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Abstract
In this paper, we propose a method of human activity recognition with high throughput from raw accelerometer data applying 
a deep recurrent neural network (DRNN), and investigate various architectures and its combination to find the best param-
eter values. The “high throughput” refers to short time at a time of recognition. We investigated various parameters and 
architectures of the DRNN by using the training dataset of 432 trials with 6 activity classes from 7 people. The maximum 
recognition rate was 95.42% and 83.43% against the test data of 108 segmented trials each of which has single activity class 
and 18 multiple sequential trials, respectively. Here, the maximum recognition rates by traditional methods were 71.65% and 
54.97% for each. In addition, the efficiency of the found parameters was evaluated using additional dataset. Further, as for 
throughput of the recognition per unit time, the constructed DRNN was requiring only 1.347 ms, while the best traditional 
method required 11.031 ms which includes 11.027 ms for feature calculation. These advantages are caused by the compact 
and small architecture of the constructed real time oriented DRNN.

Keywords Human activity recognition · Deep recurrent neural network · Acceleration sensors

1 Introduction

The recognition of human activity is a task that is applicable 
to various domains, such as health care, preventive medi-
cine, and elderly care. In addition, with the rapid spread of 
devices with built-in sensors such as smartphones recently, 
the cost of sensing devices has fallen significantly. As a 
result, researches on mobile activity recognition have been 
actively conducted [3].

In traditional activity recognition schemes, researchers 
have frequently used a machine learning method, such as 
decision tree, k-nearest neighborhood, naive Bayes, support 
vector machine, and random forest, to recognize activities 
from a feature vector extracted from signals in a time win-
dow using statistic values or Fourier transformation.

Recurrent neural networks (RNN) is the name of neu-
ral networks that include a directed closed cycle. The RNN 
is suitable for handling time-series data, such as audio and 
video signals, and natural language. In recent years, the hier-
archical multi-layered convolutional neural network (CNN) 
has achieved noteworthy results in areas such as image pro-
cessing, and is drawing attention to the method called deep 
learning. In this trend, because the RNN also has a deep 
layer for temporal direction, it has come to be captured as a 
deep learning method.

Compared to traditional activity recognition methods 
which are input feature vectors, in deep learning, the origi-
nal data can be directly input. This allows the calculation 
of feature vectors to be skipped at the time of training and 
recognition, so that a speed-up can be expected, especially 
in the recognition. At the same time, we can also expect 
the recognition result to be highly accurate by virtue of the 
deep learning.

In this paper, we propose a method of human activity 
recognition from raw accelerometer data applying a RNN, 
and investigate various architectures and its combination to 
find the best parameter values.

Using a human activity sensing consortium (HASC) 
open dataset, the recognition ability of the constructed 
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RNN was evaluated. We used the training dataset of 432 
segmented trials with 6 activity classes from 7 people, 
and it was confirmed that the maximum recognition rate 
was 95.42% against the test data of 108 segmented trials 
each of which has single activity class. While the recogni-
tion rate of traditional method was 71.65%. Moreover, the 
maximum recognition rate was 83.43% against the test data 
of 18 multiple sequential trials, and while the recognition 
rate of the traditional method was 54.97%. Where “a trial” 
means one sequential data sample such as a segmented data 
or a sequence data. Moreover, a network reconstructed with 
the parameters investigated using HASC dataset using the 
human activity recognition (HAR) open dataset, 95.03% 
recognition rate was achieved.

Further, for the throughput of the recognition per unit 
time, the proposed method was fast requiring only 1.347 
ms, while the existing method required 11.031 ms which 
includes 11.027 ms for feature extraction. Notice that this 
calculation time achieved by only using CPU. The fast 
response advantage is caused by the number of weights less 
than 10% of the traditional method [24].

The contribution of this study includes the following 
three points:

1. To construct a fast response classifier oriented real time 
execution, we adopted a RNN architecture and evaluated 
its advantages compared with traditional methods.

2. To improve the accuracy of the RNN, various parameters 
were explored to investigate the factors that affect the 
accuracy. We used the two types of dataset.

3. The throughput for recognition with the RNN was eval-
uated, and it was shown to be faster than the existing 
method which includes feature calculation.

