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Abstract

We analyze oscillations of intermediate neutrinos in terms of the scattering of

particles described by Gaussian wave packets. We study a scalar model as in a previous

paper (I) but in realistic situations, where the two particles of the initial state and final

state are wave packets and neutrinos are in the intermediate state. The oscillation

of the intermediate neutrino is found from the time evolution of the total transition

probability between the initial state and final state. The effect of a finite lifetime and a

finite relaxation time are also studied. We find that the oscillation pattern depends on

the magnitude of wave packet sizes of particles in the initial state and final state and

the lifetime of the initial particle. For ∆m2
21 = 3×10−2 eV2, the oscillation probability

deviates from that of the standard formula if the wave packet sizes are around 10−13

m for 0.4 MeV neutrino.
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§1. Introduction

Neutrino oscillation is the only phenomenon in which to see effects of neutrino masses

at present. To analyze neutrino oscillations, single particle wave functions have mainly been

studied. Because neutrino masses are very important, it is necessary to understand the

quantum mechanics of neutrino oscillations in full detail. It is the purpose of the present

paper to study quantum mechanical aspects of neutrino oscillations beyond the single particle

picture. We studied particle oscillations from a nonstandard viewpoint in the framework of

quantum field theory, where neutrinos are in the intermediate state and the finite time

interval effect is explicitly taken into account, on the basis of plane waves in a previous

paper.1) We found that non-standard oscillation patterns emerge in the exact plane waves.

In many real physical processes, however, particles are not exact plane waves but have finite

spatial extensions. Wave packets are suitable to express these particles. We study particle

oscillations in terms of the scattering amplitude of the particles described by Gaussian wave

packets. Neutrinos are in the intermediate state in this amplitude, and neutrino oscillation

is studied from this amplitude.

In scattering processes, the roles and importance of wave packets have been stressed by

Goldberger and Watson.2) The size of the wave packet of the initial state is determined from

the beam size, and it is a semi-micro scale for hadron beams. This corresponds to an energy

scale of the order of eV or less. By contrast, typical energy scales of hadron systems are of

the order of a few hundred MeV. Hence the effects of wave packets in the initial state are

negligible in standard hadron experiments. The size of the wave packet of the final state,

on the other hand, is determined by a detector. A detector is composed of many systems

of materials. We regard the minimun set of materials for which a classical signal is taken

as a unit detector. A unit detector is composed of atoms and generates radiation, electrons,

or other particles by which information from the quantum wave function is transmitted

to classical observers. The wave packet size is determined from the unit detector and the

resolution of the measurement is also determined from the unit detector. Hence the wave

packet size should be about the same as the spatial resolution of the detector. A unique

value of this size is not known now, so we study the dependence of the transition probability

on the wave packet sizes. The time resolution is determined from the time evolution of the

detector. In this paper, for simplicity, it is assumed that the time resolution is zero. Two

observations at different times are assumed to be independent.

In neutrino oscillation experiments, the typical energy scale is extremely small and the

spatial sizes of experiments are of the order several hundreds km or more and are very

different from scales of ordinary experiments. Hence, the roles of wave packets in neutrino
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experiments are different from their roles in other ordinary experiments and they should

be clarified. It is one of our purposes in the present work to study these problems. In

fact, several theoretical works have been done on Gaussian wave packets. But they are not

sufficient. Especially, qualitative analysis is lacking. We study effects that have not been

studied to this time. The works in Refs. 3)–5) treat neutrinos as wave packets in a single

particle picture. Other works treat the particles in the initial and final states as wave packets

in a field theoretical treatment.6), 7) In the latter, the standard S matrix theory, in which the

transition time interval is set to infinity from the beginning, was used, and the dependence

of the amplitudes on neutrino parameters was obtained. However, this standard treatment

of the S matrix is inadequate in a process in which the finite time interval effect is important

and the dependence of amplitudes on external particles’ parameters are studied. The finite

time interval effect becomes relevant in the situation in which the intermediate particle

is very light and interacts weakly with matter. Especially when the intermediate particle

consists of a superposition of several mass eigenstates and the mass squared difference is

very small, the finite time interval effect is not negligible. In the standard S matrix theory,

because the energy is strictly conserved and the interference of the amplitudes of different

mass does not occur, there is no oscillation when all the particles are exact plane waves. In

(I), the finite time interval effects in particle oscillations was shown to be important when

the observed particles are exact plane waves. Thus the finite time interval effect should be

important generally in the field theoretical treatment of neutrino oscillations. A modified S

matrix approach that allows us to investigate finite time interval effects should be applied

for the study of intermediate neutrino oscillations.

In the present paper, we extend our study of particle oscillations in the intermediate

state to the wave packet formalism. Oscillation amplitudes of neutrinos in the intermediate

state where the particles in the initial state and final state are described by wave packets

are studied and effects due to the finite wave packet, the finite time interval, and the finite

lifetime or finite relaxation time are found. Amplitudes are shown to deviate from the

standard formula in extreme conditions, when the wave packet sizes are very small.

This paper is organized in the following manner. In Section 2 we give the general con-

sideration of the wave packet formalism in which the particles in the initial and final states

are described by Gaussian wave packets in the finite time interval method. In Section 3, the

amplitude is computed using the Gaussian approximation. In Section 4, we include a finite

lifetime and a finite relaxation time. In Section 5, numerical results in one spatial dimension

are presented. A summary is given in Section 6.
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§2. The wave packet formalism

Here we investigate neutrino oscillations in a scalar model in which particles in the initial

and final states have finite spatial widths that are described by Gaussian wave packets.

Particles A, B, C and D are external particles and are expressed by the field operators

ΦA(x), ΦB(x), ΦC(x) and ΦD(x). The fields ΦI1(x) and ΦI2(x) are mass eigenstates and are

internal particles. The Lagrangian density is given by

L =
∑

L=A,B,C,D

(

1

2
(∂µΦL)

2 − 1

2
mL

2ΦL
2

)

+
∑

i=1,2

(

1

2
(∂µΦIi)

2 − 1

2
mIi

2ΦIi
2

)

−Hint, (2.1)

where mIi is the mass of ΦIi and mL that of ΦL. The interaction Hamiltonian is written

Hint = H1
int +H2

int,

H1
int = F1

∫

d3x ΦA(x)ΦIC(x)ΦC(x),

H2
int = F2

∫

d3x ΦB(x)ΦID(x)ΦD(x), (2.2)

where F1 and F2 are coupling constants. The fields ΦIC(x) and ΦID(x) in the above interac-

tion Hamiltonian are linear combinations of the mass eigenstates :

ΦIC(x) = cos θ · ΦI1(x) + sin θ · ΦI2(x),

ΦID(x) = − sin θ · ΦI1(x) + cos θ · ΦI2(x). (2.3)

Here θ is the mixing angle between ΦIC and ΦID and between ΦI1 and ΦI2 .

Each field operator is expanded in the interaction representation as

ΦL(x) =

∫

d3p

2E(p)L
exp

(

ip · x− iEL(p)t

)

· a(p)L + h.c.,

E(p)L =
√

p2 +mL
2, (2.4)

where L stands for A,B,C,D and Ii.

