Inverse scattering problems in quantum graphs & periphery of Hadamard conjecture

Ondrej Turek & Taksu Cheon
Introduction

- Interests in **quantum graph** as
 -- solvable playground for **quantum exotica**
 -- model of single-electron **sub-nano** device

- Importance of inverse scattering problem
 -- physical realization of **unitary matrices**
 -- design single electron **device on demand**

- Examine inverse scattering in simplest
 quantum graph ---> **scale-invariant vertex**
Connections in quantum vertex

- boundary vectors
 \[\Psi = \begin{pmatrix} \psi_1(0+) \\ \vdots \\ \psi_n(0+) \end{pmatrix}, \quad \Psi' = \begin{pmatrix} \psi'_1(0+) \\ \vdots \\ \psi'_n(0+) \end{pmatrix} \]

- (self-adjoint extension) flux conservation
 \[A \Psi + B \Psi' = 0 \]

\[A = I - U, \quad U : U(n) \]
\[B = iL_0 (I + U) \]

\[A = I - U, \quad U : U(n) \]
\[B = iL_0 (I + U) \]

\[(Fulop&Tsutsui '00) \]

\[\text{rank}(A, B) = n \]
\[AB^\dagger = BA^\dagger \]

\[(Kostrykin&Schrader '99) \]
Scattering in quantum graphs

- scattering for incoming wave at j-th line

\[\psi_i^{(j)}(x_i) = e^{-ikx_i} + S_{jj}e^{ikx_i} \quad (i = j) \]
\[= S_{ij}e^{ikx_i} \quad (i \neq j) \]

- \(S(k) = \{S_{ij}(k)\} \): scattering matrix

\[A\psi + B\psi' = 0 \]

\[\implies A\left(S(k) + I\right) + ikB\left(S(k) - I\right) = 0 \]

- \(S(k) = -\frac{1}{A + ikB}(A - ikB) \)
Fulop-Tsutsui vertex

- scale invariant connection condition \(T: m \times (n-m) \)

\[
\begin{pmatrix}
 I^{(m)} & T \\
 0 & 0
\end{pmatrix}
\begin{pmatrix}
 \Psi'
\end{pmatrix}
=
\begin{pmatrix}
 0 & 0 \\
 -T^\dagger & I^{(n-m)}
\end{pmatrix}
\begin{pmatrix}
 \Psi
\end{pmatrix}
\]

- eg. free connection: \(m=1, \ T=(1 \ldots 1) \)

\[
\psi_1 = \psi_2 = \ldots = \psi_n
\]

\[
\psi_1' + \psi_2' + \ldots + \psi_n' = 0
\]

- in general, constant transmission with fixed branching ratio & w.f. mismatch \(<---- both controlled by \(T \)\)
Inverse scattering for FT vertex

- **Hermitian unitary matrix:** \(\text{rank}(S + I^{(n)}) = m \)

\[
S + I^{(n)} = \begin{pmatrix} I^{(m)} \\ T^\dagger \end{pmatrix} M \begin{pmatrix} I^{(m)} \\ T \end{pmatrix} \quad (S + I^{(n)})^2 = 2(S + I^{(n)}) \\
M = 2(I^{(m)} + TT^\dagger)^{-1}
\]

--> solution of inverse scattering of FT vertex

\[
S = -I^{(n)} + 2 \begin{pmatrix} I^{(m)} \\ T^\dagger \end{pmatrix} \left(I^{(m)} + TT^\dagger \right)^{-1} \begin{pmatrix} I^{(m)} \\ T \end{pmatrix}
\]

- eqv. to a diagonalization

\[
Z_m = \begin{pmatrix} I^{(m)} & 0 \\ 0 & -I^{(n-m)} \end{pmatrix}
\]

\[
S = X_m^{-1} Z_m X_m
\]

\[
X_m = \begin{pmatrix} I^{(m)} & T \\ T^\dagger & -I^{(n-m)} \end{pmatrix}
\]
Alternative procedure to get T

