Papers

Peer-reviewed
Dec, 2008

Highly unradiogenic lead isotope ratios from the horoman peridotite in japan

Nature Geoscience
  • Sanjeewa P.K. Malaviarachchi
  • ,
  • Akio Makishima
  • ,
  • Masaaki Tanimoto
  • ,
  • Takeshi Kuritani
  • ,
  • Eizo Nakamura

Volume
1
Number
12
First page
859
Last page
863
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1038/ngeo363
Publisher
NATURE PUBLISHING GROUP

Basalts at mid-ocean ridges are generated by partial melting of the Earth's upper mantle. As a result of this process, the upper mantle has become depleted over time in elements that are preferentially removed by melting(1-3). Although mid-ocean-ridge basalts have traditionally been thought to reflect the chemical composition of such depleted mantle(2-7), recent work has revealed the existence of domains in the upper mantle that are apparently not sampled by the basalts(8). Here we present the lead (Pb), neodymium (Nd) and hafnium (Hf) isotope compositions of peridotites from the Horoman orogenic massif in Japan, which is considered to represent the residues of melting of the upper mantle. These peridotites exhibit the lowest Pb isotope ratios reported from any known mantle material, along with high Nd and Hf isotope ratios. These data suggest that chemical depletion of the peridotites occurred around a billion years ago, and that they represent ancient mantle domains that have escaped convective stirring and homogenization. We suggest that such domains-if abundant in the mantle-may constitute a hitherto unrecognized reservoir with highly unradiogenic lead.

Link information
DOI
https://doi.org/10.1038/ngeo363
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000261278700019&DestApp=WOS_CPL
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=65349150622&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=65349150622&origin=inward
ID information
  • DOI : 10.1038/ngeo363
  • ISSN : 1752-0894
  • eISSN : 1752-0908
  • SCOPUS ID : 65349150622
  • Web of Science ID : WOS:000261278700019

Export
BibTeX RIS