selectivity index (TS), calculated by dividing the mean 50% cytotoxic concentration (CC50) against normal oral cells by that against OSCC cell lines. We have already confirmed that the TS value determined by this method reflects the anti-tumor potential of test samples, although these normal oral cells and OSCC cell lines are classified as different types of cells (mesenchymal or epithelial) (6). As a second stage of confirmation of tumor-specificity, the effects on human oral keratinocyte (HOK) and primary human gingival epithelial cells (HGEP) together with epithelial OSCC were investigated.

For the anti-HIV assay, mock- and HIV-infected-human T-cell lymphotropic virus-I (HTLV-I) carrying human T-cell line MT4 was used. The selectivity index (SI) was calculated by dividing the CC50 by the 50% cytoprotective concentration from HIV infection (EC50) (7).

Materials and Methods

Materials. The following chemicals and reagents were obtained from the indicated companies: Dulbecco’s modified Eagle’s medium (DMEM), from GIBCO BRL, Grand Island, NY, USA; fetal bovine serum (FBS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), doxorubicin, azidothyridine and 2’3’-dideoxyctydine from Sigma-Aldrich Inc., St. Louis, MO, USA; resveratrol, dimethyl sulfoxide (DMSO), dextran sulfate (molecular mass, 5 kDa) from Wako Pure Chem. Ind., Osaka, Japan; 5-fluorouracil (5-FU) from Kyowa, Tokyo, Japan; curdlan sulfate (molecular mass, 79 kDa) from Ajinomoto Co. Ltd., Tokyo, Japan. Culture plastic dishes and plates (96-well) were purchased from Becton Dickinson (Franklin Lakes, NJ, USA).

Synthesis of test compounds. (E)-3-Styryl-2H-chromene [1], (E)-3-(4-methoxy styryl)-2H-chromene [2], (E)-3-(4-fluorostyryl)-2H-chromene [3], (E)-3-[4-(chlorostyryl)]-2H-chromene [4], (E)-6-methoxy-3-styryl-2H-chromene [5], (E)-6-methoxy-3-(4-methoxy styryl)-2H-chromene [6], (E)-3-(4-chlorostyryl)-6-methoxy-2H-chromene [7], (E)-3-(4-chlorostyryl)-6-methoxy-2H-chromene [8], (E)-7-methoxy-3-styryl-2H-chromene [9], (E)-7-methoxy-3-(4-methoxy styryl)-2H-chromene [10], (E)-3-(4-fluorostyryl)-7-methoxy-2H-chromene [11], (E)-3-(4-chlorostyryl)-7-methoxy-2H-chromene [12], (E)-6-chloro-3-styryl-2H-chromene [13], (E)-6-chloro-3-(4-methoxy styryl)-2H-chromene [14], (E)-6-chloro-3-(4-fluorostyryl)-2H-chromene [15] and (E)-6-chloro-3-(4-chlorostyryl)-2H-chromene [16] (Figure 1) were synthesized by Horner-Wadsworth-Emmons reaction of the appropriate 2H-chromene-3-carbaldehydes with selected diethyl benzylphosphonate derivatives, according to previous methods (5). All compounds were dissolved in DMSO at 80 mM and stored at −20°C before use.

Cell culture. HGF, HPLF and HPC cells, established from the first premolar tooth extracted from the lower jaw of a 12-year-old girl (8), and OSCC cell lines (Ca9-22, HSC-2, HSC-3, HSC-4), purchased from Riken Cell Bank, Tsukuba, Japan were cultured at 37°C in DMEM supplemented with 10% heat-inactivated FBS, 100 units/ml, penicillin G and 100 μg/ml streptomycin sulfate under a humidified 5% CO2 atmosphere. HOK cells (purchased from COSMO BIO Co. Ltd., Tokyo) were cultured in keratinocyte growth supplement (OKGS, Cat, No. 2652). HGEP cells (purchased from CELLaTEC Advanced Cell Systems AG, Bern, Switzerland) was growing in CnT-PR medium. Cells were then harvested by treatment with 0.25% trypsin-0.025% EDTA-2Na in PBS(−) and either subcultured or used for experiments. Cells were then harvested by treatment with 0.25% trypsin-0.025% EDTA-2Na in PBS(−) and either subcultured or used for experiments.

Assay for cytotoxic activity. Cells were inoculated at 2.5×10^3 cells/0.1 ml in a 96-microwell plate (Becton Dickinson Labware, Franklin Lakes, NJ, USA). After 48 h, the medium was removed by suction with an aspirator and replaced with 0.1 ml of fresh medium containing different concentrations of single test compounds. Control cells were treated with the same amounts of DMSO present in each diluent solution. Cells were incubated for 48 h and then treated with 0.25% trypsin-0.025% EDTA-2Na in PBS(−) and either subcultured or used for experiments.