We investigate the situation in which the particles A and B are prepared at time t = 0

and position x = XA, and the particles C and D are detected at t = TC , x = XC and

t = TD, x = XD, respectively. (Fig. 1) We assume TD > TC . The transition amplitude of

the finite time interval TD between the initial and final states at second order is calculated

as

〈final|S[t = TD, t = 0] |initial〉 = 〈final| i2
∫ TD

0

dt2

∫ t2

0

dt1Hint(t1)Hint(t2) |initial〉. (2.5)
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(t2,x2)

(t1,x1)

(TD,XD)(0,XB)

(TC ,XC)
(0,XA)

I

Fig. 1. Diagram

The initial state is composed of two particles, A and B, which are the wave packets of

the finite spatial extents expressed by a distribution function. We assume that the initial

time and the final time are defined with infinite precision. This assumption makes the wave

packet states defined at different times independent of each other. The distribution function

of the momentum p, w(p;p
0,X, T ; σ), has a finite extension around the central value p0,

and a Gaussian form of width σ is assumed :

w(p;p0,X, T ; σ) = exp

(

− (p− p0)2

2σ2 − ip ·X+ iE(p)T

)

. (2.6)

The initial state is given by

|initial〉 =
∫

d3pA
√

(2πσ2
A)

3

∫

d3pB
√

(2πσ2
B)

3
w(pA;p

0
A,XA, 0; σA)

× w(pB;p
0
B,XB, 0; σB)a(pA)

†
Aa(pB)

†
B |0〉. (2.7)

The final state is composed of two particles, C and D, which are the wave packets. The final

state is defined in the form

|final〉 =
∫

d3pC
√

(2πσ2
C)

3

∫

d3pD
√

(2πσ2
D)

3
w(pC;p

0
C ,XC , TC ; σC)

× w(pD;p
0
D,XD, TD; σD)a(pC)

†
Ca(pD)

†
D |0〉. (2.8)

In the above equations, XA, XB,XC and XD are the center positions of the wave packets,

and p0
A, p

0
B, p

0
C and p0

D are the central values of momentum of the particles A, B, C and

D, respectively. We consider the spatial sizes of the wave packets, σxL ≡ 1/(2σL) (L =

A,B,C,D), to be between a macroscopic size and a microscopic size.

In the amplitude Eq. (2.5), the particles A, B, C and D represent directly observed

particles. The particle I represent a scalar neutrino and appears only in the intermediate

state. Substituting Hint(t), the amplitude is given by

S ≡ 〈final|S[t = TD, t = 0] |initial〉 = 1

2
F1F2 sin 2θ (S1 − S2) , (2.9)
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where

Si =

{

∏

L=A,B,C,D

∫

d3pL
√

(2πσ2
L)

3

}

∫

d3k

(2π)32Ei

∫ TD

0

dt2

∫ t2

0

dt1

∫

d3x2

∫

d3x1

× ei(pD−ki−pB)x2+i(pC+ki−pA)x1wA wB w∗
Cw

∗
D. (2.10)

From this amplitude, we study neutrino oscillation in the intermediate state. Because the

neutrino interacts with matter extremely weakly, it is not observed directly in real exper-

iments. Hence, the amplitudes of the present situation agree with the amplitudes of the

realistic experimental situations.

Now we perform the integrations over pA, pB, pC and pD in Eq. (2.10). To integrate

these variables, the energy is expanded around its central value,

EL(p) = EL(p
0
L) + (p− p0

L) · vL,

vL =
∂EL(p

0
L)

∂pL

, (2.11)

where vL is the velocity of the particle L at this momentum, and the momentum integration

is carried out as Gaussian integrations. After similar integrations over x1, x2 and k, the

transition amplitude is obtained as

Si = N exp

[

−∆P2

2σ2

]
∫ TD

0

dt2

∫ t2

0

dt1 exp

[

− 1

2
Zi(t1, t2, TD) + it1∆Ẽ0

1i + it2∆Ẽ0
2i

]

, (2.12)

where

N =

(

2π

σ2

)3/2

eiφ, (2.13)

φ = −XA · p̃0
A −XB · p̃0

B + (XC · p̃0
C − TCẼ

0
C) + (XD · p̃0

D − TDẼ
0
D). (2.14)

The quantity Zi in the exponent causes the amplitudes Si to have dominant contributions

from the regions Zi ≃ 0 and is called a “trajectory function”. The trajectory functions

Zi(t1, t2, TD) =
σ2
ACσ

2
BD

σ2
F2

i (t1, t2, TD) +
σ2
Bσ

2
D

σ2
BD

G2(t2, TD) +
σ2
Aσ

2
C

σ2
AC

H2(t1), (2.15)

Fi(t1, t2, TD) = x0
2(t2, TD)− x0

1(t1)− vi(t2 − t1), (2.16)

G(t2, TD) = XD −XB − t2vB − (TD − t2)vD, (2.17)

H(t1) = XC −XA − t1vA − (TC − t1)vC (2.18)

give a classical particle picture, where vi is the velocity of Ii and is defined in the same

way as (2.11). Here we use for conciseness σ2 = σ2
A + σ2

B + σ2
C + σ2

D and σ2
ij = σ2

i + σ2
j
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(i, j = A,B,C,D). The coefficient of F2
i (t1, t2, TD), σ

2
ACσ

2
BD/σ

2, is the width of the Gaus-

sian function for the intermediate particle’s momentum. In our approach, the intermediate

particles become wave packets automatically and then sizes are given by those of the external

particles.

The momenta and energies appearing in φ are given by,

∆P = p0
C + p0

D − p0
A − p0

B, (2.19)

p̃0
L = p0

L +
σ2
L

σ2
∆P for L = A,B (2.20)

p̃0
L = p0

L − σ2
L

σ2
∆P for L = C,D, (2.21)

Ẽ0
L = E0

L +
σ2
L

σ2
vL ·∆P, for L = A,B (2.22)

Ẽ0
L = E0

L − σ2
L

σ2
vL ·∆P, for L = C,D (2.23)

∆Ẽ0
1i = Ẽ0

C + Ei(k
0)− Ẽ0

A, (2.24)

∆Ẽ0
2i = Ẽ0

D −Ei(k
0)− Ẽ0

B. (2.25)

The quantity −∆P2/(2σ2) in the exponent of Eq. (2.12) is called the “momentum function”.

It gives a constraint on the differences between momenta.

