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Abstract Blooms of the toxic dinoflagellate Heterocapsa

circularisquama cause massive bivalve kills in Japan.

Mariculture of the Japanese pearl oyster, Pinctada fucata

martensii, is the industry most affected by these blooms,

especially in Ago Bay, Mie Prefecture, where they are

frequent, cause mass mortality of oysters, and overlap with

their spawning season. The goal of this August 2009 study

was to assess the effects of a toxic strain of H. circulari-

squama isolated from Ago Bay on gametes, fertilization,

and embryo development of pearl oysters. Spermatozoa,

eggs, spermatozoa and eggs, and fertilized eggs of pearl

oysters from Ago Bay were exposed to H. circularisquama

at cell densities reported during the bloom (10–104 cells

mL-1) for different periods of time. The concentration of

H. circularisquama, exposure duration, and their interac-

tions all had significant effects on gamete quality, fertil-

ization, and embryo development. The motility and

swimming velocity of spermatozoa, egg viability, fertil-

ization, and embryo development rate were significantly

reduced in all concentrations, with a cell density of 10 cells

mL-1 determined to be the critical density of H. circu-

larisquama for deleterious effects. This is the first evidence

of inimical effects of an HAB species on bivalve sperma-

tozoa upon direct exposure. Further field and laboratory

studies are required to investigate the potential effects of

H. circularisquama blooms on the reproduction and

recruitment of Japanese pearl oysters and other bivalves.

Introduction

Harmful algal blooms (HABs) are a worldwide concern

due to the increase in occurrence, severity, and diversity of

the causative agents and the bloom impacts (Zingone and

Oksfeldt Enevoldsen 2000). Several factors, including cli-

mate change (Moore et al. 2008; Roger and Laffoley 2011),

eutrophication and utilization of coastal waters for aqua-

culture (Heisler et al. 2008), and shellfish transportation

(Hégaret et al. 2008) have been suggested as causes of the

increase in HABs.

Several HAB species cause mass mortality in shellfish,

including bivalves (Shumway 1990). In addition, toxic

algae negatively affect feeding (Hégaret et al. 2007), res-

piration (Shumway et al. 1985), and behavior (Tran et al.

2010), and induce histopathological lesions (Pearce et al.

2005; Galimany et al. 2008a, b) and impair immune

responses in several bivalve species (Hégaret and Wikfors

2005a, b).

Most studies on the impacts of HABs on bivalves have

focused on the juvenile or the adult life stages of several

commercially important species. However, the effects of

HABs on gametes, fertilization, and early life stages of

bivalves are largely unknown, despite the fact that gametes

and planktonic stages of marine invertebrates are consid-

ered relatively critical phases in their response to biotic and
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abiotic environmental stressors (Pechenik 1987; Prze-

slawski et al. 2008; Padilla and Miner 2006).

In Japan, shellfish kills, notably bivalves and gastropods,

are caused mainly by blooms of Prorocentrum sp., Het-

erosigma akashiwo, Karenia digitata, Noctiluca scintillans,

Gonyaulax polygramma, and Alexandrium spp. (Matsuy-

ama 2003a). However, since the late 1990s, the harmful

dinoflagellate Heterocapsa circularisquama (Horiguchi

1995) has been causing mass mortality of numerous

bivalve species with no documented effects on marine

vertebrates and no reported human poisoning (Matsuyama

et al. 1995). Along with Chattonella antiqua and Coch-

lodinium polykrikoides, H. circularisquama is rated as an

extremely harmful species that can easily reach the warn-

ing level of 5 9 102 cells mL-1 for fishery damage even at

low nutrient levels (Imai et al. 2006).

Heterocapsa circularisquama bloomed for the first time

in Uranouchi Bay, Kochi prefecture, in the summer of

1988, accompanied by mass mortality of the short-neck

clam Ruditapes philippinarum (Matsuyama et al. 1995).

Since then, the geographical distribution of H. circulari-

squama has expanded to western and central Japan and

north to Kamoko Lagoon, with blooms in 19 localities

with associated massive kills of a dozen bivalve species

(Matsuyama 2012). Depending on the locality, blooms of

H. circularisquama occur in the early summer to late

autumn (June to November), at cell densities reaching up to

2.5 9 105 cells mL-1, in embayments where water tem-

perature exceeds 23 �C and salinity 30 (Matsuyama

2003b). Factors that trigger H. circularisquama blooms are

seawater mixing events, upwelling of nutrient-rich water,

and the die-off of diatom blooms associated with an early

summer rainy season (Matsuyama et al. 1996, 1997;

Matsuyama 2003a).