Figure 1. Structure of sixteen 3-styryl-2H-chromenes.
relative viable cell number was then determined by the MTT method. In brief, the treated cells were incubated for another three hours in fresh culture medium containing 0.2 mg/ml MTT. Cells were then lysed with 0.1 ml of DMSO and the absorbance at 540 nm of the cell lysate was determined using a microplate reader (Biochromatic Labsystem, Helsinki, Finland). The CC50 was determined from the dose–response curve and the mean value of CC50 for each cell type was calculated from triplicate assays.

Calculation of TS. The tumor-selectivity index (TS) was calculated by the following equation: TS=mean CC50 against normal cells (D)/mean CC50 against tumor cells (B) [(D/B) in Table I]. Since Ca9-22 cells were derived from gingival tissue (9), the relative sensitivity of Ca9-22 and HGF was also compared [(C/A) in Table I]. When HOK cells were used, TS was calculated by the following equation: TS=CC50 against HOK (E)/mean CC50 against tumor cells (B) [(E/B) in Table II]. When HGEP cells were used, TS is calculated by the following equation: TS=CC50 against HGEP (F)/mean CC50 against tumor cells (B) [(F/B) in Table II].

Calculation of PSE. When HGF, HPLF and HPC cells were used, the potency-selectivity expression (PSE) value of each compound was calculated by the following equation: PSE=(TS/mean CC50 against tumor cells (B) ×100 (10) [(D/B2) in Table I]. When HOK and HGEP cells were used, PSE was calculated by the following equation: PSE=E/B2 or F/B2, respectively (Table II).

Assay for HIV activity. HTLV-I-carrying human T-cell line MT4 cells, highly sensitive to human immunodeficiency virus-1 (HIV-1), were infected with HIV-1IIIB at a multiplicity of infection (m.o.i.) of 0.01. HIV- and mock-infected (control) MT-4 cells were incubated for five days with different concentrations of samples and the relative viable cell number was determined by the MTT assay. The CC50 and EC50 were determined from the dose–response curve for mock-infected and HIV-infected cells, respectively (7). All data represent the mean values of triplicate measurements. The anti-HIV activity was evaluated by SI (SI=CC50/EC50).

Estimation of CC50 values. Original data contain the sign of inequality such as “>”. For the convenience of analysis, these values were changed into forms suitable for arithmetic calculation. Since “>400” is equal to “from 400 to ∞”, we calculated the harmonic mean as follows: 1/[average(1/400,1/∞)]=800. Since the CC50 values had a distribution pattern close to a logarithmic normal distribution, we used the pCC50 (i.e., the −log CC50) for the comparison of the cytotoxicity between the compounds. The mean pCC50 values for normal cells and tumor cell lines were defined as N and T, respectively (11).

Calculation of the representative value for tumor selectivity. Tumor selectivity is defined by the balance between pCC50 values for normal (N) and tumor (T) cells. The difference (T−N) was used as a tumor-selectivity index in the following analyses.

