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ABSTRACT
To date, although machine learning has been successful in various
practical applications, generic methods of testing machine learn-
ing code have not been established yet. Here we present a new
approach to test machine learning code using the possible input
region obtained as a polyhedron. If an ML system generates dif-
ferent output for multiple input in the polyhedron, it is ensured
that there exists a bug in the code. This property is known as one
of theoretical fundamentals in statistical inference, for example,
sparse regression models such as the lasso, and a wide range of
machine learning algorithms satisfy this polyhedral condition, to
which our testing procedure can be applied. We empirically show
that the existence of bugs in lasso code can be effectively detected
by our method in the mutation testing framework.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Machine Learning (ML) algorithms have been applied in a wide
range of application domains in society, and software implementa-
tions of ML algorithms have become found everywhere. With the
increasing number of essential applications of ML systems, their
reliability is also becoming increasingly important as failure of ML
systems may cause serious problems, for example, a car accident of
an automatic driving car. A fundamental step for ensuring the relia-
bility is to establish a testing procedure that requires understanding
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the features and characteristics of bugs occurred. Although a num-
ber of studies have investigated bugs and fixes in various software
systems, it is still challenging to perform testing in ML software due
to the lack of its theoretical investigation [16]. In particular, testing
ML software is fundamentally difficult as its behavior depends on
training data [13].

Our goal in this paper is to present a method that can rigorously test
ML code. The key to our approach is to use the theoretical bounding
of the possible input region for an ML system conditioned on its
output, which enables us to test ML code. Our approach can be ap-
plied to any ML implementation in which the behaviour of the ML
algorithm can be characterized by the polyhedral region, which has
been originally developed as the polyhedral lemma [9] to generate
a probability distribution of predictions to perform unbiased statis-
tical hypothesis testing in the framework of selective inference [15].
Whether or not the polyhedral region exists is an intrinsic property
of ML algorithms, and it is already known that the region exists for
a wide range of ML algorithms, for example, the lasso [17] including
the higher-order sparse models [14], change-point detection [4],
and GANs (generative adversarial networks) [18], to name a few.
Moreover, although the polyhedral condition itself is a linear con-
straint, this can be applied to nonlinear methods using kernels [19].
Characterization of the polyhedral region is actively studied and its
application is still growing. Therefore, the potential applicability of
our testing approach is broad.

Each polyhedron is described by the pair of input and output of
the ML system, and it guarantees that the output should be exactly
the same if the input is located in the polyhedron. This property
leads to the following observation: If a target ML system generates
different output for multiple input in the same polyhedron, we can
ensure that some bug must exist in its implementation. Therefore,
by applying this constraint as the test assertion, we can detect code
bugs if at least one example violates to the polyhedral condition.
Our approach is currently limited to the system in which output is
discrete; extending it to continuous output is an interesting future
direction.

To show the effectiveness of our approach in ML code testing, we
consider the feature selection scenario. In feature selection, which
is one of central tasks in ML, the goal is to select relevant variables
(features) from a supervised multivariate dataset; that is, given a
pair (X, y) observed from a system of interest, where X ∈ R𝑛×𝑝 is
a design matrix with 𝑛 observations and 𝑝 variables and y ∈ R𝑛 is a
response vector, the task is to find a set of variables𝑀 ⊆ {1, . . . , 𝑝}
that is informative to predict y from X [7]. Hence, from the ML
system viewpoint, (X, y) is input and𝑀 is output. The polyhedral
region for a possible output y′ ∈ R𝑛 is obtained in the form of
Ay′ ≤ b for some A ∈ R𝑛×𝑝 and b ∈ R𝑝 , where A and b are
computed from X, y, and𝑀 . This guarantees that, for any response
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vector y′ ∈ R𝑛 that are in the polyhedron with satisfying Ay′ ≤ b,
selected variables𝑀 ′ from (X, y′) should be exactly the same with
𝑀 . Using this property, we construct a testing method for the lasso
code, and empirically show that most of mutants can be successfully
detected by our approach in mutation testing [8].

