Papers

Peer-reviewed
Jan, 2018

Spectral reflectance (0.35-2.5 mu m) properties of garnets: Implications for remote sensing detection and characterization

ICARUS
  • M. R. M. Izawa
  • ,
  • E. A. Cloutis
  • ,
  • T. Rhind
  • ,
  • S. A. Mertzman
  • ,
  • Jordan Poitras
  • ,
  • Daniel M. Applin
  • ,
  • P. Mann

Volume
300
Number
First page
392
Last page
410
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1016/j.icarus.2017.09.005
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE

The utility of spectral reflectance for identification of the main end-member garnets: almandine (Fe32+Al2Si3O12), andradite (Ca3Fe23+Si3O12), grossuiar (Ca3Al2Si3O12), pyrope (Mg3Al2Si3O12), spessartine (Mn32+Al2Si3O12), and uvarovite (Ca3Cr23+Si3O12) was studied using a suite of 60 garnet samples. Compositional and structural data for the samples, along with previous studies, were used to elucidate the mechanisms that control their spectral reflectance properties. Various cation substitutions result in different spectral properties that can be determine the presence of various optically-active cations and help differentiate between garnet types. It was found that different wavelength regions are sensitive to different compositional and structural properties of garnets. Crystal-field absorptions involving Fe2+ and/or Fe3+ are responsible for the majority of spectral features in the garnet minerals examined here. There can also be spectral features associated with other cations and mechanisms, such as Fe2+-Fe3+ and Fe2+-Ti4+ intervalence charge transfers. The visible wavelength region is useful for identifying the presence of various cations, in particular, Fe (and its oxidation state), Ti4+, Mn2+, and Cr3+. In the case of andradite, spessartine and uvarovite, the visible region absorption bands are characteristic of these garnets in the sense that they are associated with the major cation that distinguishes each: Fe-[6](3+) for andradite, Mn-[8](2+) for spessartine, and Cr-[6](3+) for uvarovite. For grossuiar, the presence of small amounts of Fe3+ leads to absorption bands near 0.370 and 0.435 mu m. These bands are also seen in pyrope-almandine spectra, which also commonly have additional absorption bands, due to the presence of Fe2+. The common presence of Fe2+ in the dodecahedral site of natural garnets gives rise to three Fe2+ spin-allowed absorption bands in the 1.3,1.7, and 2.3 mu m regions, providing a strong spectral fingerprint for all Fe2+-bearing garnets studied here. Garnets containing Mn2+ have additional visible (similar to 0.41 mu m ) spectral features due to Mn-[8](2+). Garnets containing Cr3+, exhibits two strong absorption bands near similar to 0.7 mu m due to spin-forbidden Cr-[6](3+) transitions, as well as Cr-[6](3+) spin-allowed features near 0.4-0.41 mu m and 0.56-0.62 mu m, and( [6])Cr(3+) spin-allowed transitions between 0.41 and 0.68 mu m. Common silicate garnet spectra, in summary, are distinct from many other rock-forming silicates and can be spectrally distinct from one garnet species to another. Iron dominates the spectral properties of garnets, and the crystallographic site and oxidation state of the iron both affect garnet reflectance spectra. (C) 2017 Elsevier Inc. All rights reserved.

Link information
DOI
https://doi.org/10.1016/j.icarus.2017.09.005
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000414507300028&DestApp=WOS_CPL
ID information
  • DOI : 10.1016/j.icarus.2017.09.005
  • ISSN : 0019-1035
  • eISSN : 1090-2643
  • Web of Science ID : WOS:000414507300028

Export
BibTeX RIS