The intermediate particles appear as wave packets even if they were not originally pre-

pared as wave packets, and their momenta are given by the following function of the momenta

of external particles :

k0 = p0
D − p0

B − σ2
BD

σ2
∆P. (2.26)

x0
1 and x0

2 are the central positions of the interaction vertices and written

x0
1(t1) =

1

σ2
AC

{

σ2
A(XA + t1vA) + σ2

C(XC − (TC − t1)vC)

}

, (2.27)

x0
2(t2, TD) =

1

σ2
BD

{

σ2
B(XB + t2vB) + σ2

D(XD − (TD − t2)vD)

}

. (2.28)

The Gaussian term in Eq. (2.12) places the constraint p0
C + p0

D − p0
A − p0

B ≈ 0 on the

momentum with the width
√
2σ2. The momentum is approximately conserved, because the

initial state and final state are approximate eigenstates of the momentum. The Gaussian

terms in the integrand of Si place the constraints Fi ≈ 0, G ≈ 0 and H ≈ 0 on to the times

t1 and t2. These correspond to the classical trajectories in the particle picture. The latter

constraints become stronger as the spatial sizes of the wave packets become smaller.
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§3. Gaussian approximation in time integration

In this section we study the amplitude Eq. (2.12) further. In order to perform the time

integrations, the exponent of the integrand in Eq. (2.12) is rewritten as follows

− 1

2
Zi(t1, t2, TD) + it1∆Ẽ0

1i + it2∆Ẽ0
2i = −1

2
Zi(t

0
1i, t

0
2i, TD) + it01i(TD)∆Ẽ0

1i + it02i(TD)∆Ẽ0
2i

− 1

2σ̄2
t1i

(

t1 − t01i(TD)−
∆t01i
σ̄t2i

(t2 − t02i(TD))− iσ̄2
t1i
∆Ẽ0

1i

)2

− 1

2σ̄2
t2i

(

t2 − t02i(TD)− iσ̄t2i(σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i)
)2

− 1

2

(

σ̄t1i∆Ẽ0
1i

)2

− 1

2

(

σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i

)2

, (3.1)

where σ̄2
t1i

and σ̄2
t2i

are the widths of t1 and t2 and are given as

1

σ̄2
t1i

=
1

2

(

∂2Zi

∂t21

)

, (3.2)

1

σ̄2
t2i

=
1

2

(

∂2Zi

∂t22

)

− 1

4
σ̄2
t1i

(

∂2Zi

∂t1∂t2

)2

, (3.3)

∆t01i = −1

2
σ̄2
t1i

(

∂2Zi

∂t1∂t2

)

σ̄t2 , (3.4)

and t01i(T ) and t02i(T ) are regarded as the central values of the time of interactions and are

defined by

∂Zi

∂t1

∣

∣

∣

∣

t1=t0
1i

t2=t0
2i

= 0,

∂Zi

∂t2

∣

∣

∣

∣

t1=t0
1i

t2=t0
2i

= 0. (3.5)

Because the explicit forms of t01i(TD), t
0
2i(TD), σ̄

2
t1i
, σ̄2

t2i
and ∆t01i are quite complicated, we

just give quadratic forms of the trajectory function, and the explicit forms are given in

Appendix A. Here the central values of the times and time widths depend on the momenta

of the external and internal particles. Therefore it happens in some situations that time

widths become very large, although the spatial widths of external particles are finite.

The amplitude Si is given by

Si = N exp

[

−1

2
Zi(t

0
1i, t

0
2i, TD)−

∆P2

2σ2
− 1

2

(

σ̄t1i∆Ẽ0
1i

)2

− 1

2

(

σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i

)2
]

× exp
[

it01i(TD)∆Ẽ0
1i + it02i(TD)∆Ẽ0

2i

]
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×
∫ TD

0

dt2 exp

[

− 1

2σ̄2
t2i

(

t2 − t02i(TD)− iσ̄t2i(σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i)
)2
]

×
∫ t2

0

dt1 exp

[

− 1

2σ̄2
t1i

(

t1 − t01i(TD)−
∆t01i
σ̄t2i

(t2 − t02i(TD))− iσ̄2
t1i
∆Ẽ0

1i

)2
]

. (3.6)

From the integrand in Eq. (3.6), we find that the integrations over t1 and t2 are separated

when both time widths σ̄2
t1i

and σ̄2
t2i

are small enough compared to the time interval TD.

Afterwards, we assume that these conditions are satisfied. Then we can integrate Eq. (3.6)

over t1 and t2, and we obtain

Si = 2πN
√

σ̄2
t1i σ̄

2
t2i × exp

[

it01i(TD)∆Ẽ0
1i + it02i(TD)∆Ẽ0

2i

]

× exp

[

−1

2
Zi(t

0
1i, t

0
2i, TD)−

∆P2

2σ2
− 1

2

(

σ̄t1i∆Ẽ0
1i

)2

− 1

2

(

σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i

)2
]

. (3.7)

The quantity
√

σ̄2
t1i σ̄

2
t2i appears as an overall factor in a consequence of the time integrations.

The amplitudes become large when the time widths are large. This factor is derived only in

a field theoretical treatment in which whole process is involved.

In the second line of Eq. (3.7), the contribution from the trajectory function to the

amplitudes becomes maximal at t01i and t02i. Here, t01i is the central value of the production

time of Ii, and t02i is that of the detection time. The Gaussian integration with t01i and t02i in

Eq. (3.6) becomes negligible, unless the condition

0 < t01i(TD) < t02i(TD) < TD. (3.8)

is satisfied.

We see from Eq. (3.7) that the phase difference Θ21 up to O(m2) can be expressed in the

form

Θ21(T ) = −∆m2
21

2|k0| (t
0
2(TD)− t01(TD)) +∆m2

21

(

∆Ẽ0
1

∂t01i
∂m2

i

∣

∣

∣

∣

mi=0

+∆Ẽ0
2

∂t02i
∂m2

i

∣

∣

∣

∣

mi=0

)

, (3.9)

where t01, t
0
2, ∆Ẽ0

1 and ∆Ẽ0
2 are the central times and energy differences with mi = 0.

The first term of Eq. (3.9) corresponds to the phase of the standard formula, and the

second term results from the field theoretical treatment. The phase difference takes a form

similar to that of the standard formula when ∆Ẽ0
1 , ∆Ẽ0

2 and ∆P are zero. In this case, we

have the standard formula when t02 − t01 can be regarded as the travel time of the neutrinos.

However, t02 is different from the final time TD, and t01 is different from the initial time, and

they are given by Eq. (3.5). Thus, our formula is not exactly the same as the standard

formula.
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The absolute square of the amplitude, |S|2, gives the transition probability from the

initial state (2.7), which is prepared at t = 0 to the final state (2.8), which is measured at

t = TD. In observations of solar neutrinos and atmospheric neutrinos, the detection time is

not measured. In baseline neutrino experiments, the detection time is measured but with

finite precision. Therefore we have to sum up |S|2 in a finite detection time. Here we make

the assumption that the measurements at different times are independent phenomena. This

assumption is consistent with the definition of wave packet states that they are defined with

infinite precision and with the fact that the event rate is very small. From this assumption,

we can integrate |S|2 over the detection time TD :

|S̃|2 =
∫

dTD |S|2. (3.10)

The integration interval is different for different situations. It is from 0 to ∞ for neutrinos

from the sun or atmosphere, and from TD − ∆TD/2 to TD + ∆TD/2 for baseline neutrino

oscillation experiments, where ∆TD is the resolution of the detection time.