Table I. Cytotoxic activity of sixteen 3-styryl-2H-chromenes. Each value represents the mean of triplicate determinations.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Human oral squamous cell lines</th>
<th>Normal oral cells</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca9-22</td>
<td>HSC-2</td>
<td>HSC-3</td>
</tr>
<tr>
<td>1</td>
<td>284.3</td>
<td>30.7</td>
<td>61.3</td>
</tr>
<tr>
<td>2</td>
<td>73.0</td>
<td>11.3</td>
<td>27.0</td>
</tr>
<tr>
<td>3</td>
<td>68.7</td>
<td>58.0</td>
<td>39.7</td>
</tr>
<tr>
<td>4</td>
<td>31.0</td>
<td>8.6</td>
<td>7.7</td>
</tr>
<tr>
<td>5</td>
<td>271.3</td>
<td>21.7</td>
<td>5.7</td>
</tr>
<tr>
<td>6</td>
<td>10.5</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>7</td>
<td>17.2</td>
<td>12.3</td>
<td>21.0</td>
</tr>
<tr>
<td>8</td>
<td>22.7</td>
<td>11.9</td>
<td>32.0</td>
</tr>
<tr>
<td>9</td>
<td>11.4</td>
<td>17.7</td>
<td>19.7</td>
</tr>
<tr>
<td>10</td>
<td>9.5</td>
<td>8.8</td>
<td>9.1</td>
</tr>
<tr>
<td>11</td>
<td>9.0</td>
<td>10.5</td>
<td>10.6</td>
</tr>
<tr>
<td>12</td>
<td>3.5</td>
<td>1.5</td>
<td>5.5</td>
</tr>
<tr>
<td>13</td>
<td>17.1</td>
<td>2.3</td>
<td>9.5</td>
</tr>
<tr>
<td>14</td>
<td>4.5</td>
<td>2.6</td>
<td>6.3</td>
</tr>
<tr>
<td>15</td>
<td>21.0</td>
<td>9.6</td>
<td>10.6</td>
</tr>
<tr>
<td>16</td>
<td>34.7</td>
<td>3.5</td>
<td>8.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Resveratrol</th>
<th>Doxorubicin</th>
<th>5-FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC50 (μM)</td>
<td>208.3</td>
<td>0.13</td>
<td>317.0</td>
</tr>
<tr>
<td>20.3</td>
<td>13.2</td>
<td>6.6</td>
<td></td>
</tr>
</tbody>
</table>
| Human gingival fibroblast; HPC, pulp cells; HPLF, periodontal ligament fibroblast; Ca9-22, HSC-2, HSC-3 and HSC-4, oral squamous cell carcinoma cell lines; TS, tumor selectivity index; PSE, potency-selectivity expression; CC50, 50% cytotoxic concentration; 5-FU, 5-fluorouracil.
Calculation of chemical descriptors. Each chemical structure was optimized by the LowModeMD method (12), a suitable search method for minimum energy conformers of flexible molecules, with Merck Molecular Force Field (MMFF94x) in Molecular Operating Environment (MOE) 2013.08 (Chemical Computing Group Inc., Quebec, Canada). The descriptors used were: (a) std_dim2, std_dim3 (standard dimension 2 or 3: the square root of the second largest eigenvalue of the covariance matrix of the atomic coordinates) that depend on the structure connectivity and conformation; (b) E_tor (torsion potential energy) and E_oop (out-of-plane potential energy) that use the MOE potential energy model to calculate energetic quantities from stored 3D conformations; (c) vsurf_A (amphiphilic moment), vsurf_D4 (hydrophobic volume 4), vsurf_D5 (hydrophobic volume 5) and vsurf_R (surface rugosity) that are similar to the VolSurf descriptors (13) and depend on the structure connectivity and conformation; (d) BCUT_SMR_1 (using atomic contribution to molar refractivity1) and BCUT_SLOGP_1 (using atomic contribution to logP1) that are adjacency and distance matrix descriptors and calculated from the distance and adjacency matrices of the heavy atoms; (e) chi1v (atomic valence connectivity index), KierFlex (Kier molecular flexibility index), KierA1 (First alpha modified shape index) and KierA3 (Third alpha modified shape index) that are the Kier and Hall chi connectivity indices (14); (f) SMR_VSA7 (sum of vi such that R_i >0.56) (The Subdivided Surface Areas are descriptors based on an approximate accessible van der Waals surface area calculation for each atom, vi along with some other atomic property, pi. The vi is calculated using a connection table approximation. Ri denotes the contribution to Molar Refractivity for atom i as calculated in the SMR descriptor) (15); (g) Weight (molecular weight).

Statistical treatment. The relation among cytotoxicity, tumor specificity index, and chemical descriptors was investigated using simple regression analyses by JMP Pro version 10.0.2 (SAS Institute Inc., Cary, NC, USA). The significance level was set at p<0.05.

Results

Cytotoxicity. Among sixteen 3-styryl-2H-chromene derivatives, compound [12] showed the highest cytotoxicity against four human OSCC cell lines (mean CC_{50}=4.7±2.9 μM) followed by [14] (4.8±1.7 μM), [6] (5.0±3.7 μM) and [10] (8.4±1.6 μM) (Table I). Since compounds [12], [10], [14] and [6] showed much lower cytotoxicity against three human oral normal cells (mean CC_{50}=280.4±207.1, 332.1±64.4, 189.9±183.7 and 128.2±160.2 μM, respectively), they showed the highest tumor-selectivity [TS (D/B)=59.9, 39.7 [10], 39.3 [14] and 25.4 [6], respectively]. It should be noted that their tumor-selectivity was higher than that of resveratrol (TS=2.4), doxorubicin (TS=12.6) and 5-FU (TS=11.3) (Table I).

When tumor-selectivity was calculated by different equation using Ca9-22 and HGF cells, both derived from gingival tissues ([TS(C/A)], compounds [12], [10], [14] and [6] again showed very high tumor-selectivity (115.4, 34.0, 24.3 and 6.9, respectively). Their tumor-selectivity exceeded that of resveratrol, doxorubicin and 5-FU (1.3, 6.3 and 3.2, respectively) (Table I).

In order to identify compounds which have both good potencies and are selectively toxic to neoplasms, the potency-selectivity expression (PSE) values of the compounds were calculated. This property is the product of the reciprocal of the average CC_{50} value and the average TS figure multiplied by 100 (10). When HGF/HPLF/HPC was used as normal cells, doxorubicin showed the highest value (2588.5), followed by [12] (1277.5) > [14] (811.4) > [6] (504.6) > [10] (474.2) << 5-FU (12.8) > resveratrol (PSE=2.2) (D/B^2 in Table I).

