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INTRODUCTION

Precision agriculture requires acquisition and man-
agement of data on soil and crop properties.  In particu-
lar, soil properties significantly affect crop selection and 
growth management (Bae et al., 2004).  Among soil prop-
erties, soil texture is a main property not only related to 
other soil properties such as soil electrical conductivity, 
water and nutrient content, but also affecting manage-
ment practices such as tillage, fertilizer and pesticide 
application (Hur, 1993; Lee et al., 2005).  Therefore, 
quantification of soil texture is very important for suc-
cessful field and crop growth management.

Conventionally, soil texture indicates sand, silt, and 
clay fractions within soil based on USDA criteria, and has 
been laboratory–determined using pipette and hydrome-
ter methods, which are labor–, time–, and cost–consum-
ing (Gee and Or, 2002).  Therefore, in–situ rapid meth-
ods are more preferable for precision agriculture than 
these laboratory methods.  Mechanical, optical, and elec-
trical approaches have been reported for in–situ rapid 
determination of soil texture.  Douglas and Olsen (1981) 
suggested using cone penetrometer data for soil classifi-

cation.  Zuo et al. (2000) used a fiber–optic sensor mov-
ing at a speed of 5.08 mm/s and sampling at rates of 10, 
100, and 200 Hz. Starr et al. (2000) applied a dielectric 
method relating soil texture fractions to changes in elec-
trical dipole moments.  These methods measure optical 
reflectance, mechanical resistance, or electrical proper-
ties of soil and then relate them to texture fractions.

It is known that soil survey experts evaluate soil tex-
ture in–situ using visual inspection and the “hand–feel” 
methods based on many years of experience.  They visu-
ally examine color and size of aggregated soil particles, 
and feel roughness by fingers.  Our approach using image 
processing was motivated by this visual inspection and 
“hand–feel” method, taking surface imagery of soil sam-
ples, and calculating size distribution or roughness of soil 
particles.  Image processing has been used in a variety of 
agricultural applications such as estimation of properties 
related to not only soil and crop, but also quality of agri-
cultural products for sorting and grading (e.g., fruits) 
(Lim, 2003; Breul and Gourves, 2006).  Lieberman et al. 
(2000) patented an in situ microscope imaging system 
for examining subsurface environments fabricated in a 
soil penetrating tube, but have not used the system for 
soil classification.

Soils with different sand, silt, and clay fractions may 
have different colors due to interactions with other soil 
properties (e.g., oxidation and reduction), and different 
types and amounts of rock–forming minerals (Breul and 
Gourves, 2006), and these characteristics could be used 
for soil classification variables.  As a part of overall 
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research to develop a soil classification system using 
image processing, the objective of the paper was to 
develop a soil texture classification algorithm using RGB 
characteristics of soil images such as averaged pixel 
value (brightness) and skewness.

 MATERIALS AND METHODS

Soil sampling and texture analysis
To develop a soil texture classification algorithm, 194 

soil samples from 7 selected Korean paddy fields were 
used.  Sampling sites were selected considering dominant 
soil series with different texture fractions of paddy 
fields, with related information given in Table 1.  From 
each site, 6 to 7 soil cores (diameter: 50–mm) were 
obtained using a core sampler up to 30 to 50 cm depths, 
depending on field conditions, and segmented by 50–mm 
intervals (Fig. 1).  For each segmented sample, 4 images 
(2 from each side) were taken.  After image acquisition, 
sand, silt, and clay fractions of the samples were deter-
mined using the sieve–pipette method (Gee and Or, 
2002).  Table 1 summarizes soil series and texture frac-
tions of the samples.