2  Background and related work

Recently, many studies on the mobile activity recognition 
are carried out [6, 21]. For activity recognition technol-
ogy, techniques for various applications, such as sports 
[19, 28], skills assessment [20], detection and evaluation 
of walking [23], medical analyses and nursing activity 
analysis [14] were proposed. In these techniques, a machine 
learning method to recognize the activity, such as decision 
tree, k-nearest neighborhood, naive Bayes, support vector 
machine, and random forest, is often employed as a basic 
technique, after the feature vector have been extracted from 
the signals by statistics or Fourier transformation by taking 
a time window [4].

Since activity recognition handles sequential data, tech-
niques for sequential data, such as the hidden Markov model 
(HMM) [16] and conditional random fields [33], which are 
used in speech recognition and natural language processing, 

were proposed. In addition, while studies on completing the 
required activity recognition in real time have been con-
ducted in a few work [18], these studies focused mainly on 
how to reduce the feature calculation by shifting the feature 
vectors. Similarly, many studies have been focused on reduc-
ing the resources required for executing the feature process-
ing, e.g., [5, 27].

Moreover, in recent years, several activity recognition 
methods which use deep CNN have been proposed, and 
they have been confirmed that they can achieve high accu-
racy recognition than the traditional methods [32]. However, 
these method require the time window to generate certain 
length segmentation of time series signal. Moreover, in gen-
eral, CNNs have huge number of connection between inner 
layers. These features of CNNs are not suitable for real time 
execution of mobile devices.

An RNN can be used as an estimator that can be adapt 
by learning, and is suitable for handling time-series data, 
such as audio and video signals, and natural language. Early 
RNNs included the fully recurrent network developed in 
1980, an interconnected type network such as the Hopfield 
network announced by John J. Hopfield in 1982, and so on. 
Then, hierarchical RNNs, such as the Elman network and 
the Jordan network were developed in the early 1990s [10]. 
The Elman network has a state feedback, and the Jordan 
network has a recurrent connection for the output feedback. 
This feedback contributes to extract features of dynamics 
of input signal. The RNN executes calculation processing 
of large network that led to the time direction at the training 
phase, and executes fast sequential calculation processing at 
the recognition phase.

Recently, many of the methods using CNNs and RNNs 
aims to recognize using raw signal directly without extrac-
tion of the feature vectors in advance.

In the method using a combination of CNN and RNN 
[24], the network achieves further high accuracy recognition 
by the feature extraction ability of dynamics in the RNN. On 
the other hand, the adoption of the CNN architecture causes 
the increasing of recognition rate, the increasing of the com-
putational cost, and the utilization of the time window.

The RNN is a high throughput network architecture that 
can deal with raw sensor data without feature extraction and 
can recognize by thorough fast sequential processing.

Many studies using RNN to recognize time series infor-
mation have been proposed. Amodei et al. [1] uses RNN for 
speech recognition, and in that study they claim that RNN 
is a highly generic method to speech recognition. The deep 
speech 2 developed in [1] is an end-to-end deep learning sys-
tem with a large labeled training data set and a large com-
putational scale for high performance speech recognition. 
However, it is important that the structure of the network is 
simple for routine behavior recognition by low-spec wearable 
devices assumed in this paper. Nils et al. [9] applied RNN to 
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the classification of data measured by sensors attached to the 
whole body and showed the advantage of its use in HAR. In 
contrast, this research aims at more practical and easy HAR 
using only wearable device like a smart-phone. In this paper, 
we propose a method to execute training and recognition of the 
RNN (i.e., deep RNN) which has multi internal layer using raw 
acceleration data without feature extraction aiming at a high-
precision activity recognition with high throughput.

3  Recurrent neural network

In the following, the basic processing methods for execution of 
training and recognition of a RNN are explained.

3.1  Deep recurrent neural model

Let us assume a deep RNN (DRNN) with L layers, as shown 
in Fig. 1. This network is an LSTM network in which internal 
layers consists of LSTM unit (the LSTM unit is described in 
Sect. 3.3). Here, xk and yk are an input and an output vector 
at time k , respectively. Moreover, the output of lth internal 
layer at time k is represented as z(l),k . Furthermore, a cell that 
generates each element of the output vector is called a unit. 
The number of units in each layer is equal to the dimension of 
each layer, e.g., the number of units of the first layer for three-
dimensional input is 3.