Heterocapsa circularisquama causes several deleterious

effects in adult and juvenile bivalves including changes

in valve movement behavior (Nagai et al. 2006; Basti

et al. 2009), reduction in clearance and respiration rates

(Matsuyama et al. 1997; Basti et al. 2011a), a low hemocyte

count, inflammation, degenerative pathologies and necrosis

with a low mucocyte count in the gills (Basti et al. 2011b),

rejection of pseudofaeces through the inhalant siphon,

increased mucus secretion, contraction of the mantle and

siphons, paralysis, destruction of mitochondria of the heart

muscle, cardiac disorder, and death (Matsuyama et al. 1995;

Nagai et al. 1996, 2006; Yamatogi et al. 2005; Matsuyama

2003a; Basti and Segawa 2010). In addition, Matsuyama

(2003a) found that exposure to H. circularisquama at 5 9 103

cells mL-1 affects eggs, embryos, and trochophores of the

Pacific oyster, Crassostrea gigas.

In all of western Japan, mariculture of the Japanese pearl

oyster, P. fucata martensii, is the industry most devastated

by H. circularisquama blooms, with Ago Bay, Mie

prefecture, being the most productive site yet experiencing

the greatest number of recurrent blooms of H. circulari-

squama since 1992 with mass mortalities of pearl oysters

(Matsuyama 2012). In Ago Bay, H. circularisquama is first

detected in late spring (May) and forms blooms from early

July to early December. Its cell densities during this period

range from 0.01 to [8.7 9 104 cells mL-1 (Matsuyama

2012). Mortalities and adverse effects for juvenile and

adult pearl oysters occur over the density range of 102–103

cells mL-1 and 2 9 103–6 9 103 cells mL-1, respectively

(Matsuyama 2003b, 2012). The density of H. circulari-

squama then decreases to less than the detection level of 1

cell L-1 in early winter (Shiraishi et al. 2007). In Ago bay,

pearl oysters spawn from April to August with a peak

between June and July (Wada 1984), overlapping with

blooms of H. circularisquama. Thus, an understanding of

the effects of H. circularisquama on early life stages of

P. fucata martensii is critically important. In a recent study,

we found that a few hours of exposure of trochophores and

D-larvae of P. fucata martensii to low H. circularisquama

cell densities of 102–5 9 102 cells mL-1 severely reduced

their swimming activity and survival rate, induced several

kinds of damage, and inhibited their development (Basti

et al. 2011b). In the present study, we examine the effects

of H. circularisquama on gamete quality, fertilization, and

embryo development of P. fucata martensii, in a time- and

concentration-dependent manner.

Materials and methods

Algal culture

Toxic Heterocapsa circularisquama (strain HC92) was

isolated in August 1992 from Ago Bay, Mie Prefecture,

Japan, and cultured at 25 �C, pH 7.8–8.0, salinity 33, in

autoclaved (121 �C, 15 min) F/2 medium, under a 12 h

L:12 h D photoperiod. Following counting, the algal cells

were added to the experimental seawater at the desired

densities (10–104 cells mL-1). The seawater used to pre-

pare the F/2 medium and to conduct the experiments was

collected from Ago Bay, filtered, and then UV-treated

before enrichment of the culture medium and exposure to

H. circularisquama.

Exposure experiments

Sexually mature adult pearl oysters, Pinctada fucata mar-

tensii, were reared at the K. Mikimoto & Co. Ltd. farm,

Ago Bay, Mie Prefecture, Japan. Oyster shells were opened

and several incisions were made in the gonads. Gametes

were obtained by stripping the oysters (n = 5, shell

height = 72.8–82.0 mm) and filtering the gametes through
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gauze. Maturation of eggs was induced by placing them for

45 min in 1 L of a 0.75 mM ammonia–seawater solution

(dilution 1:1,000). The same solution was used to activate

spermatozoa (10 min in 0.5 L, dilution 1:500). Gamete

quality was assessed visually under a microscope at

200 9 magnification. Only round, nontransparent eggs and

motile sperm were used. Egg density was determined by

taking three samples (2 mL each) under agitation and then

adjusted to 104 eggs L-1.

Preliminary experiments were performed to investigate

the concentrations of H. circularisquama and time limits

for the exposure experiments. Eggs, spermatozoa, or eggs

and spermatozoa were exposed to H. circularisquama at 0,

10, 102, 5 9 102, 103, 5 9 103 and 104 cells mL-1 in

6-well plates to determine the effects of the toxic alga on

egg viability, sperm activity rate and swimming velocity,

and fertilization rate, respectively. To determine the effects

of H. circularisquama on embryo development, eggs were

fertilized with spermatozoa (104 spermatozoa egg-1),

washed with fresh filtered and UV-treated seawater, and

then exposed to H. circularisquama before the first cleav-

age in 6-well plates. The experiments were run in triplicate

at 25 �C.

