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ABSTRACT Cytosolic DNAs derived from retrotransposons serve as pathogen-asso-
ciated molecular patterns for pattern recognition receptors (PRRs) that stimulate the
induction of interferons (IFNs) and other cytokines, leading to autoimmune disease.
Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating
type I IFN responses through the stimulator of IFN genes (STING). Absent in mela-
noma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways.
Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA in-
dependently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN
induction activity by sequestering it from STING. We also found that the comple-
ment of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are dif-
ferent and unique, which has implications for interpretation of the sensing of patho-
gens in different mouse strains. Our data suggest that members of the ALR family
are critical to the host IFN response to endogenous DNA.

IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus ery-
thematosus arise when cells of the immune system become activated and attack
host cells and tissues. We found that DNA generated by endogenous retroviruses
and retroelements in inbred mice and mouse cells is recognized by several host pro-
teins found in macrophages that are members of the ALR family and that these pro-
teins both suppress and activate the pathways leading to the generation of cyto-
kines and IFNs. We also show that there is great genetic diversity between different
inbred mouse strains in the ALR genes, which might contribute to differential sus-
ceptibility to autoimmunity. Understanding how immune cells become activated is
important to the control of disease.
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The innate immune response is initiated when pathogen structures termed
pathogen-associated molecular patterns (PAMPs), including DNA, RNA, proteins,

and sugar chains, are recognized by pattern recognition receptors (PRRs) that then
activate downstream signaling pathways to rapidly induce antipathogen responses (1,
2). When PAMPs generated from endogenous molecules activate these pathways,
autoimmune disease can occur. Retrotransposons such as endogenous retroviruses
(ERVs) and retrotransposons are believed to be a source of cytosolic DNAs that activate
host DNA sensors (3, 4). ERVs, the remnants of ancestral retrovirus infection in the germ
line, occupy approximately 10% of the mammalian genome (5). Although most ERVs
are inactivated by accumulated mutations and deletions, many are still transcriptionally
active and able to produce cytosolic DNAs by reverse transcription (RT) (6). Retrotrans-
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posons like line-1s, which are reverse transcribed in the nucleus, also produce cytosolic
DNA (4, 7).

Many host molecules have been implicated in the control and recognition of
cytosolic DNA generated by either exogenous infection or endogenous retroelements.
The cytoplasmic 3=-5= DNA exonuclease three prime repair exonuclease 1 (TREX1)
metabolizes cytosolic DNA to prevent intrinsic DNA accumulation in the cytoplasm (3,
8). Abnormal cytosolic DNA accumulation associated with TREX1 mutations is thought
to lead to autoimmune diseases characterized by excessive type I interferon (IFN) and
cytokine production, such as Aicardi-Goutières syndrome (AGS), which results in neu-
ronal disorders and death in childhood (3, 9–13). When not degraded by TREX1,
cytosolic DNA is recognized by host PRRs that trigger IFN and cytokine production. For
example, the sensor cyclic GMP-AMP synthase (cGAS) produces cyclic GMP-AMP
(cGAMP) after binding double-stranded DNA (dsDNA); cGAMP then binds to and
activates the stimulator of IFN gene (STING) protein (14–17). STING, in turn, activates
tank-binding kinase 1 (TBK1) and transcription factor IFN regulatory factor 3 (IRF3), thereby
inducing the expression of type I IFN, as well as other cytokines (18). Knockout of cGas
ameliorates the autoimmune phenotype seen in Trex1 knockout mice (21, 22).

Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in
cytosolic DNA recognition. ALR genes are found in tandem arrays at the same genomic
locus in all mammals except bats (23–29). Interestingly, the ALR locus is highly variable
in different species. For example, humans have 4 ALR genes, including AIM2, while mice
have 13 or 14 (26, 29). While the ALRs are believed to be involved in the modulation
of type I IFN or inflammasome pathways, the precise roles of most of the individual
genes in this locus have not been elucidated (26, 29, 30). AIM2 binding to dsDNA leads
to induction of the inflammasome pathway (25, 31, 32). Another human ALR, the
IFN-inducible 16 (IFI16) protein, functions as a dsDNA sensor for the induction of type
I IFN and inflammasome activation against pathogens (33–38). In previous studies, we
showed that reverse-transcribed DNA generated during murine leukemia virus (MLV)
infection of macrophages was sensed by cGAS, DEAD box helicase 41 (DDX41), and the
mouse ALR IFI203 (39, 40). Thus, multiple DNA sensors may be employed to achieve a
type I IFN response.

Our goal here was to determine whether any of the ALRs are involved in the sensing
of DNA derived from endogenous retroelements. We show that the mouse ALR IFI205
senses self DNA derived from retrotransposons in the cytoplasm of macrophages and
activates the type I IFN signaling pathway via STING. cGAS also sensed self DNA.
However, IFI205-mediated activation of the type I IFN response was independent of
cGAMP. Interestingly, AIM2 dampened the self DNA-sensing pathway, likely by seques-
tering IFI205 from STING. These studies are in contrast to a recent publication describ-
ing knockout mice lacking the entire Alr locus, including Aim2, suggesting that ALRs
play no role in the recognition of endogenous DNA (27). We suggest instead that ALRs,
including IFI205 and AIM2, function together with cGAS as positive and negative
regulators of the innate immune response to cytosolic self DNAs.