Confirmation of tumor-specificity using epithelial normal oral cells together with OSCC cell lines. When HOK cells were used as normal cells, compounds [10, 12, 14] showed much lower cytotoxicity (CC_{50}=>400, >400 and 333 μM, respectively) (E), giving higher tumor-specificity (TS=>47.6, >85.1 and 69.4, respectively) (E/B) and potency-selectivity expression (PSE=>567, >1811 and 1446, respectively)(E/B^2 ×100) (Table II). On the other hand, doxorubicin and 5-FU showed unexpectedly higher cytotoxicity (CC_{50}=0.55 and

Table II. Cytotoxic activity of compounds [10, 12, 14] and anticancer drugs against human normal epithelial cells (HOK and HGEP). Each value represents the mean of triplicate determinations.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>OSCC (B)</th>
<th>HOK (E)</th>
<th>HGEP (F)</th>
<th>HOK (E/B)</th>
<th>HOK (F/B)</th>
<th>HOK (E/B^2)×100</th>
<th>HOK (F/B^2)×100</th>
<th>PSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8.4</td>
<td>>400</td>
<td>>400</td>
<td>>47.6</td>
<td>>47.6</td>
<td>>567</td>
<td>>567</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.7</td>
<td>>400</td>
<td>>400</td>
<td>>85.1</td>
<td>>85.1</td>
<td>>1811</td>
<td>>1811</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.8</td>
<td>333</td>
<td>89.1</td>
<td>69.4</td>
<td>18.6</td>
<td>1446</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>0.49</td>
<td>0.55</td>
<td>0.42</td>
<td>1.1</td>
<td>0.86</td>
<td>224</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>5-FU</td>
<td>88.5</td>
<td>412</td>
<td>46.9</td>
<td>4.7</td>
<td>0.53</td>
<td>5.3</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

TS, Tumor selectivity index; PSE, potency-selectivity expression; CC_{50}, 50% cytotoxic concentration; 5-FU, 5-fluouracil.
412 μM, respectively) (E), resulting in unexpectedly lower tumor-selectivity (TS=1.1 and 4.7, respectively) (E/B) and potency-selectivity expression (PSE=222 and 5.3, respectively) (E/B² x100) (Table II).

Similarly, compounds [10, 12, 14] showed much lower cytotoxicity against HGEP cells (CC₅₀>=400, >400 and 89.1 μM, respectively) than doxorubicin and 5-FU (CC₅₀=0.42 and 46.9 μM, respectively) (F), thus producing much higher tumor-specificity (TS=46.7, >85.1 and 18.6, respectively) (F/B) and potency-selectivity expression (PSE=567, >1811 and 388, respectively) (F/B²) than doxorubicin and 5-FU (TS=0.86 and 0.53, respectively; PSE=176 and 0.60, respectively) (Table II).

It should be noted that among compounds [10, 12, 14], [12] again showed the highest TS and PSE values when tumor-specificity and potency-selectivity expression were determined with epithelial malignant (Ca9-22, HSC-2, HSC-12, HSC-14, HSC-16) and non-malignant cells (HOK, HGEP).

Anti-HIV activity. In contrast to popular anti-HIV agents (dextran sulfate, curdlan sulfate, azidothymidine, 2',3'-dideoxycytidine) (SI=1935, 6028, 10403, 1916), none of 3-styryl-2H-chromenes [10, 12, 14] protected the cells from the cytopathic effect of HIV infection (SI<1) (Table III). Based on these data, the following QSAR analysis was focused on the cytotoxicity of 3-styryl-2H-chromenes.

Computational analysis. All calculations of QSAR analysis of 3-styryl-2H-chromenes were done with MOE, using 330 descriptors including Hamiltonian (AM1, PM3 and MNDO). QSAR analysis of cytotoxicity against normal cells demonstrated that eight descriptors showed correlation with N [mean pCC₅₀ (i.e., −log CC₅₀) for normal cells]. Scatter plots of the top six descriptors [std_dim2 (r²=0.447, p=0.0046), E_tor (r²=0.410, p=0.0075), E_oop (r²=0.339, p=0.0181), std_dim3 (r²=0.329, p=0.0202), vsurf_A (r²=0.292, p=0.0306) and BCUT_SMR_1 (r²=0.278, p=0.0357)] are shown (Figure 2). QSAR analysis of cytotoxicity against tumor cells demonstrated that seventy four descriptors showed correlation with T (mean pCC₅₀ for tumor cells). Scatter plots of the top six descriptors [chi1v (r²=0.609, p=0.0004), KierFlex (r²=0.609, p=0.0004), KierA1 (r²=0.606, p=0.0004), SMR_VSA7 (r²=0.605, p=0.0004), KierA3 (r²=0.605, p=0.0004) and Weight (r²=0.598, p=0.0004)] are shown (Figure 3). QSAR analysis of selective cytotoxicity demonstrated that sixteen descriptors showed correlation with T-N. Scatter plots of the top six descriptors [std_dim3 (r²=0.473, p=0.0032), BCUT_SLOGP_1 (r²=0.385, p=0.0104), vsurf_D4 (r²=0.375, p=0.0117), vsurf_R (r²=0.367, p=0.0129), vsurf_D5 (r²=0.336, p=0.0187) and E_oop (r²=0.334, p=0.0191)] are shown (Figure 4).

