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I. MOTIVATION AND BACKGROUND

A fundamental principle of many-body physics is causality: a strict prohibition of information prop-
agation outside the light cone. However, in non-relativistic systems, it is often unclear whether such a
light cone can be well defined. In the famous work by Lieb and Robinson, the amount of information is
proved to be restricted in the effective light cone, which is characterized by the so-called “Lieb-Robinson
bound.” So far, the Lieb-Robinson bound is a crucial concept in accessing the precision error of various
quantum simulation algorithms and the mathematical structure of quantum entanglement at low (or
zero) temperatures; to name a few, the area law of entanglement [Hastings, J. Stat. Mech. (2007)],
quasi-adiabatic continuation [Hastings and Wen, PRB (2005)], clustering theorems for correlation func-
tions [Hastings and Koma, CMP (2007)], [Kuwahara and Saito, PRX (2022), QIP2022], tensor-network
based classical simulation of many-body systems [Osborne, PRL (2006)], optimal circuit complexity of
quantum dynamics [Haah, et al., FOCS (2018), QIP2019], sample complexity of quantum Hamiltonian
learning [Anshu, et al., Nature Physics (2021), QIP2021], and quantum information scrambling [Robert
and Swingle, PRL (2016)], etc.

However, the original work by Lieb and Robinson and the followed generalizations are severely limited
to systems with the two conditions, i.e., i) short-rangeness of the interactions and ii) finite bound of
local energy. The breakdown of these conditions is ubiquitous in realistic experiments (e.g., cold atom
setups). Nevertheless, the speed limit on information propagation is highly nontrivial in such cases. The
breakdown of condition (i), i.e., the existence of long-range interactions, has been intensively studied in
the past decade [Kuwahara and Saito, PRX (2020), TQC2019], [Tran, et al., PRX (2021), QIP2021].
These studies have significantly unraveled the forms of optimal light cones for long-range interacting
systems.

On the other hand, the breakdown of the latter condition (i.e., finite bound of local energy) has
still been elusive despite great efforts over the years. When the norm of the interactions is locally
unbounded, all the mathematical tools to prove the Lieb-Robinson bound break down. The representative
example to break the condition is the interacting boson systems, which typically appear in cold atom
experiments [Cheneau, et al., Nature (2012)]. Then, can one prove the linear light cone for interacting
boson systems in general? The answer is generally no as has been shown by Eisert and Gross [Eisert
and Gross, PRL (2009), QIP2009], where the speed of information propagation exponentially increases
with time. This point necessitates us to restrict ourselves to specific classes of interacting boson systems.
Among them, the most important class is the Bose-Hubbard model, the well-known minimal model
describing cold atoms in optical lattices. Over a decade, the Lieb-Robinson bound in the Bose-Hubbard
model has been a challenging open problem in the fields of quantum information and quantum many-body
physics.

We here report the solution to this long-standing problem. In detail, we identify the optimal light
cone for the Bose-Hubbard type models and establish a gate complexity to simulate the dynamics with
an efficiency guarantee.

II. SUMMARY OF MAIN RESULTS AND APPLICATIONS

Before going to our main result, we explain what has been clarified before our work. First of all,
considering the Lieb-Robinson bound in the Bose-Hubbard type model, the primary difficulty stems from
the fact that the standard approach for the Lieb-Robinson bound necessarily yields a Lieb-Robinson
velocity proportional to the norm of the local energy. That is, when all the bosons (say N bosons) clump
at a single site, the on-site energy can be as large as Poly(N), which induces an infinite Lieb-Robinson
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FIG. 1. Schematic pictures of the effective light cones.

velocity as N →∞. Although it is unlikely that many bosons will clump together in realistic experiments,
we must take the theoretical possibility of such situations into account. Therefore, to estimate the Lieb-
Robinson velocity, we at least need to estimate the speed for bosons to clump together. Such analysis is
essential in truncating the boson number with an error guarantee.

Based on the above discussion, we have to tackle the following primary targets separately: i) the speed
of boson particle transport, ii) propagation of total information. Relevant to the first issue i), Schuch,
Harrison, Osborne, and Eisert brought the first breakthrough by considering the diffusion of the initially
concentrated bosons in the vacuum and ensured that the bosons have a finite propagation speed [Schuch,
et al., PRA (2011), QIP2011]. Very recently, the initial setup has been relaxed to general states while
assuming a macroscopic number*1 of boson transport [Faupin, et al., PRL (2022)]. On the second issue
ii), Wang and Hazzard derived the Lieb-Robinson velocity that was proportional to the square root of
the total number of bosons [Wang and Hazzard, PRX Quantum (2020)], which is qualitatively better
than the previous one. However, the velocity is still infinitely large in the thermodynamic limit. The
first meaningful Lieb-Robinson bound has been derived by Kuwahara and Saito, where the linear light
cone was proved under the assumptions that the initial state is steady and has a small number of bosons
in each site [Kuwahara and Saito, PRL (2021), TQC2021], which has been improved in the subsequent
work [Yin and Lucas, PRX (2022)]. Thus, the remaining problems are the following:

1. Proving the finite speed of boson particle transport for arbitrary initial states

2. Identifying the optimal light cone of information propagation for arbitrary non-steady initial states
with low-boson density*2.