We assume that the Gaussian approximation is valid for the TD integral. Then, the

transition probability becomes

|S̃|2 =
∑

i=1,2

√

σ̄2
TDiC

2
i exp[2Ai]− 2C1C2

√

2σ̄2
TD1σ̄

2
TD2

σ̄2
TD1 + σ̄2

TD2

× exp

[

A1 + A2 −
(T 0

D2 − T 0
D1)

2

2(σ̄2
TD1 + σ̄2

TD2)
− 1

2
σ̃2
TD

(

∂Θ21(TD)

∂TD

)2
]

cos(Θ21(T̃
0
D)),

(3.11)

where Ai represents the energy and momentum functions and trajectory function, and σ̄2
TDi

represents the width of the detection time, TD. These are given by

Ci = (2π)5/2 (σ2)−3/2 (σ̄2
t1i
σ̄2
t2i
)1/2

1

Ei
,

Ai = −1

2
Zi(t

0
1i, t

0
2i, T

0
Di)−

∆P2

2σ2
− 1

2

(

σ̄t1i∆Ẽ0
1i

)2

− 1

2

(

σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i

)2

, (3.12)

σ̃TD
=

√

σ̄2
TD1σ̄

2
TD2

σ̄2
TD1 + σ̄2

TD2

, (3.13)

1

σ̄2
TDi

=
1

2

(

∂2Zi

∂TD
2

)

. (3.14)

The quantity Θ21 is the phase difference between I1 and I2 in Eq. (3.9). The detection time

is replaced by its central value,

T̃ 0
D =

σ̄2
TD1T

0
D2 + σ̄2

TD2T
0
D1

σ̄2
TD1 + σ̄2

TD2

,

10



where T 0
Di is the central value of the detection time in which only the mass eigenstate Ii

appears as the intermediate state, and it is defined by

∂Zi

∂TD

∣

∣

∣

∣

TD=T 0

Di

= 0. (3.15)

In the exponent of the second term in Eq. (3.11), last two terms are characteristic terms

in wave-packet treatment. One is called the “decoherence function”, which represents an

overlap in the detection time through two intermediate states :

Decoherence function = − (T 0
D2 − T 0

D1)
2

2(σ̄2
TD1 + σ̄2

TD2)
. (3.16)

When the detection time difference, T 0
D2 − T 0

D1, becomes larger than the detection time

width,
√

σ̄2
TD1 + σ̄2

TD2, the oscillation disappears, because the coherence in the time direction

is lost. The other is called the “phase function”, which gives the condition that the detection

time width must be smaller than the oscillation period :

Phase function = −1

2
σ̃2
TD

(

∂Θ21(TD)

∂TD

)2

= −1

2

(

σ̃TD

TD
osc

)2
(

2π − Θ21(0)
)2
. (3.17)

Here T osc
D is a period and is defined by Θ21(T

osc
D ) = 2π. The extra coefficient 2π − ∆Θ(0)

appears due to the field theoretical treatment.

The energy function places a constraint on the energy differences ∆Ẽ0
1i and ∆Ẽ0

2i,

−1

2

(

σ̄t1i∆Ẽ0
1i

)2

− 1

2

(

σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i

)2

. (3.18)

Energy conservation is satisfied when the energy function is zero.

When the energy-momentum and the trajectory functions in one dimension are zero, the

phase difference, Eq. (3.9), becomes

Θ21(T̃
0
D) =

∆m2
21

2|k0| (XB −XA + t02(T̃
0
D)vB − t01(T̃

0
D)vA). (3.19)

Equation (3.19) agrees with the phase of the standard formula9), 10) if t02vB and t01vA are

negligible.

§4. The effect of a finite lifetime on the wave packets

In this section, we study the transition amplitude and probability when a source particle

has a finite lifetime. ∗) From these, the particle oscillation of the intermediate particle is
∗) This includes cases in which a particle is stable but the state looses the quantum mechanical coherence

after a finite time. The τ stands for the relaxation time in this case.
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studied.

The finite lifetime τ is introduced for the particle A in the following manner. The field

operator of the particle A, ΦA, contains Γ = 1/τ as

ΦA(x) =

∫

d3p

2EA

exp
(

ip · x− i(EA − iΓ/2)t
)

a(p)A + h.c. (4.1)

In consequence of this addition in Eq. (2.12), a damping factor −Γ/2 is added to EA(p
0
A)

in the previous section. In this section, we study the amplitude and probability in the case

that both widths σ̄t2 and σ̄t1 are small enough compared to the time interval TD and the

lifetime τ satisfies τ ≫ σ̄t1 and σ̄t2 . Then, as in the previous section, it has been found that

the integrations over t1 and t2 in the amplitudes are separated.

If these conditions are not satisfied, the Gaussian approximation is invalid, and the

integrations over t1 and t2 cannot be separated. Then, the calculation would be similar to

that for in plane waves. Below, we assume that these conditions are satisfied. Therefore the

transition amplitude given by Eq. (3.6) are modified into the following form:

S =
1

2
F1F2 sin 2θ

(

S1 − S2

)

, (4.2)

where

Si = 2πN
√

σ̄2
t1i σ̄

2
t2i × exp

[

it01i
′
(TD)∆Ẽ0

1i + it02i
′
(TD)∆Ẽ0

2i − t01i
′Γ

2

]

× exp

[

−1

2
Zi(t

0
1i
′
, t02i

′
, TD)−

∆P2

2σ2
− 1

2

(

σ̄t1i∆Ẽ0
1i

)2

− 1

2

(

σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i

)2
]

. (4.3)

The new central times t01i
′
and t02i

′
of the Gaussian functions of t1 and t2 in Eq. (4.3) are

obtained from old ones in Eq. (3.5) as follows

t01i
′
(TD) = t01i(TD)− (σ̄2

t1i
+∆t01i

2
)
Γ

2
, (4.4)

t02i
′
(TD) = t02i(TD)− σ̄2i∆t01i

Γ

2
. (4.5)

The transition probability is also calculated by assuming the Gaussian approximation for

TD integration. It is given by

|S̃|2 =
∑

i=1,2

√

σ̄2
TDiS̃

2
i − 2

√

2σ̄2
TD1σ̄

2
TD2

σ̄2
TD1 + σ̄2

TD2

S̃1S̃2

× exp

[

− (T 0
D2

′ − T 0
D1

′
)2

2(σ̄2
TD1 + σ̄2

TD2)
− 1

2
σ̃2
TD

(

∂Θ′
21(TD)

∂TD

)2
]

cos(Θ′
21(T̃

0
D)), (4.6)

S̃i =Ci exp

[

A′
i −

Γ

2
t01i

′
(T 0

Di)

]

, (4.7)
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where the coefficients Ci are the same as before. T 0
D
′
i is the central time of the detection

time and is given by

T 0
D
′

i = T 0
Di −

Γ

2
σ̄2
TDi

(

∂t01i
′
(TD)

∂TD

)

. (4.8)

Θ′
21 and A′

i are obtained by replacing t01i, t
0
2i and T 0

Di by t01i
′
, t02i

′
and T 0

D
′
i in Eq. (3.9) and

(3.12). The Gaussian approximation for t1 and t2 is useful and is valid when τ ≫ σ̄2
t1i
,

σ̄2
t2i

is satisfied. This condition is satisfied for a lifetime τ = 10−8 sec of the pion and

σxL (L = A,B,C,D) of atomic size.

We see from Eqs. (3.11) and (4.6) that the exponential in the oscillation term becomes

maximum at the given positions Xi when the energy-momentum function and the trajectory

function vanish. However the peak of the oscillation probability does not always coincide

with that of the exponential, because of the coefficient and the lifetime. The lifetime and

relaxation time reduce the magnitude of the oscillation probability depending on how long

the particle A lives. If the constraints from energy-momentum conservation and the classical

trajectories are weak, the oscillation probabilities become maximal at the position where the

energy and momentum are not conserved. Then, as a result, the oscillation length changes

from that of the standard formula. Such situations seem quite strange. However as we

show below, these phenomena occur when the spatial widths of the external particles are

extremely small, on the order of 1 fm.