2 RELATEDWORK
The most relevant work to this paper is [13], which studies testing
of ML implementation. This work tackles the oracle problem of ML
implementation code by multiple-implementation testing. However,
[13] requires multiple implementation of the same ML algorithm
as it is based on the majority voting strategy, and it is still an open
problem how to test ML code from a single implementation. In sum-
mary, our work is the first to provide the way for strongly asserting
the input-output relationship by incorporating a significant and
evolving line of ML theories, i.e., polyhedral region.

There has been active effort on ML testing, including testing
implementation of ML algorithms [2, 11]. One of the core challenges
in ML testing is the oracle problem. That is, it is often impossible
or too costly to define expected output for each test input. As a
result, it is impossible to distinguish “incorrect” (failed) test cases
that suggest existence of bugs. This point is especially true for
testing implementation of ML algorithms as we run the algorithms
to obtain unknown knowledge, e.g., feature selection and inference
models. The oracle problem has been investigated primarily in two
directions.

One is multiple-implementation testing (N-version program-
ming). As mentioned above, it has been applied to supervised learn-
ing software [13], which derives a test input’s surrogate oracle from
the majority-voted output by running multiple implementations of
the same algorithm. Two popular supervised learning algorithms:
the 𝑘 nearest neighbor classifier and the Naive Bayes classifier has
been shown to be effective in recognizing faults in real-world su-
pervised learning software. Multiple-implementation testing has
been also applied to testing of inference models as well, e.g., [12].
However, it is costly to construct multiple versions of the test target.
In addition, difference from other versions does not necessary mean
existence of bugs as there is no unique right answer.

The other approach is metamorphic testing, e.g., [5, 10]. In-
stead of directly asserting the output, metamorphic testing checks
whether the output changes in an expected way when we apply
a certain transformation to the input value. However, this kind of
relations (metamorphic relations) is difficult to find and its effec-
tiveness is difficult to assess. For example, rerunning training by
using training data revised by swapping RGB channels [5] takes
some long time and it is difficult for testers to assess how effective
this kind of “strange” transformations.

Differently from those studies, we propose to use constraints
that directly asserts the input-output relationship, thus aiming at
strong capability of bug detection [21].

3 THE PROPOSED METHOD
Here we present our ML code testing method. First we introduce
the generic formulation of our testing approach, which can be
applied to any implementations of ML algorithms that satisfies the

Algorithm 1 Random testing of ML code with polyhedral region
Require: ML code, 𝑟outer, 𝑟inner
Ensure: “bug exists” or “bug is not detected”
1: for 𝑖 in 1 to 𝑟outer do
2: Randomly generate X, y, and parameter 𝝀
3: ComputeML(X, y,𝝀)
4: Compute A and b in Equation (1)
5: for 𝑗 in 1 to 𝑟inner do
6: Randomly generate y′ ∈ R𝑛 such that Ay′ ≤ b
7: Compute ML(X, y′,𝝀)
8: if ML(X, y,𝝀) ≠ ML(X, y′,𝝀) then
9: Terminate and output “bug exists”
10: Output “bug is not detected”

polyhedral condition, which we will provide in Equation (2). Next
we discuss the specific case of the lasso algorithm.

3.1 Generic Formulation
We formulate our approach in the generic case. Let (X, y) be a pair of
an input matrix and an output vector of a system of interest, which
forms “input” to an ML system, and let us denote by ML(X, y,𝝀)
“output” of theML system given parameters𝝀. The only assumption
to use our approach is that the possible region of any outcome y′
is given in the form of

Ay′ ≤ b (1)

with a matrix A and a vector b fully determined by X, y, and
ML(X, y,𝝀). The inequality Ay < b is interpreted as element wise,
yielding a convex polyhedron. This polyhedral characterization is
the core theoretical property to our approach. It has been originally
developed to address the problem of selective inference, which is
for creating accurate uncertainty evaluations for the parameters
estimated by a feature selection algorithm such as the lasso [17].
The seminal paper by Lee et al. [9] provides the polyhedral lemma,
which gives us a probability distribution over the space of the poly-
hedron and it can be used to remove a bias in statistical hypothesis
testing [20]. We therefore obtain the polyhedral condition as{

y′
�� ML(X, y,𝝀) = ML(X, y′,𝝀)

