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ABSTRACT 

Multi-walled carbon nanotubes (MWCNTs) are novel materials with exceptional mechanical 
properties. In order to gain insight into the design of MWCNT-reinforced composite materials with high 
mechanical performance, this study determined the optimal structure of MWCNTs with high nominal 
tensile strength, where the nominal values correspond to the cross-sectional area of the entire specimen, 
including the hollow core. Machine learning based high throughput molecular dynamics (HTMD) 
simulation was used to investigate the relationship between the following structural 
parameters/properties: diameter, number of walls, chirality and crosslink density between walls. It was 
observed that the influence of crosslink density on the nominal tensile strength tends to decrease 
gradually from the outside to the inside; in general, the crosslink density between the outermost wall 
and its adjacent wall is highly significant. Under the calculation conditions, Armchair-type eight-walled 
nanostructures in which the chirality of the innermost tube was (8,8) and the crosslink densities were 
1.01%, 0.93%, 1.14%, 0.92%, 0.84%, 1.08%, and 1.19% (from outside to inside) were found to be 
optimal, with the nominal tensile strength and Young's modulus reaching 57–59 GPa and 650–670 GPa, 
respectively. 
 
INTRODUCTION 

Multi-walled carbon nanotubes (MWCNTs) with unique mechanical properties are considered to be 
a promising reinforcing agent for composite applications [1–3]. MWCNTs synthesized by the arc 
discharge method at high synthesis temperature often exhibit the sword-in-sheath type failure, because 
the tensile load applied to the MWCNTs is carried exclusively by the outermost wall due to its high 
crystallinity [4,5], while MWCNTs synthesized by the commonly used chemical vapor deposition 
(CVD) method are found to experience all-wall failure due to load transfer caused by structural defects 
[6]. For these reasons, both fracture modes result in a nominal tensile strength based on the cross-
sectional area of the full specimen, i.e., the cross-section including the hollow core does not reach more 
than 10 GPa [7]. Thus, it is expected that there should be an optimal structure with a suitable number of 
detectors that can make the tube achieve high strength, and the understanding of the geometric properties 
of the optimal structure should have a positive influence on future work for tailoring structures of 
MWCNTs used as reinforcing agents in composite applications. 

In this study, we investigate the relationship between geometrical parameters and mechanical 
properties of CNTs. To guide the design of CNT composites, we mainly focused on the nominal values 
of the mechanical properties of CNTs. We show that by combining molecular dynamics (MD) method 
and machine learning, it is possible to predict an optimized structure with specific geometrical 
parameters that can have the ideal mechanical properties. 
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SIMULATION METHODS 

To analyze the fracture process of MWCNTs and investigate the influence of their structural 
parameters/properties on their mechanical properties, uniaxial tensile loading tests were performed 
based on the MD method using the open-source software Large-Scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS), which was developed by Sandia National Laboratories in the United 
States and released in March 2018. The adaptive intermolecular reactive empirical bond order 
(AIREBO) model was used for the MD simulation. Being the second-generation extension of the 
reactive empirical bond order potential function, the AIREBO potential function additionally considers 
the 12–6 Lennard-Jones potential to describe the interaction between nanotube walls, resulting from the 
long-range van der Waals force, thus making it suitable for calculating the potential energy of covalent 
bonds and the interatomic force in MWCNTs. Different combinations of diameter, number of walls, 
chirality, and crosslink density of the models were explored to obtain an optimal structure. In order to 
efficiently handle such high workload calculations, the entire computational process from model 
building and crosslink introduction to MD simulation and result determination was controlled in the 
high throughput molecular dynamics (HTMD) environment by Python programs and shell script 
algorithms. The details of the model preparation and optimization procedures can be found in the 
literature [8–10]. 

To include a wide range of models, we investigated SWCNTs, 2-walled CNTs (2WCNTs), 3-walled 
CNTs (3WCNTs), 4-walled CNTs (4WCNTs), 5-walled CNTs (5WCNTs), 6-walled CNTs (6WCNTs), 
7-walled CNTs (7WCNTs), and 8-walled CNTs (8WCNTs) with fixed lengths of 426.0 Å and 425.5 Å 
for zigzag and armchair CNTs, respectively. In order to make a valid comparison, the boundary of the 
diameters of the zigzag and armchair CNTs were assigned equal values. According to the diameters of 
(21,0) zigzag CNTs and (12,12) armchair CNTs (16.4 Å and 16.3 Å, respectively) and the diameters of 
(95,0) zigzag CNTs and (55,55) armchair CNTs (74.4 Å and 74.6 Å, respectively), the inner diameters 
of all CNT models were set in the range of 16.3 Å–74.6 Å. All MWCNTs were introduced via Frenkel-
pair crosslinks by controlling the density, where the crosslink density is the number of crosslinks 
between two adjacent walls divided by the total number of atoms in the two walls. In the results reported 
by Byrne et al. [11], the 2WCNT models exhibited a "clean break" type fracture pattern when the 
crosslink density between the walls reached 2.5%. Based on this, in the present study, we set the 
crosslink density of our models in the range of 0–3%. In the Python-based HTMD platform, the CNT 
models were first generated with the desired diameter, number of walls, chirality, and crosslink density, 
and then the models were populated with randomly distributed crosslinks. The advantage of this method 
is that the time required to complete the modeling process depends on the number of atoms in the model. 

