論文

査読有り
2019年6月

Evaluation of fatigue life and fatigue limit of circumferentially-notched Type 304 stainless steel in air and hydrogen gas based on crack-growth property and cyclic stress-strain response

ENGINEERING FRACTURE MECHANICS
  • Naoaki Nagaishi
  • ,
  • Michio Yoshikawa
  • ,
  • Saburo Okazaki
  • ,
  • Junichiro Yamabe
  • ,
  • Fusahito Yoshida
  • ,
  • Hisao Matsunaga

215
開始ページ
164
終了ページ
177
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.engfracmech.2019.05.005
出版者・発行元
PERGAMON-ELSEVIER SCIENCE LTD

Fatigue tests were performed using circumferentially-notched, round bar specimens with a stress concentration factor, Kt, of 6.6 for Type 304, metastable, austenitic stainless steel. The tests were carried out in ambient air and in 0.7 MPa hydrogen gas at room temperature. In a relatively higher stress amplitude regime (i.e., the amplitude resulting in N-f < 10(5)), the hydrogen gas environment caused a marked degradation in fatigue life. In contrast, in a relatively lower stress amplitude regime (i.e., the amplitude resulting in N-f > 10(5)), it appeared that fatigue life did not differ between air and hydrogen gas. It was also confirmed that the fatigue limit appeared not have been degraded in the hydrogen environment though there was a slight difference between the data obtained in two environments. The fatigue life curve and fatigue limit were predicted by assuming that the notch was equivalent to a circumferential crack. Consequently, there was a significant disparity between the prediction and the experimental results. As a result of microscopic observations of the fracture process in combination with elastic-plastic finite element analyses, these discrepancies were attributed to (i) complex cyclic plastic deformation behavior under large-and small-scale yielding conditions within the vicinity of the notch root, (ii) the retardation of crack initiation in the finite life regime, and (iii) the absence of non-propagating cracks at the fatigue limit, all of which are typical characteristics of metastable austenitic stainless steel.

リンク情報
DOI
https://doi.org/10.1016/j.engfracmech.2019.05.005
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000470057600012&DestApp=WOS_CPL
ID情報
  • DOI : 10.1016/j.engfracmech.2019.05.005
  • ISSN : 0013-7944
  • eISSN : 1873-7315
  • Web of Science ID : WOS:000470057600012

エクスポート
BibTeX RIS