RESULTS
Aim2 knockdown augments the Trex1 knockdown-mediated type I IFN re-

sponse in macrophages. To determine which molecules are involved in the response
to endogenous DNA in macrophages, we carried out a targeted small interfering RNA
(siRNA) screening of a panel of genes implicated as cytosolic DNA sensors in the mouse
macrophage cell line NR9456; cytosolic sensing in response to exogenous murine
retrovirus infection and intact Toll-like receptor pathways in response to arenavirus
infection are intact in this cell line (39–41). Trex1 or Aim2 knockdown alone resulted in
modest but significant increases in levels of RNAs for IFN-� and CXCL10, a known
IFN-stimulated gene (ISG) (Fig. 1A; see Fig. S1A in the supplemental material). The
modest induction of IFN-� or CXCL10 RNA levels by Trex1 knockdown was significantly
diminished by cGas or Sting depletion (Fig. S1). Dual knockdown of Trex1 and the other
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potential sensors also resulted in modest or no decreases in cytokine RNA levels
(Fig. S1A).

Interestingly, dual knockdown of Trex1 and Aim2 resulted in much higher IFN-� and
CXCL10 transcript levels than Trex1 knockdown alone (Fig. 1A; see Fig. S1A). Similar
results were obtained with primary bone marrow-derived macrophages (BMDMs) from
BL/6 mice (Fig. 1B). To control for potential off-target effects, we used three different
Aim2 siRNAs; all three caused increased IFN-� and CXCL10 and reduced AIM2 RNA and
protein levels (Fig. S2A and B). Since Trex1 is itself an ISG, because of the increase in
type I IFN levels, knockdown of Aim2 alone increased Trex1 RNA levels (Fig. 1; see
Fig. S2A).

To further investigate the cellular response to increased cytosolic DNA in AIM2-
depleted cells, we performed a PCR array for each knockdown condition (Fig. 2A).
Similar to what we found with IFN-� and CXCL10, several ISGs were modestly induced
by Trex1 or Aim2 knockdown alone (Fig. 2B; see Fig. S3). However, the expression of ISGs
such as Ccl5, Irf7, Isg15, and Mx1 was greatly increased in response to the knockdown
of both genes (Fig. 2B; see Fig. S3). These data suggested that AIM2 was moderating the
innate immune response to endogenous cytosolic DNA.

Trex1 knockdown increases the level of cytosolic retrotransposon DNAs. While
a previous study suggested that retroelement DNA contributes to the TREX1-dependent
innate immune response, which elements were degraded by Trex1 and whether cytoplas-
mic versus nuclear DNA was involved was not examined (3). We thus measured the
cytosolic DNA levels of retroelements belonging to different families after Trex1
depletion. Cytosolic DNA derived from all endogenous retrotransposons except MT(III)
Was upregulated upon Trex1 depletion in the absence or presence of Aim2 knockdown,
while total cellular or nuclear retrotransposon DNA did not show consistent increases
under any conditions (Fig. 3; see Fig. S4). Aim2 knockdown alone did not affect
cytosolic DNA levels of any of the retroelements (Fig. 3). The relative levels of the
mitochondrial gene for cytochrome b also did not change with any of the knockdowns
(Fig. S4).

Raltegravir, which blocks the integration of retroviruses and retroelements, leading
to the accumulation of unintegrated nuclear DNA, has been shown to exacerbate

*

**
**

*
*

**

**
**

**

**

***
***

***

***

**
**

**
*

**

**
**

**
***

*

25

20

9

6

3

0

80

60

10

20

0

Ifn
β

Fo
ld

 C
ha

ng
e

Ifn
β

Fo
ld

 C
ha

ng
e

Cx
cl

10
Fo

ld
 C

ha
ng

e

Cx
cl

10
Fo

ld
 C

ha
ng

e

Tr
ex

1
Fo

ld
 C

ha
ng

e

Tr
ex

1
Fo

ld
 C

ha
ng

e

A
im

2
Fo

ld
 C

ha
ng

e

A
im

2
Fo

ld
 C

ha
ng

e

2.5

2.0

1.5

1.0

0.5

0

2.5

2.0

1.5

1.0

0.5

0

1.6

1.4

1.2
1.0
0.8
0.6

0.4
0.2

0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

7

6

5

4

3

2

1

0

35

30
25

20

15

10

5

0

A B   

FIG 1 Trex1 and Aim2 double knockdown induces a type I IFN response in macrophages. IFN-�, CXCL10, Trex1, and Aim2 RNA levels upon knockdown of the
genes indicated in NR9456 cells (A) and BMDMs (B). RNA were analyzed by RT-qPCR. The values presented are normalized to Gapdh and are the mean � the
standard error of the mean of three experiments. *, P � 0.05; **, P � 0.005; ***, P � 0.0005 (two-tailed t test). The knockdown of TREX1 and AIM2 protein levels
by siRNA treatment is shown in Fig. S2B. siCont, control siRNA.
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autoimmunity in mice genetically predisposed to this condition and to inhibit ERV
retrotransposition in vitro (42, 43). To determine whether there was nuclear sensing of
retroelements, we treated cells with raltegravir at 1 and 10 �M, concentrations 5- and
50-fold higher than those needed to block the integration of MLV viral dsDNA into
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chromosomes and to inhibit ERV integrases, respectively (43). Raltegravir treatment did
not significantly increase IFN-� levels (Fig. S5).

These data suggest that the IFN response was caused by the accumulation of
cytosolic retrotransposon DNAs that occurs in the absence of TREX1 and the disruption
of AIM2 suppression of cytosolic sensing.

IFI205 is required for increased signaling triggered by AIM2 suppression. cGAS,
ALR family members, and DDX41 have all been implicated in the TREX1/STING-
dependent IFN induction pathway (39). To determine which sensors are involved in the
AIM2/TREX1-dependent activation of the pathway by endogenous retroelement DNA,
we carried out an additional targeted screening with siRNAs targeting Trex1, Aim2, and
potential sensors. PyhinB was not tested because we previously showed that it is not
expressed in NR9456 cells (39).