We found that the introduction of methoxy group at R1 of chromene ring significantly [5, 6, 7, 8] increased the cytotoxicity against normal cells (N) (p=0.0054), but reduced tumor-specificity (N-T) (p=0.0134). On the other hand, the introduction of methoxy group at R2 of chromene ring [9, 10, 11, 12] significantly increased the N-T (p=0.0293) (Figure 5).

We searched the combination sets that are useful to estimate the cytotoxicity and tumor-selectivity by using multiple regression analysis with leave-one-out cross verification method. We could construct the good estimation model for T-N, using two descriptors (vsurf_R and E_oop) (Figure 6), producing the following equation:

T-N=32.1±4.39 vsurf_R + 121(±17)E_oop - 46.1±6.2, n=16, R²=0.870, Q²=0.821, s=0.145

Discussion

The present study demonstrated for the first time that sixteen 3-styryl-2H-chromenes showed moderate to potent tumor-specificity and no detectable anti-HIV activity (Table I). Especially, compound that have a methoxy group at 7-position of the chromene ring and chlorine at 4'-position of phenyl group in styryl moiety [12] showed the highest

<table>
<thead>
<tr>
<th>3-Styryl-2H-chromenes</th>
<th>CC₅₀ (μM)</th>
<th>EC₅₀ (μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>212</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>2</td>
<td>143</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>3</td>
<td>253</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>4</td>
<td>178</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>5</td>
<td>191</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>6</td>
<td>182</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>7</td>
<td>144</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>8</td>
<td>209</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>9</td>
<td>117</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>10</td>
<td>202</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>11</td>
<td>170</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>12</td>
<td>182</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>13</td>
<td>103</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>14</td>
<td>157</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>15</td>
<td>281</td>
<td>>400</td>
<td><1</td>
</tr>
<tr>
<td>16</td>
<td>234</td>
<td>>400</td>
<td><1</td>
</tr>
</tbody>
</table>

CC₅₀, 50% cytotoxic concentration; EC₅₀, 50% effective concentration; SI: selectivity index (CC₅₀/EC₅₀).
tumor-selectivity $[TS=59.9 \text{ (D/B)}; 115.4 \text{ (C/A)}]$, exceeding that of resveratrol $[TS=2.4 \text{ (D/B)}; 1.3 \text{ (C/A)}]$, doxorubicin $[TS=12.6 \text{ (D/B)}; 6.3 \text{ (C/A)}]$ and 5-FU $[TS=11.3 \text{ (D/B)}; 3.2 \text{ (C/A)}]$ (Table I). Compound [12] showed the highest PSE value (1277.5) among sixteen 3-styryl-2H-chromenes, exceeding that of 5-FU (12.8) and resveratrol (2.2) (Table I). Since HGF, HPLF and HPC cells are mesenchymal cells, we investigated whether similar results with HOK and HGEP,
human epithelial normal oral cells. The experiments showed this was the case. All three selected 3-styryl-2H-chromenes [10, 12, 14] showed much higher tumor specificity and potency-selectivity expression than doxorubicin and 5-FU. Compound [12] again showed the highest TS and PSE values, whereas doxorubicin and 5-FU showed essentially no tumor specificity. These results suggest the necessity of investigation about the safety of doxorubicin for treatment of oral cancer patients.

We found that addition of chlorine at 4'-position of phenyl group in styryl moiety of [1] increased the cytotoxicity (mean CC50 (B)=96.3→12.6 μM), tumor-specificity [TS(D/B)=4.2→12.8] and potency-selectivity expression [PSE(D/B^2)=4.3→101.6] (compare 1 and 4). Similarly, addition of chlorine at 4'-position of phenyl group in styryl moiety of [9] increased the cytotoxicity (mean CC50 (B)=14.8→4.7 μM), tumor-specificity [TS(D/B)=18.6→59.9] and potency-selectivity expression [PSE(D/B^2)=125.5→1277.5]) (compare 9 and 12). However, chlorine at 4'-position of phenyl group in styryl moiety of [5] and [13] did not increase the cytotoxicity, tumor-specificity nor potency-selectivity expression (compare 5 and 8, 13 and 16) (Table I). These results suggest the importance of 3-dimensional structure in determining these parameters. It is known that the presence of halogens influences the molecular conformation and the biological activity by its steric and/or electronic effects. Conti and Desideri also reported on the inhibition of anti-picornavirus activity with chlorine-
substituted 3-styrylchromene (5). The present study demonstrated that the introduction of methoxy group at R1 of chromene ring significantly increased the cytotoxicity against normal cells, but reduced the tumor-specificity, whereas the introduction of methoxy group at R2 of chromene ring significantly increased the tumor-specificity (Figure 5).

