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Background. Recent experimental advances in quantum technologies including quantum simulators and
programmable quantum devices have led to the realization of interacting quantum systems with unprece-
dented complexity. These experimental setups provide a direct probe into the intricate microscopic prop-
erties of quantum many-body systems and enable implementations of near-term quantum algorithms
[BEJ+19, BSK+17, ZPH+17, AAB+19, HSB+18]. In order to validate the performance of these devices
or study the properties of the quantum systems that they realize, a major challenge is to devise effi-
cient methods that extract useful information from high dimensional experimental data generated by
these devices. An outstanding problem in this direction is the problem of quantum Hamiltonian learning
[BAL19, BGP+20, WGFC14, EHF19, WPS+17], where the goal is to develop methods for inferring the inter-
actions between quantum particles using a finite number of experimentally feasible measurements.

Machine learning algorithms are natural candidates for efficiently solving the quantum Hamiltonian
learning problem. For one, these algorithms have proven to be highly successful for analyzing complex
data sets in various fields, and more importantly, a major set of common learning tasks such as learning
Boltzmann machines can be cast as inferring a classical Hamiltonian (e.g., Ising model) using samples from
the Gibbs distribution. There is a rich body of work in this direction, culminating in efficient algorithms
for learning such classical models [Bre15, KM17, VMLC16, HKM17, RWL+10]. In spite of the analogies
between learning quantum Hamiltonians and these problems, no theoretical framework exists that studies
to what extent the quantum nature of interactions affects a direct application of classical learning techniques
to quantum problems. Moreover, it has long remained open to devise a quantum Hamiltonian learning
method with provably efficient performance guarantees. This lack of rigorous results is not a mere technicality
and points to a fundamental distinction between quantum and classical interactions: At finite temperatures,
quantum systems can violate the Markov property [LP08], the very feature that allows for the machine
learning techniques to be successfully applied to inferring classical systems such as the Ising model. Does
this mean that quantum interactions cannot be robustly learned with efficient resources?

In this work, we prove that despite this disparity between quantum and classical Hamiltonians, quan-
tum systems exhibit features that can be exploited to devise rigorous learning algorithms for inferring their
Hamiltonian. In particular, we show that the log of the partition function in these systems is strongly con-
vex. While classically this directly follows from the Markov property, in this paper, we use a completely
different route combining various recent techniques from many-body physics, machine learning theory,
and quantum information to establish this property. The framework that we construct in our paper shows
that polynomially many local measurements at finite temperature are necessary and sufficient for learning
a quantum Hamiltonian.
Problem statement. We now introduce the setup more formally. Consider a κ-spatially local HamiltonianH
acting on n qudits. In general, we can parameterize H by

H(µ) =
m∑
`=1

µ`E`

where µ` ∈ R and the operators E` are Hermitian and {E`} forms an orthogonal basis for the space of
operators. For instance, in the case of qubits,E` are tensor product of at most κ Pauli operators that act non-
trivially only on spatially contiguous qubits. We let the vector µ = (µ1, . . . , µm) be the vector of interaction
coefficients. Here, without loss of generality we assume the Hamiltonian is traceless, i.e. for the identity
operator E` = 1, the coefficient µ` = 0. At a inverse-temperature β, the qudits are in the Gibbs state defined as

ρβ(µ) =
e−βH(µ)

tr[e−βH(µ)]
.
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In the learning problem, we are given multiple copies of ρβ(µ) and can perform arbitrary local measurements
on them. In particular, we can obtain all the κ-local marginals (or the local expectations) of ρβ(µ) denoted
by e` = tr[ρβ(µ)E`] for ` ∈ [m] and the goal is to learn the coefficients µ` of the Hamiltonian H .

Problem 1 (Hamiltonian learning problem). Consider a κ-spatially local HamiltonianH(µ) =
∑m

`=1 µ`E` that
acts on n qudits and consists of m local terms such that max`∈[m] |µ`| ≤ 1. Given N copies of the Gibbs state of this
Hamiltonian

ρβ(µ) =
e−βH(µ)

tr[e−βH(µ)]

at a fixed inverse-temperature β. The goal is to obtain an estimate µ̂ = (µ̂1, . . . , µ̂m) of the coefficients µk such that
with probability ≥ 0.99, ||µ− µ̂||2 ≤ ε, where ||µ− µ̂||2 =

(∑m
`=1 |µ` − µ̂`|2

) 1
2 is the `2- difference between µ and µ̂.

Further motivation. A major challenge that accompanies the scalable development of quantum devices is
to efficiently certify their functionality. Preparing and measuring the Gibbs state of a given Hamiltonian
(quantum Gibbs sampling) is a widely used subroutine in various quantum algorithms [BS17, vAGGdW20,
BKL+19, vG18, BKF19, Mon15, HW20, TOV+11, WKS14, MST+20]. Given that near term quantum devices
will be noisy, an important problem when implementing these quantum subroutines is to certify the perfor-
mance of the quantum Gibbs samplers and to calibrate them. More specifically, it would be ideal to have a
classical algorithm that given samples from a Gibbs sampler determines if the correct Hamiltonian has been
implemented. More broadly, a general question in quantum many-body physics is if we can efficiently test
or falsify our theories about highly interacting and complex quantum many-body systems. An example of
such systems could be a newly synthesized material or a cold atom setup which realizes a novel phase of
matter, e.g., the quantum spin liquid phase. A crucial task here is determining if the underlying interac-
tions in such a system is consistent with our theoretical predictions—the Kitaev model in the quantum spin
liquid case. An efficient algorithm for the quantum Hamiltonian learning problem can be used to address
this question.

