論文

査読有り 筆頭著者
2019年3月

Characterization of function and genetic feature of UDP-glucuronosyltransferase in avian species

Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
  • Yusuke K. Kawai*
  • ,
  • So Shinya*
  • ,
  • Yoshinori Ikenaka
  • ,
  • Aksorn Saengtienchai
  • ,
  • Takamitsu Kondo
  • ,
  • Wageh Sobhy Darwish
  • ,
  • Shota M.M. Nakayama
  • ,
  • Hazuki Mizukawa
  • ,
  • Mayumi Ishizuka

217
開始ページ
5
終了ページ
14
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.cbpc.2018.11.001
出版者・発行元
Elsevier BV

Birds are exposed to many xenobiotics during their lifetime. For accurate prediction of xenobiotic-induced toxic effects on avian species, it is necessary to understand metabolic capacities in a comprehensive range of bird species. However, there is a lack of information about avian xenobiotic metabolizing enzymes (XMEs), particularly in wild birds. Uridine diphosphate glucuronosyltransferase (UGT) is an XME that plays an important role in phase II metabolism in the livers of mammals and birds. This study was performed to determine the characteristics of UGT1E isoform in avian species, those are related to mammals UGT 1A. To understand the characteristics of avian UGT1E isoforms, in vitro metabolic activity and genetic characteristics were investigated. Furthermore, mRNA expression levels of all chicken UGT1E isoforms were measured. On in vitro enzymatic analysis, the white-tailed eagle, great horned owl, and Humboldt penguin showed lower UGT-dependent activity than domestic birds. In synteny analysis, carnivorous birds were shown to have fewer UGT1E isoforms than herbivorous and omnivorous birds, which may explain why they have lower in vitro UGT activity. These observations suggested that raptors and seabirds, in which UGT activity is low, may be at high risk if exposed to elevated levels of xenobiotics in the environment. Phylogenetic analysis suggested that avian UGT1Es have evolved independently from mammalian UGT1As. We identified the important UGT isoforms, such as UGT1E13, and suspected their substrate specificities in avian xenobiotic metabolism by phylogenetic and quantitative real-time PCR analysis. This is the first report regarding the genetic characteristics and interspecies differences of UGT1Es in avian species.

リンク情報
DOI
https://doi.org/10.1016/j.cbpc.2018.11.001
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/30476594
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057242562&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85057242562&origin=inward
ID情報
  • DOI : 10.1016/j.cbpc.2018.11.001
  • ISSN : 1532-0456
  • eISSN : 1878-1659
  • PubMed ID : 30476594
  • SCOPUS ID : 85057242562

エクスポート
BibTeX RIS