- divide S into m & $(n-m)$ sub-matrices $S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}$

$$S_{11} = -I^{(m)} + 2 \left(I^{(m)} + TT^\dagger \right)^{-1}$$

$$S_{12} = S_{21}^\dagger = 2 \left(I^{(m)} + TT^\dagger \right)^{-1} T$$

$$S_{22} = I^{(n-m)} - 2 \left(I^{(n-m)} + T^\dagger T \right)^{-1}$$

- inverse scattering $S \rightarrow T$ obtained as

$$T = \left(I^{(m)} + S_{11} \right)^{-1} S_{12} = S_{21}^\dagger \left(I^{(n-m)} - S_{22} \right)^{-1}$$

unique apart from re-indexing
Finite approximations

- free & delta: easy-to-realize
- realize FT conditions with jumps
 -- remove the node
 -- calculate
 \[Q = \begin{pmatrix} T \\ \text{I}^{(n-m)} \end{pmatrix} \begin{pmatrix} -T^\dagger \\ \text{I}^{(m)} \end{pmatrix} = \begin{pmatrix} -TT^\dagger & T \\ -T^\dagger & \text{I}^{(m)} \end{pmatrix} \]
 \[r_{ij} e^{i\chi_{ij}} = Q_{ij} \]
 \[V = \frac{1}{d} (2I^{(n)} - F^{(n)}) R \]
 \[R = \{ r_{ij} \} = \{ |Q_{ij}| \} \]
 -- connect edges \((ij)\) with internal line with \(d/r_{ij}\)
 -- apply magnetic \(A\) on \((ij)\) to give phase shift \(e^{i\chi_{ij}}\)
 -- place delta with strength \(V_j\)
Hermitian unitary matrices

- infos compressible to $m \times (n-m)$ complex matrix T

$$S = 2 \left(\frac{1}{T^\dagger \frac{1}{I^{(m)} + TT^\dagger}} \frac{1}{I^{(m)} + TT^\dagger} T \right) - I^{(n)}$$

- eigenvalue $+1/-1$

- $S = X_m^{-1} Z_m X_m$

- Important quantities

- $m = \text{rank}(S + I^{(n)})$

- $\text{Tr}S = \text{Tr}(X_m^{-1} Z_m X_m) = \text{Tr}Z_m = 2m-n$

- examples ----->
Free & free-like connection

- free (m=1) and free’ (m=n-1) are dual
- a free-like connection condition with m=n/2 exists

\[
S(k) = \begin{pmatrix}
1 - \frac{2}{n} & \cdots & -\frac{2}{n} & \frac{2}{n} & \cdots & \frac{2}{n} \\
\vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
-\frac{2}{n} & \frac{2}{n} & 1 - \frac{2}{n} & \cdots & \frac{2}{n} & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\frac{2}{n} & \cdots & \frac{2}{n} & \cdots & -1 + \frac{2}{n} & \cdots \\
\frac{2}{n} & \cdots & \frac{2}{n} & \cdots & \cdots & -1 + \frac{2}{n}
\end{pmatrix} \quad \rightarrow \quad T = \frac{2}{n} \begin{pmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{pmatrix}
\]

- an example of “equitransmitting” quantum graph
- diag./nondiag ratio |S_{jj}|/|S_{ij}|=n/2-1
 :maximal attainable value for equitransmitting S
Hadamard Conference

\[S = \frac{1}{\sqrt{5}} \begin{pmatrix}
0 & -1 & -1 & -1 & 1 & 1 \\
-1 & 0 & -1 & 1 & -1 & 1 \\
-1 & -1 & 0 & 1 & 1 & -1 \\
-1 & 1 & 1 & 0 & 1 & 1 \\
1 & -1 & 1 & 1 & 0 & 1 \\
1 & 1 & -1 & 1 & 1 & 0 \\
\end{pmatrix} \]

\[\gamma = (\sqrt{5} - 1)/2 \quad \text{golden mean} \]

\[T = \begin{pmatrix}
1 & 1+\gamma & 1+\gamma \\
1+\gamma & 1 & 1+\gamma \\
1+\gamma & 1+\gamma & 1 \\
\end{pmatrix} \]

Conference, only with \(n = 6, 10, 14, 18, \ldots \)