Sting and cGas knockdown downregulated the induction of IFN-� and CXCL10 RNAs
in TREX1/AIM2-depleted cells (Fig. 4A; see Fig. S6A and B). Ifi205 depletion also caused
a decrease in IFN-� and CXCL10 RNA levels in NR9456 cells (Fig. 4A) and BMDMs (Fig. 4B;
see Fig. S6C), comparable to that seen with cGAS or STING depletion, even though its
basal level of RNA in NR9456 cells was ~2 orders of magnitude lower than either of
these genes (Fig. S1B). Ifi205 depletion also caused decreased production of CXCL10
(IP-10) protein (Fig. 4C). Knockdown of Ddx41, which we showed previously plays a role
in the sensing of exogenous retroviral reverse transcripts, did not affect cytokine
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induction (39). Pyblhin-c knockdown decreased CXCL10 but not IFN-� levels, while
treatment of cells with Mndal siRNA caused a modest decrease in IFN-� levels and had
a greater effect on CXCL10 levels. In contrast, PyhinA knockdown resulted in increases
in IFN-� and CXCL10 RNA levels. Expression of most of the Alr genes was increased upon
TREX1/AIM2 depletion, consistent with their identification as ISGs (Fig. S6B) (44). Trex1
RNA levels were also higher in Aim2/Trex1 siRNA-treated cells than they were in cells
treated with Trex1 siRNA alone although lower than in Aim2 siRNA-treated cells, likely
because of the higher IFN levels induced upon double knockdown (compare the
relative Trex1 RNA levels in Fig. 1 and Fig. S2 and S6A). However, TREX1 protein levels
were similarly depleted in siAIM2- and siAIM2/siTrex1-treated cells (Fig. S2B).

Interestingly, in analyzing the Alr locus, we discovered that Mndal is a chimeric gene
in which the 5= end is likely derived from Ifi203 and the 3= end, containing the Hin DNA
binding domain, is derived from Ifi205 (Fig. 5A). The 3= Hin domains of Ifi204, Ifi205, and
Mndal all belong to the HinA subfamily, while Ifi203 has a single HinB domain at its C
terminus (Fig. 5A) (39). Ifi203, Ifi205 and Mndal showed remarkable identity in the
noncoding and coding regions (Fig. 5A and B). MNDAL, like IFI205, may also act as a
sensor of cytosolic endogenous DNA. However, unlike Ifi205, the Mndal gene is not

204
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Mndal

Pyrin                                 HinA HinB

A

C

B

FIG 5 Characterization of mouse Alr genes. (A) Dot plot comparing Mndal to Ifi203 from C57BL/6 mice and the predicted domain structures of Ifi203, Ifi204,
Ifi205, and Mndal. (B) Dot plot comparing the region of the Alr locus from PyhinA to Ifi205 in 129P/OlaHsd and C57BL/6J mice. (C) Phylogenetic analysis of ALRs
from different mouse strains.
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present in all mouse strains (data not shown; 45), so its role in sensing was not
investigated further.

These results suggested that IFI205 is important for the induction of type I IFN when
the endogenous cytosolic DNA level is elevated and AIM2 levels are low.

The ALR locus differs in 129 and BL/6 mice. We also attempted to replicate the

Aim2 knockdown studies in BMDMs isolated from Aim2 knockout mice. However, in
analyzing the Alr locus in Aim2 knockout mice, we discovered that while these mice
have been extensively backcrossed onto a C57BL/6 background, the region encom-
passing the Alr genes resembled that from the parental 129/P2 embryonic stem cells in
which the knockout was created.

To better understand the differences in the BL/6 and 129 Alr loci, we first rebuilt the
129P2 Alr locus with a bacterial artificial chromosome (BAC) sequence and data from
the Sanger Mouse Genomes Project (see Materials and Methods). We further confirmed
the assembly by transcriptome sequencing (RNA-Seq) with IFN-�-stimulated 129P2
splenocytes (Fig. S7). While the genome structure of the ALR locus from Aim2 to Ifi204
was conserved in BL/6 and 129P2 mice, the region of the locus encompassing Ifi203,
Mnda, Mndal, and Ifi202 differed dramatically (Fig. 5B). Genes in this stretch of the
genome showed significant polymorphism and copy number variation. For example,
the 129P2 genome contains three copies of diversified Ifi203 and Ifi202 genes, com-
pared to the single copy of these genes found in BL/6 mice, and lacks the Mnda gene
(Fig. 5B). The phylogenetic relationship of these genes is shown in Fig. 5C. Moreover,
the expression levels of the different genes throughout the locus differed in the two
strains. For instance, Ifi202b RNA is barely expressed in BL/6 splenocytes, whereas its
homologues are highly expressed in 129P2 splenocytes (Fig. S8A). These studies explain
why previous transcription analyses found that not all of the genes in the BL/6 locus
were expressed in 129 mice (27); many of the genes examined are not present in the
129 background.

Using these data, we designed primers to amplify polymorphic regions of genes
throughout the region to determine if the entire Alr locus in Aim2 knockout mice was
derived from 129 mice. We also used simple sequence length polymorphic (SSLP)
primers that flanked the locus. All of the Aim2 knockout mouse Alr genes were derived
from the original 129P2 progenitor cells, while other loci, such as the Apobec3 locus
found on chromosome 16, were derived from BL/6 mice (Fig. S8B). This finding is not
surprising; given that the distance between the genes for Aim2 and Ifi204 is 0.3 cM
(281 kB), it is unlikely that crossover events would have occurred in the seven to eight
generations of backcrossing onto C57BL/6J mice. To verify this, we also submitted AIM2
genomic DNA to the mouse universal genotyping array (MUGA) panel and found that
the minimum region of chromosome 1 derived from the 129P2 progenitor in Aim2
knockout mice was from 154868088 to 194886567 (Aim2 maps to chromosome 1
positions 173350879 to 173466040). Because the Alr locus in 129P2 mice was so
different from that in C57BL/6 mice, we did not further examine cytosolic DNA sensing
in Aim2 knockout mice.