QSAR analysis demonstrated that (i) cytotoxicity against normal cells correlated well with six descriptors (std_dim2, E_tor, E_oop, std_dim3, vsurf_A and BCUT_SMR_1) that reflect structure connectivity and conformation, torsion potential energy, out-of -plane potential energy, amphiphilic moment and molar refractivity (Figure 2), (ii) cytotoxicity against tumor cells correlated well with six (chi1v, KierFlex, KierA1, SMR_VSA7, KierA3 and Weight) that reflect atomic valence connectivity, flexibility, molecular shape, surface area and molecular weight (Figure 3) and (iii) tumor-selectivity correlated well with six descriptors (std_dim3, BCUT_SLOGP_1, vsurf_D4, vsurf_R, vsurf_D5 and E_oop) that reflect structure connectivity and conformation, hydrophobicity, surface rugosity and out-of-plane potential energy (Figure 4). By searching various sets of combinations, we could construct the good estimation model for T-N, using two descriptors (vsurf_R and E_oop).

We have found that all sixteen 3-styryl-2H-chromenes did not protect the cells from cytopathic effect of HIV infection. The lack of anti-HIV activity is not in agreement with a previous study where 4H-chromen-4-one and 2H-chromene derivatives inhibited the replication of picornavirus in vitro with high therapeutic indexes (250 and 36, respectively) (5). Recently, their group newly synthesized (E)-6-chloro-3-(3-phenylprop-1-en-1-yl)-2H-chromene (16) and [2-(2H-chromen-3-yl)vinyl]pyridines and 3-[2-(pyridinyl)vinyl]-4H-chromen-4-ones (17), that inhibited the infection of human rhinovirus (HRV) 1B and 14 replications, probably by acting at the uncoating level as a capsid-binder. The discrepancy between our and their results may be due to the different assay systems of anti-viral activity (whether using both mock-infected and infected cells at the same time or not).

We have recently found that (E)-3-(4-hydroxystyryl)-6-methoxy-4H-chromene-4-one induced mitochondrial vacuolization, and inhibited the autophagy [expression of The microtubule-associated protein 1 light chain 3 (LC3)], and finally induced apoptosis [limited degradation of Poly (ADP-ribose) polymerase (PARP)] in HSC-2 cells (Sakagami et al., submitted). It remains to be investigated whether (E)-3-(4-chlorostyryl)-7-methoxy-2H-chromene [12] shows similar actions.

In conclusion, the present study suggests that multivariate statistics with chemical descriptors for molecular shape and flatness may be useful for evaluation of tumor-specificity of 3-styryl-2H-chromenes.

Conflicts of Interest

The Authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Acknowledgements

This work was partially supported by KAKENHI from the Japan Society for the Promotion of Science (JSPS) (15K08111). The annual license of the statistical software, JMP Pro, was supported by the grant-in-aid of the oncology specialists promotion program by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Instructions for Authors 2015

General Policy. ANTICANCER RESEARCH (AR) will accept original high quality works and reviews on all aspects of experimental and clinical cancer research. The Editorial Policy suggests that priority will be given to papers advancing the understanding of cancer causation, and to papers applying the results of basic research to cancer diagnosis, prognosis, and therapy. AR will also accept the following for publication: (a) Abstracts and Proceedings of scientific meetings on cancer, following consideration and approval by the Editorial Board; (b) Announcements of meetings related to cancer research; (c) Short reviews (of approximately 120 words) and announcements of newly received books and journals related to cancer, and (d) Announcements of awards and prizes.

The principal aim of AR is to provide prompt publication (print and online) for original works of high quality, generally within 1-2 months from final acceptance. Manuscripts will be accepted on the understanding that they report original unpublished works in the field of cancer research that are not under consideration for publication by another journal, and that they will not be published again in the same form. All authors should sign a submission letter confirming the approval of their article contents. All material submitted to AR will be subject to review, when appropriate, by two members of the Editorial Board and by one suitable outside referee. The Editors reserve the right to improve manuscripts on grammar and style.

The Editors and Publishers of AR accept no responsibility for the contents and opinions expressed by the contributors. Authors should warrant due diligence in the creation and issuance of their work.

NIH Open Access Policy. The journal acknowledges that authors of NIH funded research retain the right to provide a copy of the final manuscript to the NIH four months after publication in ANTICANCER RESEARCH, for public archiving in PubMed Central.

Copyright. Once a manuscript has been published in ANTICANCER RESEARCH, which is a copyrighted publication, the legal ownership of all published parts of the paper has been transferred from the Author(s) to the journal. Material published in the journal may not be reproduced or published elsewhere without the written consent of the Managing Editor or Publisher.