}
=

{
y′

�� Ay′ ≤ b
}
. (2)

In our testing method, we first prepare an example pair (X, y),
which can be randomly created, and apply the ML system to ob-
tain its result ML(X, y,𝝀) and A, b in Equation (1). Then, for any
y′ satisfying the condition Ay′ ≤ b, the polyhedral condition in
Equation (2) tells us that

ML(X, y,𝝀) = ML(X, y′,𝝀) (3)

should be always satisfied. Therefore, if we can find at least one y′
that does not satisfy the above condition (3), we can surely say that
the target ML code includes a bug. In contrast, if the code does not
have any bug, the condition (3) always holds.

The pseudo-code of our testing method is shown in Algorithm 1.
We repeat the above procedure for many randomly generated pairs
(X, y) and test output y′, and try to find y′ that violates the condi-
tion (3). Note that, if at least y′ is found, then our method ensures
that the code includes a bug and immediately terminates. Note
that the presented method is simple random testing in terms of
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input generation. One can deploy sophisticated input generation
techniques such as adaptive random testing [3] or search-based
testing [1].

3.2 Specific Application for Lasso
We apply our method to the case of the lasso [17], as it is the original
application of the polyhedral characterization and its properties
have been well established. The lasso (least absolute shrinkage
and selection operator) is one of the most popular methods for
sparse regression, and it can perform variable (feature) selection
through learning of a linear regressionmodel. Given a designmatrix
X ∈ R𝑛×𝑝 with 𝑛 observations with 𝑝 variables and its response
vector y ∈ R𝑝 , the problem of the lasso is formulated as finding the
optimal coefficients �̂� ∈ R𝑝 such that

�̂� ∈ argmin
𝜷 ∈R𝑝

1
2
∥y − X𝜷 ∥22 + _∥𝜷 ∥1, (4)

where ∥ · ∥1 and ∥ · ∥2 are L1 and L2 norms, respectively, given
as ∥𝒙 ∥1 = |𝑥1 | + |𝑥2 | + · · · + |𝑥𝑝 | and ∥𝒙 ∥2 =

√
𝑥21 + 𝑥22 + · · · + 𝑥2𝑝 .

By solving the above optimization problem, we can select a set
of variables �̂� = { 𝑗 ∈ [𝑝] | 𝛽 𝑗 ≠ 0} with [𝑝] = {1, 2, . . . , 𝑝}
from 𝑝 variables (features). This set �̂� is called the active set and is
considered to be the set of selected variables by the lasso. Here we
provide analytical solution of A ∈ R𝑛×𝑝 and b ∈ R𝑛 in Equation (1),
which as been presented in [9, Proposition 4.2]. Let (Z𝑇Z)+ be
the (Moore-Penrose) pseudoinverse of the square matrix Z𝑇Z and
Z+ = (Z𝑇Z)+Z𝑇 , X𝑀 ∈ R𝑛×|𝑀 | be the submatrix of X with respect
to columns of𝑀 , X−𝑀 ∈ R𝑛×(𝑛−|𝑀 |) be the submatrix with respect
to columns of [𝑝] \𝑀 , and P𝑀 = X𝑀 (X𝑇

𝑀
X𝑀 )−1X𝑀 be projection

onto the columns space of X𝑀 . Then if the lasso chooses a variable
set �̂� with its sign vector ŝ; that is,ML(X, y, _) = (�̂�, ŝ), we have

A =

(
A0 (�̂�, ŝ)
A1 (�̂�, ŝ)

)
, b =

(
b0 (�̂�, ŝ)
b1 (�̂�, ŝ)

)
, (5)

where

A0 (�̂�, ŝ) = 1
_

(
X𝑇

−�̂�
(I − P

�̂�
)

−X𝑇

−�̂�
(I − P

�̂�
)

)
, b0 (�̂�, ŝ) =

(
1 − X𝑇

−�̂�
(X𝑇

�̂�
)+ŝ

1 + X𝑇

−�̂�
(X𝑇

�̂�
)+ŝ

)
,

A1 (�̂�, ŝ) = −diag(ŝ) (X𝑇

�̂�
X
�̂�
)−1X𝑇

�̂�
, and

b1 (�̂�, ŝ) = −_diag(ŝ) (X𝑇

�̂�
X
�̂�
)−1ŝ.