AIM2 blocks IFI205 and STING interaction in the cytoplasm. A previous study

using a HA-tagged construct transiently transfected into HeLa cells suggested that
IFI205 is in the nucleus (26). Because we found that the levels of cytoplasmic but not
total endogenous retroelement DNA increased upon Trex1 knockdown and that treat-
ment of cells with raltegravir had no effect on IFN levels, we suspected that sensing by
IFI205 occurred in the cytoplasm. First, we determined IFI205’s localization in macro-
phages and NIH 3T3 cells by cell fractionation. Because antibodies specific for IFI205 are
not available, we established NR9456 and NIH 3T3 cells stably expressing myc-tagged
IFI205. Interestingly, IFI205 was localized in the cytoplasmic fraction of both macro-
phages and NIH 3T3 cells (Fig. 6A). We also examined the localization of endogenous
AIM2 in macrophages and a hemagglutinin (HA)-tagged version in transfected NIH 3T3
cells (Fig. 6A). Consistent with previous reports, AIM2 was found in the cytoplasm in
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both cell types; the HA-tagged, but not the endogenous, protein was also found in the
nuclei of NIH 3T3 cells (Fig. 6A) (26).

Next, we performed cotransfection/coimmunoprecipitation (co-IP) assays to deter-
mine whether IFI205 and AIM2 interact with each other or with STING (Fig. 6B). We
coexpressed IFI205myc, AIM2HA, and FLAG-tagged STING in HEK293T cells, immuno-
precipitated them with either anti-HA (AIM2) or anti-FLAG (STING) antiserum, and then
probed Western blots with antibodies against the three tags; we were unable to
immunoprecipitate them with anti-myc antiserum because of nonspecific binding of
proteins that interfered with detection by Western blotting (data not shown). Immu-
noprecipitation with anti-HA antiserum demonstrated that IFI205 and AIM bound each
other in the absence (Fig. 6B, lane 4) or presence (Fig. 6B, lane 7) of STING. IFI205 also
bound to STING (Fig. 6C, lane 3). However, IFI205/Sting binding was abrogated in the
presence of Aim2 (Fig. 6C, lane 4). AIM2 also bound to STING only in the absence of
IFI205 (Fig. 6B, lane 7, and C, lane 3).

To further explore the interaction of the three proteins, we also conducted proximity
ligation assays (PLA) in which the binding of two proteins to each other produces
signals that appear as fluorescent dots. NR9456-IFI205myc and NR9456 cells were used
to see the interactions between IFI205 and Aim2, IFI205 and STING, and AIM2 and
STING. As in the co-IPs, IFI205 interacted with both AIM2 and STING (Fig. 7A, left side).
Endogenously expressed AIM2 and STING also interacted with each other (Fig. 7A, right
side). All of the interactions occurred in the cytoplasm (Fig. 7A).

We also investigated whether depletion of Trex1, Ifi205, or Aim2 alters these inter-
actions in situ. TREX1 depletion increased the interaction between IFI205 and STING,
showing that this interaction is enhanced by IFI205 binding to DNA (Fig. 7B). The
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FIG 6 Interaction of IFI205, AIM2, and STING. (A) Intracellular localization of IFI205 and AIM2 in NR9456 and
NIH 3T3 cells. Lysates of cells stably expressing IFI205myc or AIM2HA were fractionated into cytoplasmic
and nuclear fractions and then subjected to Western blotting with the antibodies indicated. Lamin B1 and
�-tubulin were used as markers for the nucleus and cytoplasm, respectively. A single experiment was done
for each panel. (B, C) Co-IP of IFI205myc, AIM2HA, and STING-FLAG. HEK293T cells were transfected with
tagged proteins as indicated. Cells were lysed 48 h after transfection and immunoprecipitated (IP) with
anti-HA (B) or anti-FLAG (C) antibodies. Proteins were detected by Western blotting with the antibodies
indicated. The co-IP was repeated three times and gave the same results. WCL, whole-cell lysate; Cyto,
cytoplasm; Nuc, nucleus; IB, immunoblotting.
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FIG 7 IFI205-STING interaction increases upon TREX1 and AIM2 depletion. (A) PLA for interactions of IFI205myc-AIM2,
IFI205myc-STING, and AIM2-STING in NR9456-IFI205myc or NR9456 cells. The number of cells and images quantified for each
condition in NR9456-IFI205myc cells are as follows: IFI205myc-Sting, 141 cells and 10 images; IFI205myc-Aim2, 101 cells and
6 images; control, 65 cells and 5 images. The number of cells and images quantified for each condition in NR9456 cells are as
follows: control, 74 cells and 5 images; Aim2-Sting, 47 cells and 5 images. Controls for knockdowns are shown in Fig. S9A. (B)
PLA for IFI205myc-STING interactions in NR9456-IFI205myc cells with knockdown of the genes indicated. Quantification: siCont,
102 cells and 5 images; siTrex1, 190 cells and 7 images; siTrex1�siAim2, 108 cells and 5 images. A representative image is
shown. This experiment was repeated twice and gave similar results both times. (C) PLA for AIM2-STING interaction in NR9456