Main results and proof ideas. Our first result establishes that the Hamiltonian learning problem can be
solved using a number of samples that scales polynomially in the number of qudits. To the best of our knowl-
edge, this is the first such result that unconditionally obtains a non-trivial sample complexity. This result is
stated in the following theorem:

Theorem 2 (Sample-efficient Hamiltonian learning). The Hamiltonian learning problem 1 can be solved using

N = O

(
eO(β

c)

β c̃ε2
·m3 · log(m)

)
(1)

copies of the Gibbs state ρβ(µ), where c, c̃ ≥ 1 are constants that depend on the geometry of the Hamiltonian. In
particular, for β = O(1), the number of copies is given by N = Õ(m3/ε2).

For spatially local Hamiltonians, the number of interaction terms m scales as O(n). The number of
samples in (1) increases as β → ∞ or β → 0. As the temperature increases (β → 0), the Gibbs state
approaches the maximally mixed state independent of the choice of parameters µ. At low temperatures
(β →∞), the Gibbs state is in the vicinity of the ground space, which for instance, could be a product state
|0〉⊗n for the various choices of µ. In either cases, more sample are required to distinguish the parameters
µ. To complement our upper bound, we also obtain a Ω(

√
m) lower bound for the Hamiltonian learning

problem 1 using a simple reduction to the state discrimination problem. Hence, our sample complexity is
tight up to polynomial factors.

Theorem 3 (A lower bound). The number of copies N of the Gibbs state needed to solve the Hamiltonian learning
problem and output a µ̂ satisfying ‖µ̂− µ‖2 ≤ ε with probability 0.99 is lower bounded by N ≥ Ω

(√
m/(βε)

)
.
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Technical contribution. A method for learning the Hamiltonian H is based on the following procedures:
first measure all the κ-local marginals of the Gibbs state e`, then among all the states, find the one that
matches those marginals. Finding such a state can be naturally formulated in terms of an optimization
problem known as the maximum entropy problem:

max
σ

S(σ) s.t. tr[σE`] = e` for every ` ∈ [m], σ � 0, tr[σ] = 1. (2)

where S(σ) = −tr[σ log σ] is the von Neumann entropy of the state σ. The optimal solution of this program is
a quantum state with a familiar structure [Jay57, SK14, BKL+19]. Namely, it is a Gibbs state ρ(λ) for some
set of coefficients λ = (λ1, . . . , λm). The coefficients λ are the Lagrange multipliers corresponding to the dual
of this program.

A major technical problem that we address in this work is analyzing the robustness of the optimization
in (2) to the statistical error in the marginals. This is necessary since practically we can only obtain estimates
ê` for the marginals (i.e. the empirical averages) instead of the exact values e`. As we explain next proving
such a robustness is a significant issue connected to the fundamental properties of interacting quantum
particles. One technique for analyzing the sample complexity is based on the notion of strong convexity
originated in the field of stochastic optimization and machine learning. In general, a function f : Rm 7→ R is
α-strongly convex if its Hessian matrix satisfies∇2f(x) � α1, where α is some positive constant. We apply
the strong convexity framework to the dual of the convex program in (2) in two steps:

1) Proving the strong convexity of the objective function: This is equivalent to showing that the log-partition
function (aka the free energy) is strongly convex. This result is the main technical contribution of our work,
in particular we show that for every vector v ∈ Rm, we have

vT · ∇2 logZβ(µ) · v ≥ e−O(βc)β
c′

m
· ||v||22, (3)

where c, c′ are O(1) constants which depend on the spatial dimension and the details of the Hamiltonian.
2) Bounding the error in estimating µ in terms of the error in estimating the marginals e`: In this step, we show

that as long as the statistical error of the marginals is small and by using the strong convexity property from
step (1), an upper bound on the difference between the solutions of the ideal and the empirical optimizations
can be proven. The result can be stated as follows:

Proposition 4 (Error bound from strong convexity). Suppose the marginals e` are determined up to error δ, i.e.,
|e` − ê`| ≤ δ for all ` ∈ [m]. Additionally assume∇2 logZβ(λ) � α1 and ||λ|| ≤ 1. Then the optimal solution to the
dual of the optimization in (2) satisfies

||µ− µ̂||2 ≤
2β
√
mδ

α
By substituting the expression for the strong convexity parameter α in Eq. (3) into the bound given in

Proposition 4, we obtain our claimed sample complexity in Theorem 2. The proof of Eq. (3) involves two
main ideas. First, we show that the term vT · ∇2 logZβ(µ) · v can be lower bounded by the variance of a
quasi-local operator. While this can be easily shown for classical Hamiltonians, establishing this for non-
commuting Hamiltonians requires extra care. We use the Lieb-Robinson bound [LR72, NS09] and the Belief
Propagation framework of [Has07] to achieve this. The second issue we address is obtaining an Ω(1/m)
lower-bound on this variance. This is technically challenging and is done in multiple steps. We first use the
robustness of the spectrum of the Gibbs state to local unitary perturbations (following and extending the
techniques of [AKL16]) to prove that the variance of the quasi-local operator is greater than the variance of
an operator acting on O(1) qudits. Finally, we show that this latter variance is at least a constant by relating
it to the variance of the same operator at infinite temperature. We defer the proofs of these statements to
the main text of the paper.

Our framework based on the strong convexity provides a rigorous approach and a new avenue for
studying quantum many-body problems using machine learning and stochastic optimization techniques.
Given the interdisciplinary nature of our work, we expect that introducing this connection to the quantum
information community will have a broader impact.
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