論文

査読有り 国際誌
2019年

Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori.

PloS one
  • Sumihiro Matsumoto
  • ,
  • Natsumaro Kutsuna
  • ,
  • Ivana Daubnerová
  • ,
  • Ladislav Roller
  • ,
  • Dušan Žitňan
  • ,
  • Hiromichi Nagasawa
  • ,
  • Shinji Nagata

14
7
開始ページ
e0219050
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1371/journal.pone.0219050

Our previous study demonstrated that predominant feeding inhibitory effects were found in the crude extracts of foregut and midgut of the silkworm Bombyx mori larvae. To address the entero-intestinal control crucial for the regulation of insect feeding behavior, the present study identified and functionally characterized feeding inhibitory peptides from the midgut of B. mori larvae. Purification and structural analyses revealed that the predominant inhibitory factors in the crude extracts were allatotropin (AT) and GSRYamide after its C-terminal sequence. In situ hybridization revealed that AT and GSRYamide were expressed in enteroendocrine cells in the posterior and anterior midgut, respectively. Receptor screening using Ca2+-imaging technique showed that the B. mori neuropeptide G protein-coupled receptor (BNGR)-A19 and -A22 acted as GSRYamide receptors and BNGR-A5 acted as an additional AT receptor. Expression analyses of these receptors and the results of the peristaltic motion assay indicated that these peptides participated in the regulation of intestinal contraction. Exposure of pharynx and ileum to AT and GSRYamide inhibited spontaneous contraction in ad libitum-fed larvae, while exposure of pharynx to GSRYamide did not inhibit contraction in non-fed larvae, indicating that the feeding state changed their sensitivity to inhibitory peptides. These different responses corresponded to different expression levels of their receptors in the pharynx. In addition, injection of AT and GSRYamide decreased esophageal contraction frequencies in the melamine-treated transparent larvae. These findings strongly suggest that these peptides exert feeding inhibitory effects by modulating intestinal contraction in response to their feeding state transition, eventually causing feeding termination.

リンク情報
DOI
https://doi.org/10.1371/journal.pone.0219050
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/31260470
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602202

エクスポート
BibTeX RIS