§5. Coherence conditions

Here we examine necessary conditions for oscillation of an intermediate particles to take

place, based on the transition probabilities Eq. (3.11) and (4.6). Oscillation occurs when the

interference term of two amplitudes becomes finite. Two amplitudes have peaks in different

positions and decrease rapidly, so the interference term becomes finite only when the peak

position overlaps within the widths. We find these conditions, coherent conditions, in the

present section. There exist several previous works on this topic ,3)–7)12), 13) but our results

based on field theory are different from them. In our method, the coherence conditions are

written in terms of measured quantities, like the positions, velocities and wave packet sizes

for external particles.

5.1. Energy function

The factor

exp

[

−1

2

(

σ̄t1i∆Ẽ0
1i

)2

− 1

2

(

σ̄t2i∆Ẽ0
2i +∆t01i∆Ẽ0

1i

)2
]

, (5.1)
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which also appears in the amplitude Si, yields the approximate energy conservation and

imposes the constraint on ∆m2
21 and σx to generate oscillations. The Gaussian function (5.1)

has a width σ̄2
t1i

of ∆Ẽ1i and σ̄2
t2i

of ∆Ẽ2i +
∆t0

1i

σ̄2
t2i

∆Ẽ1i. Note that the second term in (5.1)

contains ∆Ẽ1i because of finite interaction time interval. We understand from these terms

that when ∆Ẽ12−∆Ẽ11 or ∆Ẽ22−∆Ẽ21 becomes larger than (σ̄t1i)
−1 or (σ̄t2i −∆t1i)

−1, the

interference of I1 and I2 disappears, and the oscillation does not take place. From Eqs. (2.24)

and (2.25), ∆Ẽ12 −∆Ẽ11 =
∆m2

21

2|k0|
and ∆Ẽ22 −∆Ẽ21 = −∆m2

21

2|k0|
, this coherence condition for

oscillations is reduced to

∆m2
21

2E
≤ 1

|σ̄t1 |
,

∆m2
21

2E
≤ 1

|σ̄t2 −∆t1|
, (5.2)

where E represents |k0| and σ̄t1 , σ̄t2 and ∆t1 are the values of Eq. (3.2)–(3.4) at mi = 0.

The above coherence conditions (5.2) are expressed as

2π

Losc

≤ 1

|σ̄t1 |
, or

1

|σ̄t2 −∆t1|
, (5.3)

where Losc = 4πE
∆m2

21

is the oscillation length in the standard oscillation formula, which is

almost the same as that derived from (3.19). Using the spatial widths σ̄x1
and σ̄x2

of

intermediate particles in the production and detection processes defined by

σ̄x1
≡ vI |σ̄t1 |,

σ̄x2
≡ vI |σ̄t2 −∆t1|, (5.4)

where vI is the velocity of the intermediate particle and is equal to 1, Eqs. (5.3) is written

as

σ̄x1
, σ̄x2

≤ Losc

2π
(5.5)

for standard oscillations to take place. When the above constraints are not satisfied, ordinary

interference of I1 and I2 does not exist, and the oscillation disappears. Consequently, the

transition probability becomes constant in the time interval TD.

5.2. Trajectory function

The trajectory functions in each amplitude, Si,

exp

[

−1

2
Zi(t

0
1i, t

0
2i, T

0
Di)

]

= exp

[

−σ2
ACσ

2
BD

2σ2
F2

i (t
0
1i, t

0
2i, T

0
Di)−

σ2
Bσ

2
D

2σ2
BD

G2(t02i, T
0
Di)−

σ2
Aσ

2
C

2σ2
AC

H2(t01i)

]

, (5.6)
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also give necessary constraints for oscillation to take place. These forms are very complicated,

and it is difficult to find expressions using parameters of external particles. For this reason,

we express constraints using the center times and the center positions. These conditions are

given as

|δF| ≡ |F2 − F1| ≤
√

σ2

σ2
ACσ

2
BD

, (5.7)

|δG| ≡ |G2 −G1| ≤
√

σ2
BD

σ2
Bσ

2
D

, (5.8)

|δH| ≡ |H2 −H1| ≤
√

σ2
AC

σ2
Aσ

2
C

. (5.9)

From Eqs. (2.16) to (2.18), the above constraints are rewritten as

∣

∣

∣

∣

δx0
2 − δx0

1 − k̂(δt02 − δt01) +
∆m2

21

2E2
k̂
(

t02(T
0
Di)− t01(T

0
Di)
)

∣

∣

∣

∣

≤
√

σ2

σ2
ACσ

2
BD

, (5.10)

∣

∣(vB − vD)δt
0
2 + vDδT

0
∣

∣ ≤
√

σ2
BD

σ2
Bσ

2
D

, (5.11)

∣

∣vC − vA

∣

∣

∣

∣δt01
∣

∣ ≤
√

σ2
AC

σ2
Aσ

2
C

. (5.12)

Throughout this section, we write the center times without a prime for the case in which

the particle A has a finite lifetime.

The right-hand side of the first constraint, Eq. (5.10) is the spatial width of the inter-

mediate particle, and those of the second and third constraints, Eq. (5.11) and (5.12), are

the sums of the spatial widths of the external particles. On the left-hand side of the first

condition,
∆m2

21

2E2 k̂(t02 − t01) is rewritten as follows

λ
Ltravel

Losc

k̂, (5.13)

where Ltravel = t02 − t01, and λ is the de Broglie wavelength for the intermediate particles.

Unless Ltravel is much larger than Losc, Eq. (5.13) is of order λ or less, and the condition

(5.10) is satisfied.

5.3. Decoherence function

The decoherence function Eq. (3.16) appearing in the probabilities (3.11) and (4.6) con-

strains the difference between the central times of detection time as

δTD
0 ≤ 2σ̄T . (5.14)
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Here, σ̄TD
is the value of Eq. (3.14) at mi = 0. This constraint gives the “decoherence time”

as a function of the detector position, particles velocities and wave packet sizes. Note that in

our approach, oscillating particles appear as intermediate, states and only external particles

are observed. Therefore the decoherence condition is given for the detection times of the

scattering particle, not for the flight distance of intermediate particles. From (5.14), when

δTD
0 is larger than 2σ̄TD

, coherence is lost and no oscillation is seen.

5.4. Phase function

The phase function Eq. (3.17) in the oscillation probability gives a constraint on oscilla-

tion period, T osc
D :

2
(

2π − Θ21(0)
)

σ̃TD
≤ T osc

D . (5.15)

This relation implies that when the oscillation period is smaller than the width of the detec-

tion time, the oscillation disappears.

5.5. Lifetime

The lifetime effect from a source particle A is seen explicitly as exp(−Γ/2t0i ) in the

absolute square of the amplitude (4.6). From the right-hand side of (4.7), this term gives

constraint

δt01 ≤ τ. (5.16)

From this relation, to maintain coherence, the difference in the production time for interme-

diate particles must be smaller than the lifetime of the source particle.