Effects of H. circularisquama on spermatozoa

For each sampling time and each H. circularisquama

density, 8-lL aliquots of the exposed spermatozoa were

transferred to Teflon printed glass slides (21 wells, 4 mm

diameter, Funakoshi Co., Tokyo, Japan) and spermatozoa

quality was assessed using a computer-assisted sperm

analysis system. The motility, which is the number of

motile spermatozoa relative to the total number of sper-

matozoa (%), was recorded without coverslips following 5,

10, 30, and 60 min of exposure, for 2 s at 60 frames s-1

with high-speed videomicroscopy (Fastcam PCI 1024 note

pack, Photron Co. Ltd., Japan). Spermatozoa were con-

sidered motile when the sperm showed forward head

movements in 5 consecutive video frames. The motility

was determined for at least 50 randomly selected sperma-

tozoa for each measurement. The curvilinear velocity

(VCL, lm s-1) was determined as the sum of the incre-

mental distances moved in each frame along the sample

path divided by the total time of the track. The measure-

ments were run in duplicate using a two-dimensional image

tracking software (Image Tracker PTV, Digimo Co. Ltd.,

Japan).

Effects of H. circularisquama on egg viability,

fertilization rate, and embryo development rate

Eggs, fertilized eggs, and embryos were sampled and fixed

with a 5 % formalin solution for observation under a light

microscope. Egg viability was expressed as the average

number of round and regularly shaped eggs relative to the

total initial number of eggs (%), following 30 and 60 min

of exposure. Fertilization rate was expressed as the average

number of eggs that were fertilized relative to the total

initial number of eggs (%), following 30 and 60 min of

exposure, as indicated by the presence of polar bodies, a

fertilization envelope, or by cell division. The embryo

development rate was expressed as the average number of

regularly shaped trochophores relative to the total initial

number of fertilized eggs (%), following 16 h of exposure.

Statistical analysis

Normality and homogeneity of variance were tested a

priori using a Kolmogorov–Smirnov test and Bartlett’s test,

respectively. Data expressed as a rate were transformed by

the angular transformation (arcsine Hpercentage) to insure

normality. The curvilinear velocity of spermatozoa was

Box–Cox transformed to insure normality.

The effects of H. circularisquama concentration and

exposure duration were tested using a factorial ANOVA.

To determine the concentrations at which the effects were

significant, the post hoc test Fisher’s LSD was performed.

Results

The concentration of H. circularisquama, exposure dura-

tion, and their interactions all had significant effects on the

motility and swimming velocity of spermatozoa, egg via-

bility, fertilization rate, and embryo development rate of

Pinctada fucata martensii (ANOVA, P \ 0.01).

The motility of both the control and exposed sperma-

tozoa was maximal following 5 min of activation, and then

decreased with time (Fig. 1). Exposure to H. circulari-

squama induced a significant decrease in the motility of

spermatozoa for all experimental concentrations and

exposure durations (ANOVA, P \ 0.01). In particular, the

motility of spermatozoa exposed to H. circularisquama at

5 9 103 and 104 cells mL-1 for 5 min was approximately

0.09 and 0.03 % of the control motility, respectively.

Following 10 min of exposure to these two concentrations,

all spermatozoa ceased moving. Exposure to lower con-

centrations of H. circularisquama induced a significant

decrease in the motility by as much as 49.9–99.9 % of

control motilities.

The swimming velocity of control spermatozoa reached

its maximum of 99.27 ± 6.54 lm s-1 following 10 min of

activation (Fig. 2) and then decreased significantly

(regression analysis: n = 60, r2 = 0.93, slope P \ 0.001,

intercept P \ 0.01). Exposure to H. circularisquama

induced a significant decrease in the swimming velocity of
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spermatozoa for all experimental concentrations and

exposure durations. The swimming velocity decreased

to 66.5–20.3 %, 62.2–12.2 %, 29–11.7 %, 25–14.1 %,

14.4–0.0 %, and 13.9–0.0 % of the control swimming

velocity for exposure to 10, 102, 5 9 102, 103, 5 9 103,

and 104 cells mL-1, respectively.