(Continued on next page)
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IFI205-STING interaction was increased to an even greater extent when both AIM2 and
TREX1 were depleted, again demonstrating that AIM2 blocks the interaction of IFI205
with STING (Fig. 7B). The interaction between AIM2 and STING was not changed,
regardless of the presence or absence of TREX1 or IFI205 (Fig. 7C; see Fig. S9A). The
conflicting results of the co-IP and PLA studies might be due to the different amounts
of IFI205 used in the two experiments; Ifi205 is expressed at much lower levels than
Aim2 in NR9456 cells (Fig. S1B), while the expression level was comparable to that of
AIM2 in the co-IP experiments done by transient transfection into 293T cells (Fig. 6B).
The higher levels of IFI205 in the co-IP experiments may have allowed it to compete
more effectively with AIM2 for binding to STING. Since Ifi205 in these cells is under the
control of the cytomegalovirus promoter, knockdown of Trex1 did not result in type I
IFN-mediated increases in Ifi205 transcripts (Fig. S9B).

Taken together, these results indicated that AIM2 blocked the interaction between
IFI205 and STING IFI205 and that AIM2 and STING interacted with each other to
modulate the type I IFN signals in macrophages.

IFI205 and cGAS bind retroelement DNA. We next used DNA pulldown assays to
determine if IFI205, cGAS, or AIM2 bound directly to cytosolic retroelement DNA. We
expressed the tagged proteins in NIH 3T3 cells and carried out immunoprecipitations,
followed by elution of the DNA bound to the proteins and quantitative PCR (qPCR) with
primers for the different retroelements. cGAS bound to all of the endogenous retro-
transposon DNAs examined (Fig. 8A) (39). IFI205 bound to the DNAs as well, although
the amounts were slightly smaller than those seen with cGAS (Fig. 8A). Notably, AIM2,
which is known to bind and sense pathogen DNA (31, 47), bound to the retrotrans-
poson DNA but at levels much lower than those seen with IFI205 and cGAS. Because
the expression levels of the three proteins in NIH 3T3 cells were similar (Fig. 8A), AIM2
binding affinity for endogenous DNA may be lower than that of cGAS or IFI205. These
results suggest that IFI205 and cGAS are cytosolic DNA sensors that bind to intrinsic
cytosolic DNA and STING to activate the type I IFN signal.

IFI205 sensing of cytosolic self DNA does not depend on cGAMP. We next tested
whether IFI205 functions in the same pathway as cGAS or independently. We treated
NR9456 cells with either 200 ng/ml or 4 �g/ml cGAMP, the STING-binding ligand
generated when cGAS binds DNA, in conjunction with TREX1, AIM2, and IFI205, cGAS,
or STING depletion (Fig. 8B). cGAMP treatment at both concentrations induced the
IFN-� response via STING (Fig. 8B). As expected, cGAS knockdown did not significantly
affect the cGAMP-mediated increase in IFN-� levels. In contrast, Ifi205 knockdown
reduced IFN-� induction in the presence of both levels of exogenous cGAMP to levels
similar to those seen with Sting knockdown (Fig. 8B). This indicates that IFI205 binding
to cytosolic endogenous DNA induces a type I IFN response independent of cGAMP
production.

DISCUSSION

Autoimmune diseases like AGS are clearly linked to nucleic acid metabolism since
mutations in TREX1, RNASEH2A-2C, SAMHD1, ADAR1, or IFIH1 predispose individuals to
disease (12, 48–51). Cytoplasmic DNA derived from retroelements are likely responsible,
at least in mice, for generation of the ligands that activate nucleic acid sensor-driven
pathways. TREX1, which degrades cytosolic DNA, inhibits retrotransposition in vitro, and
Trex1 knockout mice develop autoimmune myocarditis that is ameliorated by reverse
transcriptase inhibitors (3, 52). Here we show that cytosolic retrotransposon DNAs were
increased by TREX1 depletion and that Aim2, Ifi205, and cGAS participated in both
positive and negative regulation of the IFN/cytokine response to these DNAs.

FIG 7 Legend (Continued)
cells after knockdown of the genes indicated. Quantification: siCont, 84 cells and 4 images; siTrex1, 33 cells and 4 images;
siTrex1�si205, 58 cells and 4 images. PLA dots were quantified and normalized to cell numbers based on DAPI staining with
ImageJ software. The values shown are the mean � the standard error of the mean of different pictures. **, P � 0.005; ***, P �
0.0005. (two-tailed t test). siCont, control siRNA.
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Our findings suggest that AIM2 suppresses a signaling pathway that involves the
binding of IFI205 and cGAS to cytoplasmic endogenous DNA. IFI205 was previously
identified as a candidate cytosolic dsDNA sensor by proteomic screening for ISGs (53).
IFI205 is also an inducer of adipogenic differentiation and localizes in the nuclei of
osteosarcoma and adipose-tissue-derived stem cells, where it interacts with several
transcription factors (54, 55). We showed, however, that IFI205 is localized in the
cytoplasm in fibroblasts and in macrophages, the latter of which is a cell type that is
probably important for the sensing of both endogenous and exogenous cytosolic DNA.
This difference in localization between our studies and those of others may be due to
cell type differences, different molecular tags (HA versus myc), or transient versus stable
transfection. Moreover, the anti-IFI205 peptide antibodies used in one study would also
recognize MNDA and MNDAL (54). Our finding of Ifi205’s cytosolic location in macro-
phages is consistent with its role in the sensing of endogenous reverse transcripts.