✧ Reflectionless & Equiscattering \(S \) matrices

Hadamard, only with \(n = 4, 8, 12, 16, \ldots \)

\[T = \frac{1}{\sigma+1} \begin{pmatrix}
\sigma & 1 & 1 & 1 \\
1 & \sigma & 1 & 1 \\
1 & 1 & \sigma & 1 \\
1 & 1 & 1 & \sigma \\
\end{pmatrix} \]

\[\sigma = \sqrt{2} - 1 \quad \text{silver mean} \]

\[S = \frac{1}{\sqrt{8}} \begin{pmatrix}
1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\
-1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 \\
-1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 & 1 & 1 & 1 & -1 \\
\end{pmatrix} \]
Finite graph approx. examples

- free-like
 \[n=6 \]

- conference
 \[n=6 \]

- Hadamard
 \[n=8 \]

\[n=10 \]
Scattering by depth-one graphs

- Finite graph; w.f. on internal line of length d/r

\[
\begin{pmatrix}
\phi'(0)
\\
e^{ix} \phi'(\frac{d}{r})
\end{pmatrix} = -\frac{r}{d} \begin{pmatrix}
F(\frac{d}{r})
\\
G(\frac{d}{r})
\end{pmatrix} - \begin{pmatrix}
G(\frac{d}{r})
\\
-F(\frac{d}{r})
\end{pmatrix}
\]

\[F(x) = x \cot x\]
\[G(x) = x \cosec x\]

\[d\psi'_i = (v_i d + \sum_{l \neq i} r_{il} F_{il}) \psi_i - \sum_{l \neq i} e^{ix_{ij}} r_{il} G_{il} \psi_l,\]

- converge at $d \to 0$ to desired S
Equitransmitting matrix

- Consider **Hermitian unitary** matrix of the form

\[
S = \frac{1}{N} \begin{pmatrix}
 d & e^{i\phi_{12}} & \cdots & e^{i\phi_{1n}} \\
 e^{i\phi_{21}} & d & \cdots & e^{i\phi_{2n}} \\
 \vdots & \vdots & \ddots & \vdots \\
 e^{i\phi_{n-1,1}} & \cdots & -d & e^{i\phi_{n-1,n}} \\
 e^{i\phi_{n1}} & \cdots & e^{i\phi_{nn-1}} & -d
\end{pmatrix}
\]

- \(\rho = \# [+d] \), \(m = \text{rank}(S+I^{(n)}) \)

- \(d = (2m-n)/(2\rho-n) \)

- \(\text{Tr}S = \text{Tr}(X_{m}^{-1}Z_{m}X_{m}) = \text{Tr}Z_{m} \)

- \(\rightarrow \) discrete \(d \) only, if \(\rho \neq m \)

- value of \(d \) not limited by above for \(m = n/2 \) (=\(\rho/2 \))
Existence problem

- what kind of equitransmitting graph exists?
- -> for equitransmitting S of FT vertex

$$S = \frac{1}{N} \begin{pmatrix}
 d & e^{i\phi_{12}} & \cdots & e^{i\phi_{1n}} \\
 e^{i\phi_{21}} & d & \cdots & e^{i\phi_{1n}} \\
 \vdots & \ddots & \ddots & \vdots \\
 e^{i\phi_{n-11}} & \cdots & -d & e^{i\phi_{n-1n}} \\
 e^{i\phi_{n1}} & \cdots & e^{i\phi_{nn-1}} & -d
\end{pmatrix}$$

determine the conditions for

-- existence of S with given d
-- existence of S with real d
-- existence of S with integer d
Some examples

- $n=6$

$$F_6 = \begin{pmatrix}
2 & -1 & -1 & 1 & 1 & 1 \\
-1 & 2 & -1 & 1 & 1 & 1 \\
-1 & -1 & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & -2 & 1 & 1 \\
1 & 1 & 1 & 1 & -2 & 1 \\
1 & 1 & 1 & 1 & 1 & -2
\end{pmatrix}$$

$$H_6 = \begin{pmatrix}
1 & -1 & -1 & i & 1 & 1 \\
-1 & 1 & -1 & 1 & i & 1 \\
-1 & -1 & 1 & 1 & 1 & i \\
-i & 1 & 1 & -1 & 1 & 1 \\
1 & -i & 1 & 1 & -1 & 1 \\
i & 1 & -i & 1 & 1 & -1
\end{pmatrix}$$

$$C_6 = \begin{pmatrix}
0 & -1 & -1 & -1 & 1 & 1 \\
-1 & 0 & -1 & 1 & -1 & 1 \\
-i & -1 & 0 & 1 & 1 & -1 \\
1 & -1 & 1 & 0 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & 0
\end{pmatrix}$$