Image acquisition and processing
Our goal was to develop a portable in–situ soil tex-

ture classification system using image processing.  Two 
alternative platforms were considered: a moving platform 
that took soil surface imagery traveling through the soil 
profile by incorporation of the sensor in another sensing 
system (e.g., cone penetrometer), or a stationary platform 
that captured surface imagery of soils obtained by a soil 
sampler (e.g., auger).  Therefore, the image acquisition 
sensor for in–situ soil texture classification system 
needed to be smaller and lighter.  After market survey, a 
magnification–controllable CMOS image sensor (Model: 

USB 2.0 PC camera SN9C201, Sonix Inc., Springfield, 
Virginia, USA) was selected for our study.  Diameter and 
height of the camera were 3 cm and 9 cm, respectively.  
Magnification up to 22.25 was controlled by rotating the 
front lens and the ratio was calculated and confirmed by 
comparing pixel numbers of the reference and sample 
images.  The camera obtained images of size 640 × 480 
pixels, and stored RGB values in 8 bits (256 levels).  Soil 
samples were located in a small box with an illumination 
intensity of about 115 Lux controlled by white LEDs.

Fig. 2 shows examples of soil surface images and cor-
responding histograms of gray level pixel values (i.e., 
brightness).  Images of soil samples with different texture 
fractions contained quite different features (e.g., crev-
ice; circled areas in Fig. 2) and quality (e.g., roughness, 
brightness).  Overall, as sand fractions increased, num-
bers of brighter pixels increased.  For example, an image 
of soil with high sand fraction showed greater pixel val-
ues than an image with high silt and clay fractions (Fig. 
2).  Therefore, we expected that shape of the histograms 
(e.g., central tendency, dispersion, or bias) would be 
related to soil textural fractions.

As variables representing shape of these pixel value 

Table 1.  Specifications of the soil samples

Site Series
Sand (%) Silt (%) Clay (%) No. of 

SampleMean STD Mean STD Mean STD

1 Hwadong 9.4 1.5 58.5 1.7 32.1 1.2 30

2 Gyuam 11.7 2.3 6.8 3.1 20.5 2.2 30

3 Gangseo 38.3 3.6 46.9 3.4 14.9 1.4 28

4 Pyeongtaeg 11.2 2.0 55.0 5.1 33.8 4.6 36

5 Honam 15.9 6.9 48.1 6.4 36.0 4.2 22

6 Yungnam 13.9 5.2 58.2 5.6 27.9 2.7 23

7 Pyeongtaeg 20.0 8.3 39.4 14.9 40.6 11.0 25

Fig. 1.  Photos of soil core sampling (left) and surface image of the 
sample (right).

Fig. 2.   Example images and gray level brightness histogram for 
soils with high silt fraction (top) and sand fraction (bot-
tom).
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histograms, we chose averaged pixel value (brightness), 
difference between median value and brightness (“median 
–brightness”), difference between mode value and bright-
ness (“mode–brightness”), and skewness.  Procedures to 
investigate relationships between laboratory–determined 
soil texture fractions and these histograms parameters 
were: 1) vacant pixels or areas (e.g., crevice) were 
blanked, 2) RGB pixel values were combined to gray 
level pixel values, and histogram variables were calcu-
lated, and 3) each of the histogram variables and texture 
fractions (i.e., sand, silt, and clay %) were linearly 
regressed.  This procedure was implemented using 
MatLAB software (The MathWorks, Inc., Natick, MA, 
USA).  Half of the samples were used for development of 
regression models and the other half were used for vali-
dation of the models to reduce possibility of over–fitting.

RESULTS AND DISCUSSION

Fig. 3 shows example scatter plots between histogram 
variables and soil texture fractions.  Silt content showed 
the clearest linear pattern for all of the histogram varia-
bles, and correlation coefficients were negative for bright-
ness and skewness, and positive for “median–brightness” 
and “mode–brightness”.

Clay content showed somewhat opposite patterns to 
silt content with the histogram variables, but the patterns 
were less clear compared with silt content.  Sand con-
tent did not show any linear patterns with the histogram 
variables.  These relationships led to the conclusion that, 
overall, soils with greater amount of silt content resulted 
in darker soil images and soils with greater amount of 
clay content resulted in brighter soil images.