Several recent studies have also suggested that AIM2 antagonizes the type I IFN
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FIG 8 IFI205 binds to the cytoplasmic DNAs of endogenous retrotransposons and induces a cGAMP-independent IFN
response (A) DNA pulldown assay for IFI205, AIM2, and cGAS. NIH 3T3 cells were transiently transfected with expression
plasmids for IFI205myc, AIM2HA, or cGASV5 and harvested 48 h after transfection. The cytoplasmic fractions were
subjected to a DNA pulldown assay with the antibodies indicated. Normal IgG was used as a negative control. Bound DNA
copy numbers were measured by qPCR and normalized to input DNA values. The assays were repeated three times for each
protein, and qPCR was performed in triplicate for each experiment. Protein expression was confirmed by Western blotting
with the same lysates and antibodies used for the DNA pulldown. (B) NR9456 cells were transfected with the siRNAs
indicated and cGAMP at the concentrations shown. IFN-� expression levels were measured by RT-qPCR and normalized to
Gapdh. The values shown are the mean � the standard error of the mean of three experiments. *, P � 0.05; **, P � 0.005;
***, P � 0.0005; NS, not significant (two-tailed t test). siCont, control siRNA.
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response in macrophages (27, 56, 57). However, the mechanism by which AIM2
antagonizes this signaling was not elucidated. We show that AIM2 bound to both IFI205
and STING, thereby blocking the IFI205-STING interaction. This, in turn, attenuated the
induction of type I IFN by the IFI205-STING pathway. ALRs have a pyrin-PAAD-DAPIN
(PYD) domain and at least one hematopoietic IFN-inducible nuclear antigen with a
200-amino-acid repeat (HIN) domain (23, 24, 31, 32). Previous work has shown that the
ALR HIN domains bind DNA, while the PYD domains are important for protein-protein
interactions (25, 31, 32). Future work will determine if the PYD AIM2 and IFI205 domains
allow them to interact with each other and with STING.

Our studies, as well as others, suggest that the pathway initiated by DNA sensing by
ALRs is distinct from cGAS, although both converge on STING and are suppressed by
AIM2 (39, 58). cGAS is a critical versatile sensor that is able to sense dsDNAs derived
from a broad range of pathogens, including endogenous retrotransposons (17, 39). In
contrast, proteins belonging to the ALR family seem to have more specific targets. For
example, our lab previously demonstrated that IFI203, but no other PYHIN proteins
encoded by the murine ALR locus, sensed exogenous MLV reverse-transcribed DNA
(39). Moreover, several labs have demonstrated that IFI16 is a nuclear sensor for herpes
simplex virus 1 (an alphaherpesvirus), but not for human cytomegalovirus (a betaher-
pesvirus), in human macrophages (27, 36). Here we showed that IFI205 and perhaps
MNDAL, but not the other murine ALRs, are responsible for the sensing of endogenous
retroelement DNA. It is not clear why multiple sensors that act through the same
downstream STING effector molecule (e.g., cGAS and ALRs) are required to sense
cytosolic DNAs. This differential sensing of seemingly similar DNAs by various ALRs
could be due to the recognition of specific sequences or PAMP structures or to
differential subcellular localization of the nucleic acids generated by exogenous virus
infection versus endogenous reverse transcripts. It may also be that there are tissue-
specific differences in the expression of the different Alr genes that would affect their
role in both pathogen responses and autoimmunity.

A recent study using mice with targeted deletion of Trex1 and the entire Alr locus,
including Aim2, showed that the type I IFN response to self and foreign DNA was
independent of ALRs but completely dependent on cGAS, particularly in BMDMs and
embryonic fibroblasts (27). This report also showed that deletion of cGas, but not the
Alr locus, rescues Trex1 knockout mice from autoimmune cardiopathy. It is possible that
the physiology of Trex1 knockout mice, which produce large amounts of cGAMP, alters
the balance between sensors that respond to endogenous DNA (21). It may also be that
cGAS-mediated induction of cytokines leading to autoimmunity is dominant in the cells
that trigger cardiomyopathy; indeed, it has recently been suggested that Trex1 knock-
out in dendritic cells alone is sufficient to induce disease in mice (10). Moreover, while
loss of only one allele of cGAS was sufficient to ameliorate autoimmunity/cardiomy-
opathy in Trex1 knockout mice, knockout of both cGAS alleles was needed to prevent
polyarthritis in DNase III knockout mice (21).

Although we found that cytoplasmic and not nuclear DNA activated the AIM2/IFI205
sensing pathway, a previous study showed that the integrase inhibitor raltegravir
exacerbated the autoimmune phenotype in two different autoimmune models: (NZB �

NZW)F1 mice, which are predisposed to glomerulonephritis, and NZB mice, which are
predisposed to autoimmune hemolytic anemia (42). Previous studies have also mapped
lupus erythematosus susceptibility genes to the ALR locus (59). We showed here that
there are large differences in the complement of ALR genes found in BL6 and 129 mice.
We have begun to examine the ALR locus in different inbred mouse strains and found
high variability among several Alr genes in different strains (unpublished data). As we
show here for Aim2 knockout mice, it will be important to characterize the locus in
different mouse strains when determining genetic susceptibility to pathogen infection,
inflammation, and autoimmunity. For example, there may be Alr genes in the NZB or
NZW genetic background that encode variant sensors found in the nucleus that
predispose them to exaggerated responses to increased nuclear retroelement DNA
induced by raltegravir. Future work to precisely define the complement of ALR genes
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in different mouse strains will aid in understanding the complex genetics of autoim-
munity. However, gene-specific knockout in this region will be difficult to achieve
because of the high level of identity in the coding and noncoding regions; this is
especially true for Ifi203, Ifi205, and Mndal (Fig. 5A and B).