Egg viability was significantly reduced following expo-

sure to H. circularisquama at 10–104 cells mL-1 for 30 and

60 min (Fig. 3). Egg viability was 90.1 and 67.1 % of

control viability following exposure to 104 cells mL-1 for 30

and 60 min, respectively. The eggs exposed to H. circu-

larisquama were irregular in shape with a swollen egg

membrane and H. circularisquama cells transformed into

temporary cysts attached to the egg membranes (Fig. 4a, b).

The fertilization rate of P. fucata martensii was signif-

icantly decreased following 30 min of exposure to H. cir-

cularisquama at 5 9 103 and 104 cells mL-1 by as much as

56.5 and 60.4 % of the control, respectively (Fig. 5). Fol-

lowing 60 min of exposure, the fertilization rates were

significantly decreased for all experimental concentrations

of H. circularisquama, especially for 5 9 103 and 104 cells

mL-1 for which the fertilization rates were reduced by as

much as 57.4 and 73.9 % of the control, respectively.

Fertilized egg membranes were damaged by H. circulari-

squama (Fig. 4c, d).

The developmental rate of fertilized eggs exposed to

H. circularisquama at 10, 102, 5 9 102, 103, 5 9 103, and

104 cells mL-1 for 16 h was significantly decreased by 6.8,

8.9, 17.2, 25.5, 75.7, and 77.7 % of the control, respec-

tively (Fig. 6). Four-cell blastomeres and blastula stages of

fertilized eggs exposed to H. circularisquama showed

abnormal swellings, cytoplasmic discharges, and bursting

of outer membranes (Fig. 4e, f).

Discussion

In the present study, the harmful dinoflagellate Hetero-

capsa circularisquama significantly reduced spermatozoa

motility and swimming velocity, egg viability, fertilization

rate, and embryo development rate of Pinctada fucata

martensii in a time- and concentration-dependent manner,

within minutes of exposure to a low density of 10 cells

mL-1. The cells of H. circularisquama were observed

attached to eggs, fertilized eggs, and embryos of pearl

oysters, shedding their walls and transforming into tem-

porary cysts. Several anomalies were observed with egg

membrane, fertilization membrane, and vitelline envelope

swellings, cytoplasmic discharges, and subsequent lysis.
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Eggs and embryos of Crassostrea gigas and Mytilus gal-

loprovincialis showed similar abnormalities when exposed

to another toxic strain of H. circularisquama at densities

exceeding 5 9 103 cells mL-1 (Matsuyama et al. 2001;

Matsuyama 2003a). Studies on the effects of HABs on

eggs, fertilization, and embryos of bivalves are very lim-

ited. The embryonic development of C. virginica was not

affected following exposure to Karlodinium veneficum

(Stoecker et al. 2008), whereas Prorocentrum minimum

and Heterosigma akashiwo caused significant mortality and

inhibited embryonic development of C. virginica (Wikfors

and Smolowitz 1995) and Argopecten irradians (Wang

et al. 2006), respectively. Egg hatching of the blue mussel

M. edulis, the bay scallop Chlamys farreri, and A. irradians

was inhibited by Chrysocromulina polylepis (Granmo et al.

1988), Alexandrium tamarense (Yan et al. 2001), and

H. akashiwo (Wang et al. 2006), respectively. Physical contact

with H. circularisquama cells seems to be the mechanism

by which surface-located toxins are released from the algal

cells (Kamiyama and Arima 1997; Matsuyama et al. 1997,

2001) and was also described for the toxic HAB species A.

tamarense (Yan et al. 2001, 2003) and H. akashiwo (Wang

et al. 2006). Basti et al. (2011b) showed that direct contact

with cells of the same strain of H. circularisquama inhib-

ited the development, and reduced the activity and survi-

vorship of trochophores and D-larvae of the pearl oyster

P. fucata martensii over cell densities of 102–5 9 102 cells

mL-1. The damage in both trochophores and D-larvae

included exfoliation of larval cilia, epithelial desquama-

tion, abnormal masses in the velum, abnormal shells, and

delayed mineralization of the shell (Basti et al. 2011b).

Cell contact, temporary cyst formation, and production of

toxins by H. circularisquama, as for other HAB species,

could be regarded as defensive strategies to control its own

population cell density (Uchida 2001), to compete with

concurrent phytoplankton populations (Uchida et al. 1995),

and to decrease grazing populations by reducing feeding

(Kamiyama and Arima 1997) but also fecundity and

hatching success (Yan et al. 2003; Wang et al. 2006).

