論文

査読有り 筆頭著者
2014年10月

Development of Nanoparticles Incorporating a Novel Liposomal Membrane Destabilization Peptide for Efficient Release of Cargos into Cancer Cells

PLOS ONE
  • Shoko Itakura
  • ,
  • Susumu Hama
  • ,
  • Takashi Ohgita
  • ,
  • Kentaro Kogure

9
10
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1371/journal.pone.0111181
出版者・発行元
PUBLIC LIBRARY SCIENCE

In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS), overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP) that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo) was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMD-Plipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells.

リンク情報
DOI
https://doi.org/10.1371/journal.pone.0111181
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/25343714
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000343943500085&DestApp=WOS_CPL
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84908425751&origin=inward
ID情報
  • DOI : 10.1371/journal.pone.0111181
  • ISSN : 1932-6203
  • PubMed ID : 25343714
  • SCOPUS ID : 84908425751
  • Web of Science ID : WOS:000343943500085

エクスポート
BibTeX RIS