Papers

Peer-reviewed Lead author
Feb, 2020

Preparation of tough, thermally stable, and water-resistant double-network ion gels consisting of silica nanoparticles/poly(ionic liquid)s through photopolymerisation of an ionic monomer and subsequent solvent removal

SOFT MATTER
  • Takaichi Watanabe
  • ,
  • Ruri Takahashi
  • ,
  • Tsutomu Ono

Volume
16
Number
6
First page
1572
Last page
1581
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1039/c9sm02213a
Publisher
ROYAL SOC CHEMISTRY

We report the preparation of tough, thermally stable, and water-resistant double-network (DN) ion gels, which consist of a partially-clustered silica nanoparticle network and poly(ionic liquid) (PIL) network holding an ionic liquid. Silica nanoparticles/poly([Evim][Tf2N]) DN ion gels are prepared by photo-induced radical polymerisation of [Evim][Tf2N] in a mixture containing silica nanoparticles, [Bmim][Tf2N], ionic liquid based cross-linker [(VIM)(2)C-4][Tf2N](2), and ethyl acetate, followed by subsequent solvent evaporation. Tensile strength measurements show that the mechanical properties of the PIL DN ion gels were higher than those of the PIL single-network (SN) ion gel. A rheological study indicates that an enhancement in mechanical strength of the PIL DN ion gels can be achieved when silica nanoparticles form partial clusters in [Bmim][Tf2N]. The cyclic stress-strain measurement of the PIL DN ion gels shows hysteresis loops, suggesting that the silica nanoparticle clusters rupture and dissipate the loading energy when the PIL DN ion gels undergo a large deformation. The fracture strength and Young's modulus of the PIL DN ion gels increase as the diameter of the silica nanoparticles is decreased. Thermogravimetric analysis measurement shows that the PIL DN ion gel has a high decomposition temperature of approximately 400 degrees C. Moreover, the swelling test shows that the PIL DN ion gel possesses an excellent water-resistant property because of the hydrophobic nature of the PIL backbone. We believe that such tough, thermally stable, and water-resistant PIL DN ion gels can be used as carbon dioxide separation membranes, sensors, and actuators for soft robotics.

Link information
DOI
https://doi.org/10.1039/c9sm02213a
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000514661400009&DestApp=WOS_CPL
ID information
  • DOI : 10.1039/c9sm02213a
  • ISSN : 1744-683X
  • eISSN : 1744-6848
  • Web of Science ID : WOS:000514661400009

Export
BibTeX RIS