In the internal layer the following calculations are executed.

where ⊙ is Hadamard product, tanh is a sigmoid function, 
� is a logistic sigmoid function, and �(u) = 1∕(1 + e−u) . 

⎡⎢⎢⎢⎣

z̄(l),k

i(l),k

f (l),k

o(l),k

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

tanh

𝜎

𝜎

𝜎

⎤⎥⎥⎥⎦
(W(l)z(l−1),k + R(l)z(l),k−1 + b(l)),

c(l),k = i(l),k ⊙ z̄(l),k + f (l),k ⊙ c(l),k−1,

z(l),k = o(l),k ⊙ tanh(c(l),k),

Moreover, the forward propagation weight, the recurrent 
weight, and the bias are respectively as follows:

Also, z(l−1),k = xk when l = 2.
In the output layer the following calculations are executed.

Here �(⋅) is activation function. In the multi-class classifica-
tion problem, softmax function is used as an activation func-
tion in the output layer. From this equation, it is possible to 
obtain the output of an arbitrary time by shifting k.

3.2  Learning method

3.2.1  Error function

When performing multi-class classification into class 
C1,… ,Ch,… ,CH , using the softmax function, let the output 
of the h-th unit of the output layer be the following equation. 
Further, the output yh of the individual unit means a probability 
belonging to class Ch.

When an input x is given, this probability yh is classified into 
the largest class, and

is defined as the error function, and updating the variable 
vector w to minimize this becomes the learning policy. The 
dn represents n-th supervised vector and the dnh represents 
h-th elements of dn . The value of element is set as 1 if the h
-th element corresponds to the class of dn , and otherwise it 
is set as 0. Equation (3) is called the cross entropy function.

3.2.2  Mini‑batch stochastic gradient descent

It is possible to use the gradient descent method to minimize 
the error function. Let D be the number of elements of w ; the 
gradient of the error function is expressed by
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exp(uh)∑H
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�wD

]T
.

Fig. 1  Schematic representation of the DRNN
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The gradient descent method searches the local minimum 
value in the neighborhood by repeating many times to 
change w in the negative gradient direction by a very small 
amount. Let the weight in the t-th time of repeat be wt ; then, 
it becomes

where � is a parameter called the learning rate.
The mini-batch stochastic gradient descent method col-

lects a small number of sample sets Bt (called a mini-batch) 
in each repeat to calculate the gradient using the average

of error for each sample n among them. It is known that the 
local solution avoidance performance is high because the 
calculation converges quickly with this method.

As the learning rate � is high, learning becomes faster; 
however, if it is too high, since it vibrates near the local 
minimum value of the error function, an adjustment method 
of the learning rate, called adaptive moment estimation 
(Adam), is employed [17].

In the developed RNN, the backpropagation through time 
(BTTP) method is adopted to modify the value of the weight 
gradient in each layer. Here, the calculation amount becomes 
too enormous for practical use in the normal BPTT to cal-
culate the gradient by dating back all the times. Therefore, 
the truncated BPTT method [29], which sets the time to 
date back to an appropriate constant to perform BPTT for 
each the time, is used. Although, in this method, the error 
between the output and the supervised signal is calculated 
at each time, the back propagation procedure is executed for 
each truncated term.

3.3  Long short‑term memory (LSTM)

Long short-term memory (LSTM) is a type of NN model for 
time series data. It is utilized mainly to replace some units 
of the RNN to solve the problems of an input/output weight 
conflict [12] which is the conflicts between the input from 
the previous layer and the recurrent value, and vanishing/
exploding gradient problem [26] where a delta vanishes or 
explodes by the deep backward propagation.The LSTM unit 
is adopted in this paper is consists of a constant error carou-
sel (CEC), an input gate, an output gate, and a forget gate. 
The vanishing gradient problem and the input/output weight 
conflict are solved by the CEC and the input/output gate, 
respectively. Moreover, the forget gate makes it possible to 
adapt to sudden changes in the signal pattern.

In addition, the exploding gradient problem is solved with 
a technique called gradient clipping.