§6. The numerical results of transition probabilities

In this section, we give the results for the numerical calculations of the oscillation proba-

bilities. The particle C, which corresponds to a muon in pion decay, usually is not detected

in most experiments and observations. From this fact, the oscillation probabilities that we

actually measure are the sums of probabilities over p0
C . Therefore, we consider the following

probabilities instead∗∗) of those in Eq. (3.11) and Eq. (4.6) :

P̄ (XB) = Nnorm

∫

dp0
C |S̃|2. (6.1)

∗∗) Actually, |S̃|2 is constant with XC in finite macroscopic range. Therefore this value is equivalent to a

probability integrated over coordinate
∫

dp0
C

∫

dXC|S̃|2,

in which the orthogonality of states with different values of pC
0 is satisfied.
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Here, |S̃|2 is given in Eq. (3.11) or (4.6), and Nnorm is a normalization factor. We investigate

the following three situations of different parameters:

1. Intermediate particles are produced by the decay of the particle A in flight. The average

momentum of each external particle is taken so that the average momentum of the

intermediate particle is about 430 MeV. This case mimics long base line experiments.

2. The intermediate particles are produced by the decay of the particle A at rest. The

mass of the particle A is chosen as about 140 MeV, which gives the intermediate

particles’ momentum as 30 MeV.

3. The intermediate particles are produced by the decay of the heavy particle A in flight.

The average momenta of external particles are taken so that the intermediate particles

momentum becomes 0.4 MeV.

The first and the second cases correspond to “decay in flight” (DIF) and “decay at rest”

(DAR) neutrinos in neutrino oscillation experiments using pion sources. The third case

correspond to “solar neutrinos from 7Be decay” whose energies are MeV (low energy or LE).

In baseline experiments, the momenta of source particles are focused in the direction of

the detector and the momenta of produced neutrinos and accompanying charged leptons are

in almost the same direction. In solar neutrino observations, the velocities of source and

accompanying particles are slow, because their momenta are much lower than their masses.

Therefore the one-dimensional approximation is valid in the above three cases. For these

reasons, we perform p0
C integral in one dimension.

For the numerical calculations, we use the following parameters: m1 = 0.1 eV and

m2 = 0.2 eV and θ = π
4
in all cases. These are the same values in (I). The wave packet

sizes, σL (L = A,B,C,D), are also taken to be the same. The values of other parameters

are given in Table I.

TC in case 1 and case 2 and XC in case 3 are not shown in Table.I. We set these

parameters by hand as a function of p0C , because there is no way to determine both XC and

TC in one dimension. The concrete forms of TC(p
0
C) and XC(p

0
C) are given in the following

subsections.

6.1. Case 1: Decay in flight

In the first case, the particle I is produced by the decay of the particle A in flight

accompanying C, and the particle D appears through the interactions between the particle

B at rest and I.

In baseline experiments, the particle C is considered to be stopped at a beam dump.

Therefore we set XC to a constant value. But the detection time of C is unknown. Therefore

we study the probability of a certain time TC , which is a function of P 0
C . TC should be such
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case 1 case 2 case 3

mA 140.0 140.0 6.3× 103

mB 2.9× 10−4 4.2× 10−3 2.4× 10−1

mC 106.0 106.0 6.29960× 103

mD 0.5 0.5 0.5

p0A 1000.0 0.0 1.3

p0B 0.0 0.0 0.0

p0D 428.8 29.9 0.4

XA 0.0 0.0 0.0

XC 300.0 −5.0 —

XD XB + 1.0× 10−9 XB + 1.0× 10−9 XB + 1.0× 10−9

TC — — τ

τ 2.6× 10−8 2.6× 10−8 1.0× 10−12

Table I. The masses mL and the momenta p0L in MeV, and the positions XL in meters. The

lifetimes or relaxation times, τ are in seconds. (L = A,B,C,D)

that the time order for the central times is given by

0 < t01i(T
0
Di) < t02i(T

0
Di) < T 0

Di, (6.2)

t01i < TC , (6.3)

where t01i, t
0
2i and T 0

Di are functions of TC . One choice satisfying this condition is

TC(p
0
C) =

XC

vC(p0C)
× 0.999. (6.4)

Using Eqs. (6.4) and (6.1), the oscillation probabilities are calculated numerically.

The oscillation probabilities with an infinite lifetime and a finite lifetime are shown in

Figs.2 and 3, respectively. In Figs. 2 and 3, the oscillation length becomes longer than that

of the standard formula when the wave packet sizes are smaller than 3.0× 10−15 m, and the

amplitude of the oscillation probability becomes smaller than 1 as XB becomes larger or as

the wave packet sizes become smaller.

In Figs. 4 (a), (b), (c) and (d), we compare the oscillation probabilities of the infinite

lifetime with those of the finite lifetime at σx = 2.0 × 10−15 m for (a) and (b) and σx =

1.0×10−15 m for (c) and (d). From Fig. 4, it is seen that the oscillation length is longer and

the amplitude of oscillation is smaller when the lifetime is infinite.
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Fig. 2. The DIF oscillation probability with infinite lifetime. The solid curve represents the stan-

dard formula (S.F.), and the dashed, dotted and dashed-dotted curves correspond to the cases

in which the wave packet sizes are 1.0 × 10−15 m, 2.0 × 10−15 m and 3.0 × 10−15 m, respec-

tively.The horizontal axis is the position of B, XB (km).
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Fig. 3. The DIF oscillation probability with finite lifetime. The solid curve represents the standard

formula (S.F.), and the dashed, dotted and dashed-dotted curves correspond to the cases the

wave packet sizes are 1.0 × 10−15 m, 2.0 × 10−15 m and 3.0 × 10−15 m, respectively. The

horizontal axis is the position of B, XB (km).

The increase of oscillation length is caused by the increase of the time widths, σ̄t1i and

σ̄T i, in the coefficients in Eq. (3.11). In the following, we clarify the reason that the oscillation

length increases with the time widths.

In Fig. 5, the p0C dependences of the time widths are shown. From Figs. 5 (a) and (b),

it is seen that σ̄t1i and σ̄Ti
grow with p0C . From Eq. (2.18), it is seen that H loses its t1
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Fig. 4. The oscillation probabilities at σx = 2.0 × 10−15 m in (a) and (b), and those at σx =

1.0 × 10−15 m in (c) and (d). The solid curves represent the oscillation probabilities with

infinite lifetime and the dashed curves represent those with finite lifetime.

dependence when vC equals vA. As we mentioned in the last part of Section 4, this growth

of the time widths shifts the peak of the oscillation probability upward from that of the

Gaussian in Eq. (3.11).

Figure 6 (a) shows the Gaussian function exp(2Ai) in the infinite lifetime case, and Fig. 6

(b) shows the absolute square of total amplitude Eq. (3.11), in which the maximum values

are normalized to unity, at σ = 1.0, 2.0, 3.0, 4.0 × 10−15 m, respectively. From Fig. 6 (a),

it is seen that the peaks of the Gaussian function are independent of the wave packet sizes.