Given the diversity of ALRs among species or strains, ALRs might have evolved
under positive selection by different selective pressures, such as retrotransposons,
exogenous viruses, and bacteria, and each Alr gene could have different targets or
function in different cell types, for example, cells other than macrophages. It is will be
important to dissect the roles of individual ALRs to determine how they function in the
innate immune network system.

MATERIALS AND METHODS
Mice. C57BL/6N (Charles River, Inc.), 129P2/OlaHsd (Harlan), and B6.129P2-Aim2Gt(CSG445)Byg/J knock-

out (Jackson Laboratory) mice were housed in the animal facilities at the University of Pennsylvania or
the University of Illinois at Chicago. All procedures were carried out in accordance with the guidelines
approved by the Institutional Animal Care and Use Committee of the University of Pennsylvania and the
Animal Care Committee of the University of Illinois.

Isolation of BMDMs. Macrophage progenitors were isolated from the femurs of mice and cultured
in medium containing 10 ng/ml macrophage colony-stimulating factor (M-CSF) for 6 days to allow them
to differentiate into macrophages (60).

Cells. HEK293T and NIH 3T3 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal calf serum, 100 IU/ml penicillin, and 100 �g/ml streptomycin. BMDMs and
NR9456 cells, a C57BL/6 mouse macrophage cell line, were cultured in the same DMEM supplemented
with 0.1% sodium pyruvate. BMDMs were maintained with 10 ng/ml M-CSF. All cells were maintained at
37°C in a humidified atmosphere of 5% CO2 in air. The cell lines have not been tested for mycoplasma
contamination within the past year.

siRNA-mediated knockdown. The siRNAs used in knockdown experiments are listed in Table S1.
NR9456 cells and BMDMs were cultured in 96-well plates for 1 day prior to transfection. NR9456 cells
were transfected with either siRNA for Trex1 (siTrex1) or control siRNA (siCont) on day 1 with Lipo-
fectamine RNAiMAX (Invitrogen) and then subjected to secondary transfection with siTrex1 and gene-
specific siRNAs on day 2. Cells were harvested on day 4 for RNA isolation. BMDMs were transfected with
siTrex1 and gene-specific siRNAs on day 1, transfected with the same siRNAs again on day 3, and
harvested on day 5. Total RNA was isolated with the RNeasy kit (Qiagen), and cDNA synthesis was
performed with SuperScriptIII and random hexamers (Invitrogen). qPCR was performed with Power SYBR
green PCR master mix (Applied Biosystems). The primer sets used are described in Table S1.

PCR array. NR9456 cells were transfected with Trex1, Aim2, or Trex1 and Aim2 siRNAs. cDNAs from
the transfected cells were analyzed by RT2 Profiler PCR Mouse antiviral Response Array (Qiagen) in
384-well plates. The data were analyzed by RT2 Profiler PCR Array Data Analysis version 3.5 (Qiagen).

ELISAs. Supernatants from cells were harvested, and IP-10 was measured with the mouse IP-10
SimpleStep enzyme-linked immunosorbent assay (ELISA) kit (Abcam, Inc.).

RNA-Seq. BMDMs were isolated from the femurs of 2-month-old C57BL/6N and 129P2/Ola mice and
cultured as described above. After 6 days, they were induced with 2,000 U of IFN-� (PBL Assay Science)
for 8 h. RNA was isolated with Trizol (Invitrogen), followed by RNA cleanup with RNeasy kits (Qiagen).
RNA-Seq libraries where prepared from approximately 320 ng of total RNA (RNA integrity number
between 9 and 10 by Agilent BioAnalyzer) with the Illumina Stranded mRNA library prep kit. The resulting
RNA-Seq libraries where sequenced on an Illumina NextSeq 500 in 125-bp paired-end mode (RTA version
2.4.6), generating 30,000 million base-pair reads clean data per sample. FASTQ files where generated with
bcl2fastq version v2.15.0.4 and then mapped to the GRCm38 reference sequence with STAR aligner v
2.4.1c (61). For mouse strain 129P2/Ola, all reads mapped to the ALR locus (173.42 to 174.04 million
base-pairs the reference sequence) were further extracted with SAMtools v 1.3 and their corresponding
read pair mates (either mapped or unmapped). This collection of reads was further mapped with STAR
aligner to the reassembled ALR contig of strain 129P2. The expression level of each gene was evaluated
by the average read coverage on each exon.

Reassembly of the ALR locus of 129P2/OlaHsd. For the conserved region, 129P2/OlaHsd whole-
genome Illumina reads mapped to the reference genome were extracted from released BAM files of the
Sanger Mouse Genomes Project (62) (ftp://ftp-mouse.sanger.ac.uk/REL-1210-BAM/129P2_OlaHsd.bam)
with SAMtools v 1.3 and then remapped to the corresponding region of the 129S1/SvlmJ de novo assembly
(ftp://ftp-mouse.sanger.ac.uk/REL-1509-Assembly/129S1_SvImJ.chromosomes.unplaced.gt2k.fa.gz) with Ge-
neious R7. Gaps were manually filled by the Illumina short-read and 3-, 6-, and 10-kb long-insertion
library. The polymorphic region of the ALR locus was reconstructed with a BAC shotgun sequence from
mouse strain 129X1/SvJ (63) (GenBank accession numbers NT_187017 and NT_039195), and verified by
whole-genome Illumina reads from 129P2/OlaHsd. The two 129 substrains were confirmed to have the
same haplotype at the ALR locus. Judging by the long-insertion Illumina library data, a 26.4-kb gap
between NT_187017 and NT_039195 was filled by whole-genome Illumina reads. Details of the reas-
sembly are shown in Fig. 6B; the mapped BAM files are available on request. The reassembled contig was
then annotated by AUGUSTUS (64). Dot plot figures were generated with software LBDOT (68).