To ensure equilibration of internal stresses and to minimize the total energy for each model, an 
isothermal-isobaric (NPT) ensemble was coupled to a nose-hoover thermostat and the relaxation process 
was performed under the following conditions: 300 K temperature, 0 applied load, and 0.5 fs time step. 
During the equilibrium period, the maximum and minimum AIREBO potential cutoff distances were set 
to 1.7 Å and 1.8 Å, respectively, to allow for better crosslink bonding. To avoid the influence of thermal 
fluctuations on the simulation results, the temperature was reduced to 1 K after obtaining the optimized 
model structure. Based on the experimental settings of the previous studies [12,13], the uniaxial tensile 
load was applied to the atoms of the two fixed parts of the outermost wall in the canonical ensembles 
(NVT) along the z-axis, with the engineering strain rate controlled at 6 × 109 S-1 and the time step at 0.5 
fs. Note that the fixed part also stretched along the tube axis as the load increased, while all the atoms 
in the mobile part, including the middle portion of the outermost wall and all the inner walls, were free 
to move, as shown in Fig 1. To avoid non-physical increases in stress values during tensile loading, the 
AIREBO potential cutoff distance was modified to 2.0 Å. The resultant tensile strength of the AIREBO 
potential-based tensile test verification simulation of the zigzag-type CNTs obtained in this study was 
120 GPa. This was slightly higher than the experimental result, and consistent with those of the quantum 
calculation obtained by Peng et al. [5], which were approximately 100 GPa and 120 GPa. Moreover, the 
strain-stress relation for single-walled fracture of MWCNTs was in good agreement with their 
experiment sample 1, 2 and 3. Because the distribution pattern of the crosslinks may influence the result 
and the interwall crosslink density has at most 3% margin of error after equilibration, five calculations 
were performed for each MWCNT model, and the average values were considered to be the final results. 



TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23) 
30 July – 4 August 

 
Figure 1: Schematic of the computational model. (a) Whole 2WCNT with Frenkel-pair crosslinks and 
distortions on the wall, with a half front slice on the left side, where the two red parts (on the outermost 
wall) indicate the regions of load application during the tensile test and are called fixed parts. The blue 
color (including all inner walls) represents the parts where atoms can move freely and are therefore 
called mobile parts; (b) magnified view of the middle mobile part of 2WCNT; (c) front slice from (b) 
showing randomly distributed crosslinks; (d),(e) structure of the Frenkel-pair crosslink. Light blue 
spheres represent carbon atoms on the inner walls and yellow spheres are atoms on the outer walls. 

 
For each model, the values of strain, stress, nominal tensile strength, and nominal Young’s modulus 

were obtained. The deformation along the z-axis of the model was divided by its original length to obtain 
the strain, and the stress was determined by dividing the stress tensor by the volume of carbon atoms, 
where the stress tensor was obtained using LAMMPS. The nominal tensile strength was calculated by 
dividing the product of the ultimate stress and the effective area by the total cross-sectional area. The 
effective area is the cross-sectional area under tensile stress, including the wall thickness of the model, 
as shown in Eq. (1), and the nominal area is the total cross-sectional area of the outermost wall, including 
the wall thickness, as shown in Eq. (2): 
 

𝐴𝐴eff = 𝜋𝜋[(𝑟𝑟out + 0.5𝑡𝑡)2 − (𝑟𝑟in − 0.5𝑡𝑡)2], (1) 
𝐴𝐴nom = 𝜋𝜋(𝑟𝑟out + 0.5𝑡𝑡)2, (2) 

where 𝐴𝐴eff and 𝐴𝐴nom are the effective area and the nominal area, respectively; 𝑟𝑟in and 𝑟𝑟out are the radii 
of the innermost wall and outermost wall, respectively; and 𝑡𝑡 is the wall thickness. The nominal Young’s 
modulus was calculated by dividing the nominal stress by the strain during elastic stretching. When 
calculating the area, the thickness of the individual wall was considered to be 3.4 Å. 