From Fig. (6) (b), it is seen that the peaks of the oscillation probability depend on the wave

packet sizes. For large σx (> 4.0 × 10−15 m), the peaks of the oscillation probability are

the same. But for small σx (< 4.0 × 10−15 m), the peaks of the oscillation probability are

different from those of the Gaussian functions. This happens because the time widths grow

with p0C in Fig. 5 and the width of the Gaussian function becomes large in Fig. 6 (a). Then,

the main contribution to the oscillation phase, Eq. (3.9) in Eq. (6.1), comes from the higher
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Fig. 6. (a): The p0C dependence of the Gaussian function. (b): The p0C dependence of the first

term in Eq. (3.11). The solid curve represents σ = 1.0× 10−15 m, and the dashed, dotted and

dashed-dotted curves represent 2.0×10−15, 3.0×10−15 and 4.0×10−15 m, respectively, in both

graphs.

p0C region.

Figure 7 displays the p0C dependence of the ratio of the phase difference Eq. (3.9) to that

of the standard formula for XB = 20, 60 and 90 km :

Phase Ratio = Θ21(T̃
0
D)/

(

∆m2
21

2E
XB

)

. (6.5)

Here XB is regarded as being the same as the travel distance of intermediate particles,

and the energy E in the phase of the standard formula is determined by ∆P = 0 and
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Fig. 7. The p0C dependence of the ratio of oscillation phases. The solid, dashed and dotted curves

represent the ratios at XB = 20, 60, 90 km, respectively.

∆Ẽ0
1 ≃ ∆Ẽ0

2 ≃ 0. From Fig. 7, it is seen that the ratio is almost independent of XB but

depends on p0C . As is shown in Eq. (3.19), the phase ratio should become 1 at the solution

∆P = 0 and ∆Ẽ0
1 = ∆Ẽ0

2 = 0, p0C = 570 MeV. When σx is larger than 3.0 × 10−15 m, the

main contribution to the integral in Eq. (6.1) comes from the region where the energy and

momentum are conserved. Equation (6.1) is almost the same as the standard formula. But

from Fig. 6, when σx is smaller than 3.0 × 10−15 m, the peak of the Gaussian part in the

integrand moves to higher p0C region than that of Fig. 6 (a), and the main contribution to

Eq. (6.1) comes from the higher p0C region. Then, the oscillation length becomes longer than

that of the standard formula.

In the case that the particle A has a finite lifetime, the main contribution to the integral

comes from the lower p0C region, because of the presence of the lifetime in Eq. (4.7).

Figure 8 (a) displays the p0C dependence of exp(−Γt01i), and (b) displays the p0C de-

pendence of the absolute square of the amplitude (4.6), in which the maximum values are

normalized to unity, at σ = 1.0, 2.0, 3.0, 4.0× 10−15 m. The quantity exp(−Γt01i) is almost

independent of XB and σx. From Fig. 8 (b), the peaks of the oscillation probability Eq. (4.6)

shift to the lower p0C region as the wave packet sizes become small.

The phase ratio Eq. (6.5) with finite lifetime is almost the same as that with infinite

lifetime, because the lifetime τ is much larger than the time widths. Therefore, from Fig. 7,

the oscillation length is longer than that of the standard formula when the wave packet sizes

are smaller than 2.0 × 10−15 m and are slightly smaller than that of the standard formula

when σx is larger than 3.0× 10−15 m.

Figure 9 displays the p0C dependence of the absolute square of the flavor changing ampli-

tudes around XB = 37 km. It is seen that the peaks of the absolute square of the amplitudes
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change and the shape of each amplitude is deformed with distance. The Gaussian shapes

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  100  200  300  400  500  600  700  800

P0
C (MeV)

35 km

37 km

39 km

Fig. 9. p0C dependence of the absolute square of the flavor changing amplitude at σx = 1.0×10−15

m. The vertical axis is normalized by the value of |S|2 at XB = 18 km. The solid curve

represents the flavor conserving process at XB = 35 km, and the dashed and dotted curves

represent the flavor changing processes at XB = 37, 39 km.

of the amplitudes are deformed by the cosine in the oscillation term. The behavior of the

oscillation depends on XB as well as p0C , since the phase is proportional to XB/|k0|. Then,
as a result, the change and deformation given in Fig. 9 occur. This effect is seen clearly

around the oscillation minimum.
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6.2. Case 2 : Decay at rest

In the DAR, the intermediate particles I and particle C are produced by the decay of

particle A at rest. The particle I is scattered by the particle B at rest, and then the particle

D appears.

For the same reason as in case 1, XC is set to −5.0 m and TC is given as

TC(p
0
C) =

XC

vC(p0C)
× 2.0. (6.6)

Because the source particle A is at rest, the numerical factor in TC(p
0
C) must be greater than

1 to satisfy the conditions (6.2) and (6.3). Here we take this factor to be 2.

The oscillation probabilities with finite lifetime are shown in Fig. 10. It is seen again that
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Fig. 10. The DAR oscillation probability with infinite lifetime: The solid curve represents the

standard formula (S.F.), and the dashed, dotted and dashed-dotted curves correspond to the

cases in which the wave packet sizes are 2.0 × 10−14 m, 3.0 × 10−14 m and 4.0 × 10−14 m,

respectively. The horizontal axis is the position of B, XB (km).

the amplitude of the oscillation becomes smaller and the period of the oscillation probability

becomes longer than that of the standard formula as the wave packet sizes become smaller

than 4.0× 10−14 m.

In this case, t01i is almost zero, since the particle A is at rest. Because of this, there are

no significant differences between the source particle with a finite lifetime and an infinite

lifetime.

6.3. Case 3 : Low energy

In the last case, the intermediate particles are produced by the decay of the heavy particle

A in flight. The central value of its momentum is about 1.3 MeV, which is much lower than
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in case 1. The particles A and C have larger masses and smaller momenta than in the other

two cases.

In contrast to the above two cases, this case corresponds to the solar neutrinos from
7Be decays. The change of quantum mechanical states by scatterings is considered to be

equivalent to detection or observation. Therefore the detection time of C is taken to the

relaxation time, which is assumed to be the same value of particle A, and XC is given as a

function of p0C . The quantities TC and XC are

TC = τ, (6.7)

XC(p
0
C) = 1.5× TC vC(p

0
C), (6.8)

where τ is the relaxation time of the particle A, and its value is set to 10−12 sec.

In Fig. 11, the oscillation probability with finite lifetime is shown. In this case, the
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Fig. 11. The LOW oscillation probability with lifetime: The solid curve represents the standard

formula (S.F.), and the dashed, dotted and dashed-dotted curves correspond to the case in

which the wave packet sizes are 1.0× 10−13 m, 2.0× 10−13 m and 3.0× 10−13 m, respectively.

The horizontal axis is the position of B, XB (m).

oscillation length becomes longer and the oscillation amplitude becomes smaller again. The

wave packet effect becomes observable if the wave packet sizes are of order 10−13 m. A wave

packet size of order 10−13 m is larger than those for the DIF and DAR cases. This is because

the central values of the momenta are lower than in the DIF and DAR cases.

§7. Discussion and conclusion

In this paper, we have studied particle oscillations in the intermediate state of transition

amplitudes of wave packets based on a simple scalar model. A source particle, a target
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particle, and two scattered particles are the wave packets. In this situation, wave functions

do not spread infinitely, but are localized within a finite width σx, and interference occurs

only among intermediate particles that overlap spatially. This interference disappears and

the oscillation probability deviates from those of the standard formula in parameter regions

where the intermediate particles are separated spatially.