Genotyping. Tail DNA or splenic RNA was analyzed by PCR with primers specific for PyhinA, Pydc3,
Ifi202, and Apobec3, as well as SSLP primers D1MIT113, D1MIT205, and D1MIT150 (65). The sequences of
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the primers used are in Table S1. The primers used for Apobec3 were previously described (66). DNA from
C57BL/6N, 129P2/OlaHsd, and B6.129P2-Aim2Gt(CSG445)Byg/J mice was also analyzed by MUGA (Neogen)
(https://www.med.unc.edu/mmrrc/genotypes). Data from the full MUGA panel analysis of the AIM2
knockout mice are available upon request.

Cell fractionation and intracellular localization. NR9456 cells stably expressing myc-tagged Ifi205
(Ifi205myc) and NIH 3T3 cells stably expressing either Ifi205myc or HA-tagged Aim2 (Aim2HA) were
established by transduction with retroviral vectors. Cells were fractionated by the modified rapid,
efficient, and practical (REAP) method as previously described (67). The purity of fractions was deter-
mined by Western blotting with antibodies to �-tubulin (cytoplasmic fraction) and lamin B1 (nuclear
fraction).

Measurement of retrotransposon DNA. Total and cytosolic DNA isolated from the cytoplasmic
fraction by the REAP method was purified with DNeasy kits (Qiagen). Retrotransposon copy numbers
were measured by qPCR and normalized to the mitochondrial gene for mtCytb. Mitochondrial DNA levels
did not change upon knockdown of the different genes (Fig. S4). The sequences of the primers used are
provided in Table S1.

Raltegravir treatment. NR9456 cells were treated with raltegravir, a reverse transcriptase inhibitor,
at 0, 0.5, or 5 �g/ml. Cells were transfected with the siRNAs indicated 2 days after the initiation of
raltegravir treatment. Raltegravir was kept in the medium throughout siRNA transfection.

DNA pulldown assay. NIH 3T3 cells were transfected with the expression plasmids indicated by
using Lipofectamine 3000 (Invitrogen). The cells were fixed with 0.75% formaldehyde--phosphate-
buffered saline (PBS) at 48 h posttransfection, and fixation was quenched with 125 mM glycine. Cells
were washed with PBS and lysed with 0.1% NP-40--PBS. The cytoplasmic fraction was isolated by the
REAP method and subjected to immunoprecipitation with the antibody-conjugated agarose beads
indicated. Five percent of each lysate was aliquoted as the input. DNA was isolated from the beads by
phenol-chloroform-isoamyl alcohol (25:24:1) extraction and isopropanol precipitation. Immunoprecipi-
tated DNAs were measured by qPCR, and the values were normalized to the input DNA values.

Co-IP assay. HEK293T cells were transfected with the expression plasmids indicated and harvested
with radioimmunoprecipitation assay buffer (50 mM Tris [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1% Triton
X-100, 1% deoxycholate, 0.1% SDS) at 48 h posttransfection. Lysates were immunoprecipitated with the
antibody-conjugated agarose beads indicated at 4°C overnight. Immunoprecipitated proteins were
eluted with 2� Laemmli sample loading buffer and analyzed by Western blotting. Ten percent of each
lysates was analyzed as the input.

Western blotting. Samples were subjected to 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and then transferred onto polyvinylidene difluoride membrane. The membrane was
blocked with 5% skim milk or bovine serum albumin and reacted with primary antibodies (anti-myc tag
[9B11 and 71D10], anti-HA [6E2 and C29F4], anti-AIM2 [catalog number 13095], anti-STING [D2P2F],
anti-lamin B1 [D4Q4Z], anti-GAPDH [14C10; Cell Signaling Technology, Inc.], anti-�-tubulin, anti-TREX1
[SAB1410179; Sigma], and anti-V5 tag [Thermo Fisher Scientific] antibodies) and horseradish peroxidase-
conjugated secondary antibodies (Cell Signaling Technology, Inc.). ECL Western blotting detection
reagents (GE Healthcare Life Science) were used to detect the signals.

PLA. NR9456 cells cultured in eight-well chamber slides (Millipore) were fixed with 4% paraformal-
dehyde–PBS and permeabilized with 0.5% Triton X-100 –PBS. Blocking and staining were performed with
Duolink in situ PLA probes and detection reagents (Sigma). Fluorescence was analyzed with a BZ-X710-
All-in-One fluorescence microscope (Keyence). Pictures were taken by using the Z-stacking function of
the microscope and combined with a BZ-X analyzer. PLA dots were counted by ImageJ, and the values
were normalized to the number of cells in the pictures. Thirty-three to 190 cells from 4 to 11 different
pictures were analyzed for each condition. The primary antibodies used were anti-myc tag (Active Motif,
Inc., 4E12), anti-AIM2 (Cell Signaling Technology, Inc., catalog number 13095), and anti-STING (Thermo
Fischer Scientific PA5-23381 or Santa Cruz sc-241049) antibodies.

cGAMP treatment. NR9456 cells were subjected to siRNA knockdown as described above. Cells were
transfected with 250 ng/ml or 4 �g/ml cGAMP (InvivoGen) by using Lipofectamine 2000 (Invitrogen) 4 h
before harvest.

Statistics. Each experiment was done with three technical replicates per experiment, except where
indicated otherwise in the figure legends. The data shown are the average of at least three independent
experiments, as indicated in the figure legends. Statistical analysis was performed with GraphPad Prism
software. Student’s t test was used for all comparisons.

Accession number(s). The data obtained in this study are publicly available in the NCBI database
under accession number KY113153.
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