論文

査読有り
2012年

Investigation on Micro-machining Characteristics and Phenomenon of Semiconductor Materials by Harmonics of Nd:YAG Laser

PROCEEDINGS OF PRECISION ENGINEERING AND NANOTECHNOLOGY (ASPEN2011)
  • Takayuki Hirano
  • ,
  • Yasuhiro Okamoto
  • ,
  • Akira Okada
  • ,
  • Yoshiyuki Uno
  • ,
  • Tomokazu Sakagawa
  • ,
  • Shin-ichi Nakashiba

516
516
開始ページ
36
終了ページ
+
記述言語
英語
掲載種別
研究論文(国際会議プロシーディングス)
DOI
10.4028/www.scientific.net/KEM.516.36
出版者・発行元
TRANS TECH PUBLICATIONS LTD

Precision micro-machining without crack and heat affected zones is required in order to use high-performance materials such as silicon and silicon carbide, and it is expected that the higher harmonics of the Nd:YAG laser can perform precision micro-machining due to its high photon energy. However, even by using the harmonics of the Nd:YAG laser, a heat affected zone is inevitable due to the plasma generation. In order to reduce the influence of plasma on the processing results, it is important to understand the generation mechanism of plasma. Therefore, the laser induced plasma in micro-drilling of silicon carbide was observed by a high-speed shutter camera, and the influence of laser wavelength and surrounding conditions on the machining characteristics were experimentally investigated. The removal depth increased with decreasing wavelength and the surrounding gas pressure. The surface integrity was improved by the combination of shorter wavelength and reduced pressure conditions. The behavior of laser induced plasma was different from the wavelength of the laser beam and the surrounding gas pressure. Under atmospheric pressure conditions, the plasma grew greatly and affected the wider surface around the drilled hole with increasing wavelength. Under reduced pressure conditions, there was little difference in plasma size by wavelength, and the affected zone around the drilled hole became relatively smaller. It became clear. that a low surrounding gas pressure and shorter wavelength were important to obtain better surface integrity and highly efficient processing.

リンク情報
DOI
https://doi.org/10.4028/www.scientific.net/KEM.516.36
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000308847800007&DestApp=WOS_CPL
ID情報
  • DOI : 10.4028/www.scientific.net/KEM.516.36
  • ISSN : 1013-9826
  • Web of Science ID : WOS:000308847800007

エクスポート
BibTeX RIS