- $n=8$

$$\begin{pmatrix}
A & B \\
B^\dagger & -A
\end{pmatrix}$$

-

$$\begin{pmatrix}
3 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
-1 & 3 & -1 & -1 & 1 & 1 & 1 & 1 \\
-1 & -1 & 3 & -1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -3 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & -3 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & -3 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & -3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 \\
-1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 \\
-1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 \\
1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & -i & i & -i & i & -i & i & -i \\
i & 0 & i & i & i & i & i & i \\
i & -i & 0 & i & -i & i & i & i \\
i & i & -i & 0 & i & -i & i & i \\
i & -i & i & -i & 0 & i & -i & i \\
i & i & -i & i & -i & 0 & i & -i \\
i & -i & i & -i & i & -i & 0 & i \\
i & i & -i & i & -i & i & -i & 0
\end{pmatrix}$$
More examples

- $n=10$

<table>
<thead>
<tr>
<th>4 -1 -1 -1 -1</th>
<th>1 1 1 1 1</th>
<th>2 -1 -1 -1 -1</th>
<th>-1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 4 -1 -1 -1</td>
<td>1 1 1 1 1</td>
<td>-1 2 -1 -1 -1</td>
<td>-1 1 1 1 1</td>
</tr>
<tr>
<td>-1 -1 4 -1 -1</td>
<td>1 1 1 1 1</td>
<td>-1 -1 2 -1 -1</td>
<td>-1 1 -1 1 1</td>
</tr>
<tr>
<td>-1 -1 -1 4 -1</td>
<td>1 1 1 1 1</td>
<td>-1 -1 -1 2 -1</td>
<td>1 1 1 -1 1</td>
</tr>
<tr>
<td>-1 -1 -1 -1 4</td>
<td>-4 1 1 1 1</td>
<td>-1 -1 -1 -1 2</td>
<td>-1 1 1 1 -1</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>-4 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1 -2 1 1 1</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>1 1 1 -4 1 1</td>
<td>1 1 1 1 1</td>
<td>1 1 2 1 1</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>1 1 1 1 -4 1</td>
<td>1 1 1 1 -2 1</td>
<td>1 1 1 -2 1</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>1 1 1 1 -4 1</td>
<td>1 1 1 1 -1 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 -1 -1 -1 -1</th>
<th>-1 i -i -i i</th>
<th>0 -1 1 1 -1</th>
<th>-1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 1 -1 -1 -1</td>
<td>-i -1 i -i i</td>
<td>-1 0 1 -1 1</td>
<td>-1 1 1 1 1</td>
</tr>
<tr>
<td>-1 -1 1 -1 -1</td>
<td>-i i -i -i i</td>
<td>1 1 0 -1 -1</td>
<td>-1 1 1 1 1</td>
</tr>
<tr>
<td>-1 -1 -1 1 -1</td>
<td>-i i i -i -i</td>
<td>1 1 -1 1 0</td>
<td>1 1 1 -1 1</td>
</tr>
<tr>
<td>-1 -1 -1 -1 1</td>
<td>-i i -i i -i</td>
<td>-1 1 -1 1 0</td>
<td>1 1 1 1 -1</td>
</tr>
<tr>
<td>-1 -1 -1 -1 -1</td>
<td>-i i i -i -i</td>
<td>0 1 -1 -1 -1</td>
<td>-1 1 1 1 1</td>
</tr>
<tr>
<td>-i -1 i -i i</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1 0 -1 1 -1</td>
</tr>
<tr>
<td>-1 i -1 i -i</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 -1</td>
<td>1 1 1 0 -1</td>
</tr>
<tr>
<td>i i -1 i -i</td>
<td>1 1 1 1 1</td>
<td>-1 1 1 0 -1</td>
<td>1 1 1 0 -1</td>
</tr>
<tr>
<td>i -i -i -1 i</td>
<td>1 1 1 1 -1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>-i i -i i -1</td>
<td>1 1 1 1 -1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

17
Some theorems and conjectures

- $n/2-1 \geq d \geq 0$: possible range
 $S = \frac{1}{N} \begin{pmatrix}
 d & \cdots & e^{i\phi_1n} \\
 \vdots & \ddots & \vdots \\
 e^{i\phi_{n-1}} & \cdots & -d
\end{pmatrix}$

- only $m=n/2$ (?) -> $n=$ even?

