論文

査読有り 国際誌
2020年10月26日

An Msx2-Sp6-Follistatin Pathway Operates During Late Stages of Tooth Development to Control Amelogenesis

Frontiers in Physiology
  • Intan Ruspita
  • ,
  • Pragnya Das
  • ,
  • Yan Xia
  • ,
  • Sarah Kelangi
  • ,
  • Keiko Miyoshi
  • ,
  • Takafumi Noma
  • ,
  • Malcolm L. Snead
  • ,
  • Rena N. D’Souza
  • ,
  • Marianna Bei

11
開始ページ
582610
終了ページ
582610
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.3389/fphys.2020.582610
出版者・発行元
Frontiers Media SA

Background: Ameloblasts are epithelially derived cells responsible for enamel formation through a process known as amelogenesis. Amongst the several transcription factors that are expressed during amelogenesis, both Msx2 and Sp6 transcription factors play important role. Msx2 and Sp6 mouse mutants, exhibit similar amelogenesis defects, namely enamel hypoplasia, while humans with amelogenesis imperfecta (AI) carry mutations in the human homologues of MSX2 or SP6 genes. These across species similarities in function indicate that these two transcription factors may reside in the same developmental pathway. In this paper, we test whether they work in a coordinated manner to exert their effect during amelogenesis. Methods: Two different dental epithelial cell lines, the mouse LS8 and the rat G5 were used for either overexpression or silencing of Msx2 or Sp6 or both. Msx2 mutant mouse embryos or pups were used for in vivo studies. In situ hybridization, semi-quantitative and quantitative real time PCR were employed to study gene expression pattern. MatInspector was used to identify several potential putative Msx2 binding sites upstream of the murine Sp6 promoter region. Chromatin Immunoprecipitation (chIP) was used to confirm the binding of Msx2 to Sp6 promoter at the putative sites. Results: Using the above methods we identified that (i) Msx2 and Sp6 exhibit overlapping expression in secretory ameloblasts, (ii) Sp6 expression is reduced in the Msx2 mouse mutant secretoty ameloblasts, and (iii) that Msx2, like Sp6 inhibits follistatin expression. Specifically, our loss-of function studies by silencing Msx2 and/or Sp6 in mouse dental epithelial (LS8) cells showed significant downregulation of Sp6 but upregulation of Fst expression. Transient transfection of Msx2 overexpression plasmid, up-regulated Sp6 and downregulated Fst expression. Additionally, using MatInspector, we identified several potential putative Msx2 binding sites, 3.5 kb upstream of the murine Sp6 promoter region. By chIP, we confirmed the binding of Msx2 to Sp6 promoter at these sites, thus suggesting that Sp6 is a direct target of Msx2. Conclusion: Collectively, these results show that Sp6 and Msx2 work in a concerted manner to form part of a network of transcription factors that operate during later stages of tooth development controlling ameloblast life cycle and amelogenesis.

リンク情報
DOI
https://doi.org/10.3389/fphys.2020.582610
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/33192593
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649293
URL
https://www.frontiersin.org/articles/10.3389/fphys.2020.582610/full
ID情報
  • DOI : 10.3389/fphys.2020.582610
  • eISSN : 1664-042X
  • PubMed ID : 33192593
  • PubMed Central 記事ID : PMC7649293

エクスポート
BibTeX RIS