As suggested in previous studies, we focused on structural optimization, particularly with respect to 
the nominal tensile strength. To optimize the structural parameters/properties for CNTs, a machine 
learning algorithm, namely the Bayesian optimization method, was used. A flowchart of this algorithm 
is shown in Fig. 2(a). Three basic steps were included in the Bayesian optimization adopted in this study: 
The first step involves the construction of the objective function using the Kriging model and the 
prediction of the optimal nominal tensile strength value based on the acquisition function by evaluating 
the expected improvement. In the second step, a genetic algorithm (GA) was introduced to determine 
the structural parameters/properties for the CNTs, that can achieve the predicted mechanical property, 
as shown in Fig. 2(b). Specifically, 1000 samples structured with randomly selected structural 
parameters/properties, including diameter, number of walls, chirality, and crosslink density, were 
generated as the population for the 1st generation; then the solution (nominal tensile strength) of each 
sample was calculated based on the objective function predicted by the Kriging model from the previous 
step. To determine the fitness parameter in the GA, the Michalewicz fitness function was used, and the 
solutions in the population were ranked in the objective function space using the Fonseca-Fleming 
method. The fitness was then assigned to each solution based on its rank. Using the stochastic universal 
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sampling method, better solutions were selected as parents to produce the next generation. During this 
process, blend crossover was performed with a crossover rate of 1.0, and uniform mutation was used 
with a mutation rate of 0.2. The process was repeated for 1000 generations, and an optimal structure 
with a set of structural parameters/properties was returned as the result of the GA. In the third step, the 
optimal structure was evaluated by the MD simulation to obtain the real nominal tensile strength value. 
This value, along with the structural parameters/properties, was then added to the data set as a new 
model. By repeating steps one to three, the structural parameters/properties were gradually optimized as 
the predicted parameters for the new model approached stability. In terms of computational cost, 250×
5 sets of models with structural parameters/properties were considered as the initial database. 
 

 

 
(a) (b) 

Figure 2: Flowchart of the optimization procedure. (a) Bayesian optimization; (b) genetic algorithm. 

 
RESULTS 

For all results, the error in nominal tensile strength was less than 5%, due to the error in both crosslink 
density and crosslink distribution difference. Based on our calculations, the structure optimization was 
performed 52 times. The tensile strength results for each predicted model are shown in Fig. 3, and their 
representative values are listed in Table 1. It can be observed that there are fluctuations in the initial 
prediction results; with the repetition of the prediction procedure, the tensile strength of the newly 
predicted structure tends to stabilize. However, the values in Table 1 show that although the chirality, 
number of walls, and diameter become stable, the predictions of the crosslink density for each adjacent 
wall continue to fluctuate. This is due to the influence of crosslink distributions and the presence of 
margin errors. Therefore, we combined the prediction models corresponding to the 10 highest tensile 
strength values as the final result. The armchair-type 8WCNT was concluded to be the optimal structure 
with high mechanical performance, where the inner diameter was 10.9 Å; the crosslink densities between 
the adjacent walls from the inner to outer tubes were 1.01%, 0.93%, 1.14%, 0.92%, 0.84%, 1.08%, and 
1.19%; and the nominal tensile strength and nominal Young’s modulus values were approximately 57–
59 GPa and 650–670 GPa, respectively. The effective tensile strength and Young’s modulus values based 
on the effective cross-sectional area (Eq. 1) were slightly higher than nominal values and range from 
approximately 64–65 GPa and 701–724 GPa, respectively. 
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Figure 3: Strength results of the machine learning-predicted structure with respect to the repetition of 
the prediction procedure. Error bar shows the maximum and minimum values obtained from the three 
repetitions of calculations. 
 
Table 1: Detailed information for the representative values in Figure 3. “Crosslink density 1” through 
“Crosslink density 7” represent the crosslink densities between each adjacent wall from the inner tube 
to the outer tube. The average value is given, and the range is indicated in parentheses. 

 
 
 
CONCLUSIONS 

We presented a novel approach to predict the optimal structure of high-mechanical performance 
CNTs through machine learning-based simulations in the HTMD environment. Based on the results 
obtained for the structural parameters/properties of diameter, number of walls, chirality, and crosslink 
density, we concluded that to achieve a high nominal tensile strength, armchair-type MWCNTs with the 
smallest diameter, large number of walls, and a suitable crosslink density between the adjacent walls are 
preferred. Based on our calculations, the armchair type 8WCNT with the inner diameter of 10.9 Å, the 
crosslink density between adjacent walls (from inner tube to outer tube) of 1.01%, 0.93%, 1.14%, 0.92%, 
0.84%, 1.08%, and 1.19% has the best mechanical properties. The nominal tensile strength, nominal 
Young’s modulus, effective tensile strength, and effective Young’s modulus were approximately 57–59 
GPa, 650–670 GPa, 64–65 GPa, and 701–724 GPa, respectively. We further discussed the relationship 
between fracture pattern and mechanical properties of CNTs, and it was observed that the tubes with 
"near-clean-break" fracture mode and "clean-break" fracture mode tended to exhibit high tensile strength. 
We explained the reason behind the specific structural parameters/properties that facilitate high 
mechanical performance, and showed that the influence of crosslink density on mechanical properties 
has a tendency to gradually decrease from the outer walls to the inner walls. The proposed method and 
the obtained results presented a valuable approach to understand the mechanical properties of CNTs and 
provided guidance for tailoring CNT structures to improve the quality of composites. 
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