- $d = n/2-1$: free-like matrix : real S for even n

- real S possible only for $d = n/2-1, n/2-3, ..., 0$ or 1

- $d = 1$: Hadamard matrix
 real S conjectured to exist for evenly even n

- $d = 0$: conference matrix
 real S conjectured to exist for some oddly even n
Constructing equitransmitting S

- Basic idea is extending Paley's 2nd construction:

\[
\mathcal{M} = \begin{pmatrix} A & B \\ B^\dagger & -A \end{pmatrix} \quad A^\dagger = A \quad AB - BA = 0 \quad A^2 + BB^\dagger = aI^{(m)}
\]

then \mathcal{M} is Hermitian and $\mathcal{M}^2 = aI^{(n)}$

- $A = (d+1)I^{(n)} - J^{(n)}$
- $A = dI^{(n)} - C$ \quad C: conference matrix or its core
- $B = e^{i\lambda}I^{(n)} + (J^{(n)} - I^{(n)})$, $A^\dagger = A$, $AB - BA = 0$ guaranteed
- $B = e^{i\phi C}$
Full-house & conference matrix

- full house matrix J with any m
 \[M = \begin{pmatrix}
 (d + 1)I^{(m)} - J^{(m)} & (e^{i\chi} - 1)I^{(m)} + J^{(m)} \\
 (e^{-i\chi} - 1)I^{(m)} + J^{(m)} & -(d + 1)I^{(m)} + J^{(m)}
 \end{pmatrix} \]
 \[M^2 = (d^2 + 2m - 1)I^{(n)} + 2(m - 2 + \cos \chi - d) \begin{pmatrix}
 J^{(m)} - I^{(m)} & 0 \\
 0 & J^{(m)} - I^{(m)}
 \end{pmatrix} \]
 \[\frac{n}{2} - 3 \leq d \leq \frac{n}{2} - 1 \quad (n = \text{even}) \]

- conference matrix C with even m
 \[M = \begin{pmatrix}
 dI^{(m)} + C & -e^{i\chi}I^{(m)} + C \\
 -e^{-i\chi}I^{(m)} + C & -dI^{(m)} - C
 \end{pmatrix} \]
 \[M^2 = (d^2 + 2m - 1)I^{(n)} + 2(d - \cos \chi) \begin{pmatrix}
 C & 0 \\
 0 & C
 \end{pmatrix} \]
 \[0 \leq d \leq 1 \quad (n = 4, 8, 12, 16, 20, \ldots) \]
Hadamard/conference Core

- Core of Hadamard/conference matrix

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & ie^{i\varphi} & -1 & -ie^{i\varphi} \\
1 & -1 & 1 & -1 \\
1 & -ie^{i\varphi} & -1 & ie^{i\varphi}
\end{pmatrix}
\]

Hadamard core \((m=3)\)

\[
H_c^cH_c^{c\dagger} = (m+1)I^{(m)} - J^{(m)}
\]

- Use conference core with any \(m\), \(C_c^cC_c^{c\dagger} = mI^{(m)} - J^{(m)}\)

\[
\mathcal{M} =
\begin{pmatrix}
(d+1)I^{(m)} - J^{(m)} & C_c^c \\
C_c^{c\dagger} & -(d+1)I^{(m)} + J^{(m)}
\end{pmatrix}
\]

\[
\mathcal{M}^2 = (d^2+2m-1)I^{(n)} + 2(m-6-2d)
\begin{pmatrix}
J^{(m)} - I^{(m)} & 0 \\
0 & J^{(m)} - I^{(m)}
\end{pmatrix}
\]

- \(d = \frac{n-6}{4} \) \((n = \text{even})\)
Symmetric conference core (1)

- for \(m = 5, 9, 13, 17, 21, \ldots \)