Format. Two types of papers may be submitted: (i) Full papers containing completed original work, and (ii) review articles concerning fields of recognisable progress. Papers should contain all essential data in order to make the presentation clear. Reasonable economy should be exercised with respect to the number of tables and illustrations used. Papers should be written in clear, concise English. Spelling should follow that given in the “Shorter Oxford English Dictionary”.

Manuscripts. Submitted manuscripts should not exceed fourteen (14) pages (approximately 250 words per double - spaced typed page), including abstract, text, tables, figures, and references (corresponding to 4 printed pages). Papers exceeding four printed pages will be subject to excess page charges. All manuscripts should be divided into the following sections:
(a) First page including the title of the presented work [not exceeding fifteen (15) words], full names and full postal addresses of all Authors, name of the Author to whom proofs are to be sent, key words, an abbreviated running title, an indication “review”, “clinical”, “epidemiological”, or “experimental” study, and the date of submission. (Note: The order of the Authors is not necessarily indicative of their contribution to the work. Authors may note their individual contribution(s) in the appropriate section(s) of the presented work); (b) Abstract not exceeding 150 words, organized according to the following headings: Background/Aim - Materials and Methods/Patients and Methods - Results - Conclusion; (c) Introduction; (d) Materials and Methods/Patients and Methods; (e) Results; (f) Discussion; (g) Acknowledgements; (h) References. All pages must be numbered consecutively. Footnotes should be avoided. Review articles may follow a different style according to the subject matter and the Author's opinion. Review articles should not exceed 35 pages (approximately 250 words per double-spaced typed page) including all tables, figures, and references.

Figures. All figures should appear inline in the submitted document file. Once a manuscript is accepted all figures and graphs should be submitted separately in either jpg, tiff or pdf format and at a minimum resolution of 300 dpi. Graphs must be submitted as pictures made from drawings and must not require any artwork, typesetting, or size modifications. Symbols, numbering and lettering should be clearly legible. The number and top of each figure must be indicated. Pages that include color figures are subject to color charges.

Tables. All tables should appear inline in the submitted document file. Once a manuscript is accepted, each table should be submitted separately, typed double-spaced. Tables should be numbered with Roman numerals and should include a short title.

Clinical Trials. Authors of manuscripts describing clinical trials should provide the appropriate clinical trial number in the correct format in the text.
For International Standard Randomised Controlled Trials (ISRCTN) Registry (a not-for-profit organization whose registry is administered by Current Controlled Trials Ltd.) the unique number must be provided in this format: ISRCTNXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by “ISRCTN”). Please note that there is no space between the prefix “ISRCTN” and the number. Example: ISRCTN47956475.
For Clinicaltrials.gov registered trials, the unique number must be provided in this format: NCTXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by 'NCT'). Please note that there is no space between the prefix 'NCT' and the number. Example: NCT00001789.

Ethical Policies and Standards. ANTICANCER RESEARCH agrees with and follows the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals” established by the International Committee of Medical Journal Editors in 1978 and updated in October 2001 (www.icmje.org). Microarray data analysis should comply with the "Minimum Information About Microarray Experiments (MIAME) standard". Specific guidelines are provided at the "Microarray Gene Expression Data Society" (MGED) website. Presentation of genome sequences should follow the guidelines of the NHGRI Policy on Release of Human Genomic Sequence Data. Research involving human beings must adhere to the principles of the Declaration of Helsinki and Title 45, U.S. Code of Federal Regulations, Part 46, Protection of Human Subjects, effective December 13, 2001. Research involving animals must adhere to the Guiding Principles in the Care and Use of Animals approved by the Council of the American Physiological Society. The use of animals in biomedical research should be under the careful supervision of a person adequately trained in this field and the animals must be treated humanely at all times. Research involving the use of human foetuses, foetal tissue, embryos and embryonic cells should adhere to the U.S. Public Law 103-41, effective December 13, 2001.

Submission of Manuscripts. Please follow the Instructions for Authors regarding the format of your manuscript and references. Manuscripts must be submitted only through our online submission system at: http://www.iiar-submissions.com/login.html
In case a submission is incomplete, the corresponding Author will be notified accordingly.
Questions regarding difficulties in using the online submission system should be addressed to: email: journals@iiar-anticancer.org

Galley Proofs. Unless otherwise indicated, galley proofs will be sent to the corresponding Author of the submission. Corrections of galley proofs should be limited to typographical errors. Reprints, PDF files, and/or Open Access may be ordered after the acceptance of the paper. Authors of online open access articles published in 2015 are entitled to a complimentary online subscription to Anticancer Research 2015. Requests should be addressed to the Editorial Office. Galley proofs should be returned corrected to the Editorial Office by email within two days.