In summary, we have solved the above problems in general setups [see also Fig. 1]. Our results are
applicable to arbitrary time-dependent Bose-Hubbard-type Hamiltonians in arbitrary dimensions starting
from a non-steady initial state. Such a setup is most natural in practice and crucial in estimating the
gate complexity of digital quantum simulation of interacting boson systems.

As a critical difference between bosons and fermions (or spin models), we have clarified that the accel-
eration of information propagation can occur in high dimensions. Furthermore, as a practical application,
we develop a gate complexity for efficiency-guaranteed digital quantum simulations of interacting bosons
based on the Haah-Hastings-Kohtari-Low (HHKL) algorithm [Haah, et al., FOCS (2018), QIP2019].

1. Boson particle transport

We consider a quantum system on a D-dimensional lattice (graph) with Λ set for all sites. We focus
on the Bose-Hubbard type Hamiltonian in the form of

H =
∑
〈i,j〉

Ji,j(bib†j + h.c.) + f ({n̂i}i∈Λ) (1)

*1 Macroscopic number means Ω(Ntotal) with Ntotal the number of all the bosons in the system.
*2 Without low-boson density condition [i.e., Eq. (4)], it has been already known that the Lieb-Robinson velocity can be

arbitrarily large [Barmettler, et al., PRA (2012)]
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with |Ji,j | ≤ J̄ , where
∑
〈i,j〉 is the summation for all pairs of the adjacent sites {i, j} on the lattice and

f ({n̂i}i∈Λ) is an arbitrary function of the boson number operators {n̂i}i∈Λ with n̂i = b†ibi. The function
f ({n̂i}i∈Λ) includes arbitrary long-range boson-boson couplings. Moreover, all results are applied to the
time-dependent Hamiltonians.

The first problem is to identify how the boson number distribution changes with time evolution. In
detail, we need to know the upper bound of the moment function (X ⊆ Λ)

tr [ρ0(t)n̂sX ] = tr [ρ0n̂X(t)s] (s ∈ N), n̂X :=
∑
i∈X

n̂X , (2)

where ρ0 is arbitrarily chosen. Our first result gives the following general upper bound:
Result 1. For R ≥ c0t log t, the time-evolution n̂X(t) satisfies the operator inequality of

[n̂X(t)]s �
[
n̂X[R] + δn̂X[R] + c2ts

]s
, δn̂X[R] = e−c1R/t

∑
j∈Λ

e−c
′
1dj,X[R] n̂j (3)

with X[r] the extended subset by length r as X[r] := {i ∈ Λ|di,X ≤ r}, where {c0, c1, c
′
1, c2} are the

constants of O(1). The operator δn̂X[R] is as small as e−O(R/t) if there are not many bosons around the
region X[R]. We can apply this theorem to a wide range of setups. Interestingly, it holds for systems
with arbitrary long-range boson-boson interactions, such as the Coulomb interaction.

2. Lieb-Robinson bound and gate complexity of quantum simulation

We here assume that the boson-boson interaction is finite unlike the setup for Result 1 and the initial
state ρ0 satisfies the following low-boson-density condition:

tr(ρ0n̂
s
i ) ≤

1
e

(
b0
e
sκ
)s
, (4)

where b0 and κ (≥ 1) are the constants of O(1). From this condition, the boson number distribution at
each site decays (sub)-exponentially at the initial time. The simplest example is the Mott state, where a
finite fixed number of bosons sit on each site.

In proving the Lieb-Robinson bound, we utilize the boson number truncation at each site after the
time evolution. From Result 1, we can quantitatively estimate the truncation error, which allows us to
derive the following result,
Result 2. For an arbitrary operator OX and OY with unit norm*3 (‖OX‖ = ‖OY ‖ = 1), the time
evolution OX0(t) is well approximated by using the subset Hamiltonian on X0[R] with the error of

‖[OX(t), OY ] ρ0‖1 ≤ e
−C(R/tD)

1
κD , (5)

for R ≥ tDpolylog(t), where ‖·‖1 is the trace norm and C is an O(1) constant.
From Result 2, the speed of information propagation is proportional to tD−1. We can demonstrate

that the obtained upper bound is qualitatively optimal by explicitly developing time evolution to achieve
the bound [see Fig. 4 in the technical abstract].

By combining Result 1 and Result 2, we can finally estimate the sufficient number of quantum gates
that implement the bosonic time evolution e−iHt acting on an initial state ρ0:
Result 3. For an arbitrary initial state ρ0 with the condition (4), the number of elementary quantum
gates for implementing e−iHtρ0e

iHt up to an error ε is at most

|Λ|tD+1polylog(|Λ|t/ε), (6)

with the depth of the circuit tD+1polylog(|Λ|t/ε), where the error is given in terms of the trace norm.
Remember that |Λ| is the number of the sites in the total system.

*3 The condition of the unit norm is not essential and can be removed as long as the operator OX and OY are upper-bounded
by |OX | � poly[(n̂i)i∈X ] and |OY | � poly[(n̂i)i∈Y ]
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