\(C^c: \) core of conference, \(C^c C^{c \dagger} = mI^{(m)} - J^{(m)} \)

\[B_{i,j} = e^{i\varphi C^c_{i,j}} \quad \rightarrow \quad \text{write as} \quad B = e^{i\varphi C^c} \]

\[M = \begin{pmatrix} (d + 1)I^{(m)} - J^{(m)} & e^{i\varphi C^c} \\ e^{-i\varphi C^c} & -(d + 1)I^{(m)} + J^{(m)} \end{pmatrix} \]

\[M^2 = (d^2 + 2m - 1)I^{(n)} + \frac{3m - 7 + 4\cos \varphi + (m - 1)\cos 2\varphi - 4d}{2} \begin{pmatrix} J^{(m)} - I^{(m)} & 0 \\ 0 & J^{(m)} - I^{(m)} \end{pmatrix} \]

- \[
\frac{n - 6}{4} - \frac{1}{n - 2} \leq d \leq \frac{n}{2} - 1 \quad (n = 10, 18, 26, 34, 42, \ldots)\]
Symmetric conference core (2)

- for \(m = 5, 9, 13, 17, 21, \ldots \)

\[
\mathcal{M} = \begin{pmatrix}
\frac{dI^{(m)} + C_c}{(e^{-i\chi} - 1)I^{(m)} + e^{-i\varphi}C_c} & (e^{i\chi} - 1)I^{(m)} + e^{i\varphi}C_c \\
-dI^{(m)} - C^c & \frac{dI^{(m)} + C^c}{(e^{-i\chi} - 1)I^{(m)} + e^{-i\varphi}C_c}
\end{pmatrix}
\]

\[
\mathcal{M}^2 = (d^2 + 2m - 1)I^{(n)} + (F_+(\varphi, \chi) + d) \begin{pmatrix}
C_c + J^{(m)} - I^{(m)} & 0 \\
0 & C_c + J^{(m)} - I^{(m)}
\end{pmatrix}
\]

\[
+ (F_-(\varphi, \chi) - d) \begin{pmatrix}
-C_c + J^{(m)} - I^{(m)} & 0 \\
0 & -C_c + J^{(m)} - I^{(m)}
\end{pmatrix}
\]

\[
F_\pm(\varphi, \chi) = \frac{m - 5 + 4 \cos(\varphi \mp \chi) + (m - 1) \cos 2\varphi}{4}
\]

- with \(d = \frac{F_+(\varphi, \chi) + F_-(\varphi, \chi)}{2} \), \(F_+(\varphi, \chi) + F_-(\varphi, \chi) = 0 \)

\[
0 \leq d = \leq d^*_s (\approx 0.8) \quad (n = 10, 18, 26, 34, 42, \ldots)
\]
Asymmetric conference core (1)

\[M = \begin{pmatrix}
(d + 1)I^{(m)} - J^{(m)} & (e^{i\chi} - 1)I^{(m)} + e^{i\phi}C^c \\
(e^{-i\chi} - 1)I^{(m)} + e^{i\phi}C^c & -(d + 1)I^{(m)} + J^{(m)}
\end{pmatrix} \]

\[M^2 = (d^2 + 2m - 1)I^{(n)} + \frac{3m - 7 + 4\cos \chi \cos \phi + (m - 1)\cos 2\phi - 4d}{2} \begin{pmatrix}
J^{(m)} - I^{(m)} & 0 \\
0 & J^{(m)} - I^{(m)}
\end{pmatrix}
+ 4i \sin \phi \sin \frac{\phi + \chi}{2} \sin \frac{\phi - \chi}{2} \begin{pmatrix}
C^c & 0 \\
0 & C^c
\end{pmatrix} \]

\[\frac{n - 6}{4} \leq d \leq \frac{n}{2} - 1 \quad (n = 6, 14, 22, 30, 38, \ldots) \]
Asymmetric conference core (2)

- for \(m = 3, 7, 11, 15, 19, \ldots \)

\[
\mathcal{M} = \begin{pmatrix}
 dI^{(m)} - iC^c & (e^{i\chi} - 1)I^{(m)} + e^{i\varphi}C^c \\
 (e^{-i\chi} - 1)I^{(m)} + e^{i\varphi}C^c & -dI^{(m)} + iC^c
\end{pmatrix}
\]

\[
\mathcal{M}^2 = (d^2 + 2m - 1)I^{(m)} + G_+(\varphi, \chi) \begin{pmatrix}
 J^{(m)} - I^{(m)} & 0 \\
 0 & J^{(m)} - I^{(m)}
\end{pmatrix}
\]

\[
+ (G_-(\varphi, \chi) - 2d)i \begin{pmatrix}
 C^c & 0 \\
 0 & C^c
\end{pmatrix}
\]

\[
G_+(\varphi, \chi) = \frac{1}{2} (m - 5 + 4 \cos \varphi \cos \chi + (m - 1) \cos 2\varphi)
\]

\[
G_-(\varphi, \chi) = 2(\cos \chi - \cos \varphi) \sin \varphi
\]