In contrast with a previous study reporting no effect of

direct exposure to H. circularisquama on C. gigas sper-

matozoa motility and fertility (Matsuyama 2003a), we

found that direct exposure to H. circularisquama at the low

density of 10 cells mL-1 reduced the motility rate and

swimming velocity of pearl oyster spermatozoa in a sta-

tistically significant concentration- and time-dependent

manner. This contradiction could be related to differences

either in the toxicity of H. circularisquama strains, in the

sperm sensitivity of the bivalve species, or in the experi-

mental protocol and data analysis used in both studies.

Even though the ultrastructural features of bivalve sper-

matozoa are fundamentally similar (Bozzo et al. 1993;

Garrido and Gallardo 1996), differential responses in the

spermatozoa of the two bivalve species cannot be excluded.

The strain of H. circularisquama used in C. gigas experi-

ments also showed toxic effects on eggs, embryos, and

larvae of M. galloprovincialis, Ruditapes philippinarum,

and C. gigas with damage very similar to that reported in

the present study. In the former work, however, sperm

evaluation was performed subjectively, by microscopic

assessment of motility and swimming vigor, which are

affected by various factors including interpretation of

measures using nonlinear scales, which are unsuitable for

statistical analysis. In the present work, the assessment

relied on quantitative, computer-assisted tracking of sper-

matozoa movements captured with high-speed videomi-

croscopy, which allowed accurate and reliable assessment

of spermatozoa motility and swimming speed, and pro-

vided data fit for statistical analysis (Rurangwa et al. 2004).

Additional comparative experiments investigating the

effects of H. circularisquama on spermatozoa motility of

different bivalve species may further support the results of

our findings.

In a recent study, spermatozoa, obtained from mature

C. gigas exposed to toxic Alexandrium minutum, showed

reduced energy status and motility associated with mor-

phological changes at cellular and subcellular levels,

indirectly induced through the release of toxins upon

A. minutum ingestion (Haberkorn et al. 2010). There are no

reports of deleterious effects of direct exposure of bivalve

or other invertebrates’ spermatozoa to HABs, but there has

been a report of inhibition of sperm motility in echinoderms

(Asteria rubens and Psammechinus miliaris) and poly-

chaetes (Arenicola marina and Nereis virens) when directly

exposed to unsaturated short-chain aldehydes (SCAs),

bioactive metabolites secreted by diatoms as part of an

oxylipin chemical defense system activated in response to

wounding (Caldwell et al. 2004). In addition to inhibiting

spermatozoa motility, diatom SCAs affect oocyte matura-

tion, fertilization, embryogenesis, and larval development

of an array of invertebrate species including copepods, sea

urchins, polychaetes, and ascidians. Their cytotoxicity is

related to molecular targets associated with calcium sig-

naling and cell death (Caldwell 2009). Similarly, many

notoriously potent HAB toxins (such as saxitoxins, breve-

toxins, domoic acid, maitotoxins, azaspiracids) affect

cytosolic calcium regulation (Berman et al. 2002; LePage

et al. 2003; Kakizaki et al. 2006; Pérez-Gómez et al. 2006).

Reported influx of Ca2? in trochophore larvae of R. phil-

ippinarum (Matsuyama 2003a), abnormal and delayed shell

mineralization of P. fucata martensii trochophores and

D-larvae (Basti et al. 2011b), and necrosis of HeLa cells

with accumulation of H. circularisquama toxin extracts in

the plasma membrane (Kim et al. 2008) all strongly suggest

that H. circularisquama toxins specifically bind to mem-

brane receptors that disrupt cellular homeostasis, especially
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for Ca2? (Matsuyama 2012). Indeed, calcium, both internal

and external, plays a pivotal role in sperm motility (Mor-

isawa and Yoshida 2005), the process of fertilization (both

sperm–egg binding and sperm–egg fusion) (Santella et al.

2004), egg activation (Sticker 1999), and triggering early

embryogenesis (Deguchi and Morisawa 2002), all of which

could be related to the severe deleterious effects on sperm,

eggs, fertilization, and embryos of P. fucata martensii

exposed to H. circularisquama in the present study.

In conclusion, we found that H. circularisquama

severely affects spermatozoa, eggs, fertilization, and

embryos of pearl oysters, at low concentrations and within

minutes of exposure. Nonetheless, inferences about the

ecological implications from these findings cannot be made

due to the small number of broodstock used (3 males and 2

females) and the fact that gametes and other samples were

pooled. Further studies looking on morphological, ultra-

structural, and physiological modifications of spermatozoa,

eggs, fertilization, and embryo developmental processes

upon direct exposure and exposure of broodstock to

H. circularisquama and other toxic HABs, with improved

experimental designs are required to understand the impacts

of HABs on the reproduction and recruitment of bivalves.
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