Table 2 summarizes linear regression between soil 
texture fractions (Y) and gray level histogram variables 

Table 2.   Results of linear regressions between soil texture fractions (Y) and histogram variables of the sample 
images (X) 

Y (%) Y processing* X
Regression results

R2 RMSEC (%) RMSEP (%)

Sand Y Mode – brightness 0.05 10.2 10.4

 Y Mode – brightness 0.06   0.3   0.3

Yout Brightness 0.10 10.1 10.3

Y5% Skewness 0.35 10.3 12.1

Silt Y Mode – brightness 0.20 10.7   9.2

Y Mode – brightness 0.18   0.2   0.1

Yout Brightness 0.30   7.0   7.9

Y5% Mode – brightness 0.96   2.2   6.3

Clay Y Mode – brightness 0.08 10.1   8.4

 Y Mode – brightness 0.07   0.2   0.2

Yout Mode – brightness 0.05   8.9   7.2

Y5% Mode – brightness 0.17 10.8   8.4

*Yout: outlier removed Y, Y5%: 5%-averaged Y
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Table 3.  Comparison of soil classification using the laboratory method with that using image processing method

Site
Laboratory method Image processing method

Classified texture No. of sample Classified texture No. of Sample

1 Silt clay loam 15 Silty clay loam 15

2 Silt loam 15
Silty clay loam

Clay loam
14

1

3 Loam 14
Silty clay loam

Clay loam
13

1

4 Silt clay loam 18 Silty clay loam 18

5 Silt clay loam
Clay loam

9
2

Silty clay loam
Clay loam

5
6

6 Silt clay loam
Silt loam

3
9

Silty clay loam 12

7 Silt clay loam
Silt clay

 Clay loam
Clay
Loam

4
4
2
1
1

Silty clay loam 12
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of the sample images (X).  X variables producing the high-
est coefficients of determination were reported.  Generally 
coefficients of determination of the calibration models 
were quite low (less than 0.20) and RMSEC values were 
greater than 10% for all of the texture fractions.  The best 
model was obtained for silt (R2=0.20; RMSEC=10.7%) 
with “mode–brightness” as the X variable.

In many cases, Y variables had quite large variances 
and the variances were not equal, therefore several trans-
formations of Y were tried to improve regression per-
formance: power, logarithmic, and exponential transfor-
mations.  The most improved regression models were 
obtained when a power of 1/4 was applied to Y.

Some soil images presented problematic areas, for 
example, containing a large portion of cracks and crev-
ices, therefore images of 10 samples were removed as 

outliers.  Removing 10 data points out of 194 in the origi-
nal data set (Yout) improved regression performance in 
many cases.  For example, R2 increased from 0.05 to 0.10 
for sand content and from 0.20 to 0.30 for silt content.

Errors in pixel values of soil surface images and lab-
oratory–determined soil texture fractions might be 
induced by soil sampling, laboratory determination, and 
image acquisition processes.  These errors could be over-
come by increasing the number of measurements or aver-
aging the measurements.  When soil texture measure-
ments were averaged with intervals of 1, 3, 5, and 7% 
fractions, R2 values for silt content changed to 0.27, 0.46, 
0.96, and 0.96.  For 5%–averaged texture fractions, R2 

values obtained using linear models for sand and clay con-
tents were 0.35 and 0.17, respectively.

Using a validation data set, soil classification by USDA 
soil texture classification using the laboratory method 
was compared with that using the image processing 
method.  As summarized in table 3, about 48% of the sam-
ples were classified into the same soil texture, and some 
of the other samples produced similar soil texture classi-
fication.

In this paper, we tried several different ways to clas-
sify soil texture using processing of soil surface images 
taken in field conditions.  Both laboratory determined soil 
texture and soil surface images might be erroneous due 
to soil sampling, laboratory analysis, or image acquisition 
procedures.  Although clear linear relationships between 
the two data sets were not found, some potential of in–
situ soil classification was observed, especially for silt 
content.

Variables from gray level (averaged RGB pixel value) 
histograms were investigated in this paper.  Using all his-
tograms for R, G, and B values might provide better rela-
tionships with soil texture fractions since different opti-
cal bands might be associated with different reflectance 
characteristics caused by different texture fractions in 
the samples.  Different variable transformations and aver-
aging could be applied.  Some other approaches such as 
Fourier transformation to investigate frequency domain 
aspects, and application of artificial intelligence tech-
niques might be also useful.  These issues will be investi-
gated in future research.
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