- with \(d = \frac{G_-(\varphi, \chi)}{2}, \quad G_+(\varphi, \chi) = 0. \)

\[
0 \leq d \leq d_0^* \approx 1.2 \quad (n = 6, 14, 22, 30, 38, \ldots)
\]
Trying to fill the gap

for \(m = 3, 7, 11, 15, 19, \ldots \)

\[
\mathcal{M} = \begin{pmatrix}
(d - 1)I^{(m)} - e^{i\xi}C^c & (e^{i\chi} - 1)I^{(m)} + e^{i\varphi}C^c \\
(e^{-i\chi} - 1)I^{(m)} + e^{i\varphi}C^c & -dI^{(m)} + e^{i\xi}C^c
\end{pmatrix}
\]

\[
\mathcal{M}^2 = (d^2 + 2m - 1)I^{(n)} + (G_+(\varphi, \chi, \xi) - 2d \cos \xi) \begin{pmatrix}
J^{(m)} - I^{(m)} \\
0
\end{pmatrix}
\]

\[
+ (G_-(\varphi, \chi, \xi) - 2d \sin \xi)i \begin{pmatrix}
C^c \\
0
\end{pmatrix}
\]

\[
G_+(\varphi, \chi, \xi) = \frac{1}{2} (2m - 6 + 4 \cos \varphi \cos \chi + (m - 1)(\cos 2\xi + \cos 2\varphi))
\]

\[
G_-(\varphi, \chi, \xi) = 2 \sin \varphi \cos \chi - \sin 2\xi - \sin 2\varphi
\]

with

\[
d = \frac{1}{2} (G_+(\varphi, \chi, \xi) \cos \xi + G_-(\varphi, \chi, \xi) \sin \xi)
\]

\[
G_+(\varphi, \chi, \xi) \sin \xi - G_-(\varphi, \chi, \xi) \cos \xi = 0
\]

\[
0 \leq d \leq d_b^* \quad (\approx 1.5) \\
(n = 6, 14, 22, 30, 38, \ldots)
\]
Current state

$\alpha = 1.8 i / 1.8 i$

Diag./Non-diag. Ratio of Equitransmitting Quantum Graph

<table>
<thead>
<tr>
<th>α / π</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free-like $n - \frac{2}{2}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Single ph. $n - \frac{6}{2}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Had/Contrav. $n - \frac{5}{2}$</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Hadamard 1</td>
<td>1</td>
</tr>
<tr>
<td>Inner core *</td>
<td>0</td>
</tr>
<tr>
<td>Conference 0</td>
<td>0</td>
</tr>
</tbody>
</table>

As of Feb 8, 2011
Some observations & questions

- \(n = 8k + 2 \)
 -- real integer \(d \) found at \(n/2 - 1, n/2 - 3, 1 \).
 -- whole range probably covered by complex \(S \)

- \(n = 8k + 6 \)
 -- real integer \(d \) found at \(n/2 - 1, n/2 - 3, n/4 - 3/2, 0 \).
 -- not clear whether whole range covered

- \(n = 4k \) (\(n = 8k, 8k + 4 \))
 -- real integer \(d \) found at \(n/2 - 1, n/2 - 3, 1 \).
 -- gap b/w lower and higher \(d \) regions? or disprove

- \(\rightarrow \) prove gap exists / prove these exhaust reals / etc.
Summary

- Inverse scattering of Fulop-Tsutsui vertex solved as diagonalization of Hermitian unitary matrix
- Physical realization of S given as depth-1 graphs -- realization of Hadamard and conference matrices
- Consideration of equitransmitting quantum graphs offers generalization of Hadamard matrix -- Intriguing pattern emerges that may be useful in dealing Hadamard conjecture-related problems
References