We computed the total oscillation probability and the phase factor of the amplitude

numerically. We found that the oscillation probability agrees with that of the standard

formula if the wave packet sizes are of semi-macroscopic values, and that the oscillation

probability deviates from those of the standard formula in extreme parameter regions. This

occurs when the wave packet sizes are of the order of 10−13 m or smaller. In this region,

the wave packet size effects become visible. The oscillation amplitude becomes smaller and

the oscillation period becomes larger than those of the standard formula. We hope that

this region may be realized experimentally and that the modified formula found here will be

tested in the future.

Although our results were obtained on the basis of a simple scalar model, we hope that

for precision measurements of the neutrino parameters such as masses, the MNS matrix, and

others, our considerations will be valuable.
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Appendix A

The Center Times and the Time Widths

In this appendix, we give the explicit forms of the time widths (σ̄2
t1i
, σ̄2

t2i
, σ̄2

TDi) and the

center times (t01i, t
0
2i, T

0
Di). We omit the mass index i for simplicity. However, we note that

one can easily obtain the center times and the time widths for specific mass eigenstates by

replacing νI with νi.

The time widths and the center times are written in terms of the time derivatives of the
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classical trajectory. The classical trajectory given in Eq. (2.15) is

Zi(t1, t2, TD) =
σ2
ACσ

2
BD

σ2
F2

i (t1, t2, TD) +
σ2
Bσ

2
D

σ2
BD

G2(t2, TD) +
σ2
Aσ

2
C

σ2
AC

H2(t1), (A.1)

Fi(t1, t2, TD) = x0
2(t2, TD)− x0

1(t1)− vi(t2 − t1), (A.2)

G(t2, TD) = XD −XB − t2vB − (TD − t2)vD, (A.3)

H(t1) = XC −XA − t1vA − (TC − t1)vC . (A.4)

We use following abbreviated expressions for the time derivatives of the classical trajectory

:

Z11 ≡
∂2Z(t1, t2, TD)

∂2t1
= 2

σ2
ACσ

2
BD

σ2
F2

1 + 2
σ2
Aσ

2
C

σ2
AC

H2
1, (A.5)

Z22 ≡
∂2Z(t1, t2, TD)

∂2t2
= 2

σ2
ACσ

2
BD

σ2
F2

2 + 2
σ2
Bσ

2
D

σ2
BD

G2
2, (A.6)

ZTT ≡ ∂2Z(t1, t2, TD)

∂2TD
= 2

σ2
ACσ

2
BD

σ2
F2

T + 2
σ2
Bσ

2
D

σ2
BD

G2
T , (A.7)

Z12 ≡
∂2Z(t1, t2, TD)

∂t1∂t2
= 2

σ2
ACσ

2
BD

σ2
F1 · F2, (A.8)

Z1T ≡ ∂2Z(t1, t2, TD)

∂t1∂TD
= 2

σ2
ACσ

2
BD

σ2
F1 · FT , (A.9)

Z2T ≡ ∂2Z(t1, t2, TD)

∂t2∂TD
= 2

σ2
ACσ

2
BD

σ2
F2 · FT + 2

σ2
Bσ

2
D

σ2
BD

G2 ·GT , (A.10)

and

Z10 ≡
∂Z(t1, t2, TD)

∂t1

∣

∣

∣

∣

t1=0

t2=0

= 2
σ2
ACσ

2
BD

σ2
F1 · (F0 + FTTD) + 2

σ2
Aσ

2
C

σ2
AC

H1 ·H0, (A.11)

Z20 ≡
∂Z(t1, t2, TD)

∂t2

∣

∣

∣

∣

t1=0

t2=0

= 2
σ2
ACσ

2
BD

σ2
F2 · (F0 + FTTD) + 2

σ2
Bσ

2
D

σ2
BD

G2 · (G0 +GTTD),

(A.12)

ZT0 ≡
∂Z(t1, t2, TD)

∂TD

∣

∣

∣

∣

t1=t0
1
(0)

t2=t0
2
(0)

TD=0

= 2
σ2
ACσ

2
BD

σ2
FT · (F0 + F1t

0
1(0) + F2t

0
2(0))

+ 2
σ2
Bσ

2
D

σ2
BD

GT · (G0 +G2t
0
2(0)). (A.13)

Here, Fi, Gi and Hi (i = 0, 1, 2, T ) are the coefficient vectors of t1, t2 and T , and are given

as

F0 =
σ2
BXB + σ2

DXD

σ2
BD

− σ2
AXA + σ2

C(XC − TCvC)

σ2
AC

, (A.14)
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F1 = −σ2
AvA + σ2

CvC

σ2
AC

+ vI , F2 =
σ2
BvB + σ2

DvD

σ2
BD

− vI , FT = −σ2
DvD

σ2
BD

, (A.15)

G0 = XD −XB, G2 = −vB + vD, GT = −vD, (A.16)

H0 = XC −XA − TCvC , H1 = −vA + vC . (A.17)

Using these functions, the time widths and the center times are written as follows :

1

σ̄2
t1

=
1

2
Z11, (A.18)

1

σ̄2
t2

=
1

2
Z22 −

1

4
σ̄2
t1
Z2

12, (A.19)

∆t01 = −1

2
σ̄2
t1
σ̄t2Z12, (A.20)

1

σ̄2
T

=
1

2
ZTT − 1

4
(σ̄2

t1
+∆t01)Z

2
1T − 1

2
σ̄t2∆t01Z1TZ2T − 1

4
σ̄2
t2
Z2T , (A.21)

and

t01(TD) = −1

2
(σ̄2

t1 +∆t01
2
)Z10 −

1

2
σ̄t2∆t01Z20, (A.22)

t02(TD) = −1

2
σ̄t2∆t01Z10 −

1

2
σ̄2
t2
Z20, (A.23)

T 0
D = −1

2
σ̄2
TZT0. (A.24)

Appendix B

Measurement of Transition Probability

Following the standard interpretation of measurement in quantum mechanics, the square

of the absolute value of the amplitude, |S|2, gives the transition probability from the initial

state (2.7), which is prepared at t = 0, to the final state Eq. (2.8), which is defined at t = TD.

For the probability interpretation to make sense, each observation at the final state should be

made independently and exclusively. This is, when one value is observed for an observation,

the other value should not be observed. The state of one value is different from the state of

a different value. Conversely, the final state should be different if the corresponding values

are different.

Because the orthogonality of states described by the wave packet is peculiar, the total

probability should be defined in a manner that is consistent with experiments. This problem

has been solved in usual scatterings, where the wave packet effects are negligibly small.

The detector used in experiments has a finite macroscopic size, and the total rate observed

in a macroscopic detector is computed with a continuous momentum. The total observed

probability is obtained by integrating the square of the absolute value of the amplitude with

28



a continuous momentum. Therefore this problem has been solved in the case of normal

scattering.

In neutrino scattering, the energy scale is very small, and the event rate is also very

small. Events occur so infrequently that the detector is in different quantum states that

are orthogonal to each other. Also, the detector has a macroscopic size. Consequently, the

total rate observed in a macroscopic detector within a finite detection time is computed by

integrating the probability with the central value of the momentum and the time.
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