In the above equations, A0 and b0 encode the “inactive” constraints,
and A1 and b1 encode the “active” constraints. We illustrate the
polyhedral region in the lasso in Figure 1.

4 EXPERIMENTS
We examine the effectiveness of our method using mutation testing,
which evaluates the quality of a testing method by counting how
many mutants (code including bugs) are detected by the method.
All experiments were conducted in Cent OS release 6.10 on a single
core 2.20 GHz Intel Xeon CPU E7-8880 v4 and 2 TB of memory. We
implemented our method on the R language version 3.5.2.

To perform mutations testing, we used R implementation of
the total 142 lines of lasso code, the function glmnet provided in

Xn

p

y lasso

X y’ lasso

Polyhedron They are the samePolyhedron

Selected features
(M, s)

Ay’ ≤ b 

Figure 1: Polyhedral region in lasso.

the glmnet library [6], which is treated as the “correct” lasso code.
Based on the code, we generated 177 mutants of the lasso code
in total using four types of basic mutations including arithmetic
mutation, relational mutation, logical mutation, and assignment
mutation. The list of mutations is summarized in Table 1. In our
method, we set 𝑛 = 50, 𝑝 = 10, _ = 0.8, 𝑟outer = 𝑟inner = 1,000. That
is, in the outer loop starting from line 1 in Algorithm 1, we repeat
randomly generating X ∈ R50×10 and y ∈ R50 1,000 times, and for
each dataset, we also repeat 1,000 times generating y′ ∈ R50 in the
inner loop starting from line 5. If we detect one y′ that satisfies
the condition in line 8, we terminate the algorithm and output
“bug exists”, where it ensures that a bug exists in the code and our
method can successfully kill the mutant. Otherwise any y′ does
not satisfy the condition, we output “bug is not detected”, which
means that our method fails to detect the mutant.

Results are summarized in the rightmost two columns in Table 1.
45 mutants were detected by the compiler error of R. In the rest of
132 mutants, our method successfully detected 129 mutants. There-
fore, our method successfully detected 98 % (129/132) of mutants,
and only three mutants were not detected. Interestingly, all three
survived mutants are generated by mutating the “less than” oper-
ation. Our methods required 69.51 ± 16.70 inputs to detect each
mutant, which took about 10 seconds and is reasonably efficient
to perform mutation testing. Our results therefore show that our
method can effectively and efficiently detect various types of mu-
tants of the lasso code. Since our method depends on randomly
generated datasets, it is important to try many input to detect mu-
tants in a systematic manner. Currently, we tested 1,000 randomly
generated input pairs, thus it may be possible to find more mutants
with more input. It is our interesting future work to design an
approach that generates (X, y) and y′ in an efficient manner.

5 CONCLUSION
In this paper, we have proposed a testing approach for ML code
based on the polyhedral region of possible input conditioned on
output. Our empirical evaluation shows that our testing method
successfully detects 98 % of mutants of the lasso code efficiently,
which is currently impossible by any other testing methods. Since
this polyhedral characterization applies to not only the lasso but a
broad range of ML algorithms, our method has a wide applicability
for the ML code testing. Our method can be a fundamental of ML
testing techniques, and will lead to further development of testing
methods for ML implementations.
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Table 1: Generated mutants from lasso code and experimental results.

Mutants Experimental results
Mutation operators Target operators # of mutated places # of mutants # detection # detection

by our method by compiler

Arithmetic mutation plus 4 20 20 0
minus 3 15 6 9
multiplication 1 5 5 0
division 0 0 0 0
modulus 0 0 0 0
exponentiation 0 0 0 0

Relational mutation equal 10 50 38 12
not equal 3 15 12 3
less than or equal to 1 5 2 3
greater than or equal to 1 5 2 3
greater than 4 20 17 3
less than 7 35 20 12

Logical mutation or 1 3 3 0
and 0 0 0 0
or2 0 0 0 0
and2 1 3 3 0

Assignment Mutation left assignment 1 1 1 0
right assignment 0 0 0 0

Total 37 177 129 45
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