Copyright© 2015 - International Institute of Anticancer Research (J.G. Delinasios). All rights reserved (including those of translation into other languages). No part of this journal may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher.

Specific information and additional instructions for Authors

1. Anticancer Research (AR) closely follows the new developments in all fields of experimental and clinical cancer research by (a) inviting reviews on topics of immediate importance and substantial progress in the last three years, and (b) providing the highest priority for rapid publication to manuscripts presenting original results judged to be of exceptional value. Theoretical papers will only be considered and accepted if they bear a significant impact or formulate existing knowledge for the benefit of research progress.

2. Anticancer Research will consider the publication of conference proceedings and/or abstracts provided that the material submitted fulfils the quality requirements and instructions of the journal, following the regular review process by two suitable referees. (For further information please click here)

3. An acknowledgement of receipt, including the article number, title and date of receipt is sent to the corresponding author of each manuscript upon receipt. If this receipt is not received within 20 days from submission, the author should call or write to the Editorial Office to ensure that the manuscript (or the receipt) was not lost in the mail or during electronic submission.
4. Each manuscript submitted to AR is sent for review in confidence to two suitable referees with the request to return the manuscript with their comments to the Editorial Office within 12 days from receipt. If reviewers need a longer time or wish to send the manuscript to another expert, the manuscript may be returned to the Editorial Office with a delay. All manuscripts submitted to AR, are treated in confidence, without access to any person other than the Managing Editor, the journal's secretary, the reviewers and the printers.

5. All accepted manuscripts are peer-reviewed and carefully corrected in style and language, if necessary, to make presentation clear. (There is no fee for this service). Every effort is made (a) to maintain the personal style of the author's writing and (b) to avoid change of meaning. Authors will be requested to examine carefully manuscripts which have undergone language correction at the pre-proof or proof stage.

6. Authors should pay attention to the following points when writing an article for AR:
 • The Instructions to Authors must be followed in every detail.
 • The presentation of the experimental methods should be clear and complete in every detail facilitating reproducibility by other scientists.
 • The presentation of results should be simple and straightforward in style. Results and discussion should not he combined into one section, unless the paper is short.
 • Results given in figures should not be repeated in tables.
 • Figures (graphs or photographs) should be prepared at a width of 8 or 17 cm with legible numbers and lettering.
 • Photographs should be clear with high contrast, presenting the actual observation described in the legend and in the text. Each legend should provide a complete description, being self-explanatory, including technique of preparation, information about the specimen and magnification.
 • Statistical analysis should be elaborated wherever it is necessary. Simplification of presentation by giving only numerical or % values should be avoided.
 • Fidelity of the techniques and reproducibility of the results, should be points of particular importance in the discussion section. Authors are advised to check the correctness of their methods and results carefully before writing an article. Probable or dubious explanations should be avoided.
 • Authors should not cite results submitted for publication in the reference section. Such results may be described briefly in the text with a note in parenthesis (submitted for publication by... authors, year).
 • The References section should provide as complete a coverage of the literature as possible including all the relevant works published up to the time of submission.
 • By following these instructions, Authors will facilitate a more rapid review and processing of their manuscripts and will provide the readers with concise and useful papers.

7. Following review and acceptance, a manuscript is examined in language and style, and galley proofs are rapidly prepared. Second proofs are not sent unless required.

8. Authors should correct their galley proofs very carefully and preferably twice. An additional correction by a colleague always proves to be useful. Particular attention should be paid to chemical formulas, mathematical equations, symbols, medical nomenclature etc. Any system of correction marks can be used in a clear manner, preferably with a red pen. Additions or clarifications are allowed provided that they improve the presentation but do not bring new results (no fee).

9. Articles submitted to AR may be rejected without review if:
 • they do not fall within the journal's policy.
 • they do not follow the instructions to authors.
 • language is unclear.
 • results are not sufficient to support a final conclusion.
 • results are not objectively based on valid experiments.
 • they repeat results already published by the same or other authors before the submission to AR.
 • plagiarism is detected by plagiarism screening services.
 (Rejection rate (2014): 65%).

10. Authors who wish to prepare a review should contact the Managing Editor of the journal in order to get confirmation of interest in the particular topic of the review. The expression of interest by the Managing Editor does not necessarily imply acceptance of the review by the journal.

11. Authors may inquire information about the status of their manuscript(s) by calling the Editorial Office at +30-22950-53389, Monday to Friday 9.00-16.00 (Athens time), or by sending an e-mail to journals@iiar-anticancer.org

12. Authors who wish to edit a special issue on a particular topic should contact the Managing Editor.

13. Authors, Editors and Publishers of books are welcome to submit their books for immediate review in AR. There is no fee for this service.

(This text is a combination of advice and suggestions contributed by Editors, Authors, Readers and the Managing Editor of AR).

Copyright © 2015 IIAR (J.G. Delinasios)