Gradient clipping is a method of correcting the L2 norm 
of the gradient so that it does not exceed the threshold 

(4)wt+1 = wt − �∇E,

(5)Et(w) =
1

||Bt||
∑
n∈Bt

En(w)

value [26]. Specifically, when letting the threshold value be 
c, ‖∇E‖ ≥ c is satisfied gradient is modified as follows,

3.4  Avoiding overfitting

Learning, as in NNs, by adopting the error function as an 
optimization function may cause overfitting, in which a 
model that captures too much peculiarities of the training 
data and does not fit to the new test data is generated. There-
fore, the regularization should be executed to prevent this. 
Overfitting is liable to occur when the degree of freedom 
of the network is too high for the training data. However, 
in many cases, the training data cannot be easily increased, 
and the degree of freedom of the network should not be eas-
ily reduced, because it is deeply involved in the expressive 
power of recognition. Therefore, a regularization method 
to mitigate overfitting by providing some type of constraint 
on the learning parameter is required. The gradient clipping 
described in Sect. 3.3 is an exploding gradient problem-
solving technique as well as a regularization technique. In 
addition, the dropout procedure is often adopted. At the time 
of training with dropout, the units of the internal and output 
layers are disabled by selecting them at a constant rate p . 
That is, learning is performed as if they did not exist from 
the beginning. On this occasion, selection of the unit to be 
disabled is performed at every time to update the weight. At 
the recognition, all the units are used to perform the forward 
propagation calculation. However, the outputs of the units 
belonging to the target of disabled layers are uniformly mul-
tiplied by p at the time of training [11]. In the experiments to 
be described later, the dropout rate p is also verified.

As mentioned previously, there are many parameters in 
the RNN; even if we just use the RNN, trial and error for 
setting the parameters depending on the problem will be 
required. Therefore, in the task of activity recognition, an 
examination of the parameters, such as the numbers of layers 
and units, truncated time, and dropout rate, should contrib-
ute to the study of the activity recognition using the RNN.

4  Activity recognition using RNN

We applied the DRNN described in Sect. 3 to human activity 
recognition to verify its accuracy and performance.

The items to be verified were are as follows:

1. Does the recognition accuracy increase as compared to 
that of other algorithms?

(6)∇E ←

c

‖∇E‖∇E.
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2. Is any influence exerted on the accuracy when some 
parameters are changed?

3. How long is the throughput time of the recognition as 
compared with other algorithms?

4.1  Dataset

The HASC corpus is a dataset for machine learning gath-
ered and distributed by HASC [15], distributed at a state 
with a detailed label attached to the data measured by sen-
sors mounted on a mobile device. In this study, we used 
a part of the acceleration signals of the HASC corpus as 
a dataset. The dataset are divided into “segmented data” 
and “sequence data”, the former includes single activity in 
one trial and the latter includes multiple consecutive activi-
ties. The details of these two types of data are shown in 
Table 1. The segmented data are suitable for use as train-
ing data because they are able to label easily. On the other 
hand, since the sequence data are constructed by seamless 
measurement of human activities, these are resemble actual 
human activities.

4.1.1  Cross validation

In the evaluation, we divided the segmented data into the 
training data of 432 trials and the test data of 108 trials so 
that the number of samples in each activity class balances 
each other.

Based on the data, we evaluated three types of accuracy: 

Training accuracy  Perform training with the training data, 
and recognize with the training data.

Test accuracy  Perform training with the training data, 
and recognize with the segmented test 
data.

Sequence accuracy  Perform training with the training data, 
and recognize with the sequence data.

 Note that, because of the design of HASC dataset, for 
both sequence data and test data, the same person could be 
included.

As a measure of accuracy, the proportion of samples suc-
cessfully recognized in the evaluation samples was used.

4.1.2  Additional dataset

As an additional dataset to examine the generality of our 
method, we adopted the human activity recognition using 
Smartphones dataset (HAR dataset) [2] in the UCI Machine 
Learning Repository, and applied the best parameters found 
in the HASC dataset. The sensor data were collected using 
smartphones equipped with a three-axis accelerometer and 
a gyroscope. The smartphones were attached on the waists 
of the 30 persons. They have six types of activity classes, 
which are “Standing”, “Sitting”, “Laying”, “Walking”, 
“Walking downstairs”, and “Walking upstairs”, and com-
piled as sequential data. For cross validation, we used the 
first three fourth samples as training data, and last one fourth 
as test data.

4.2  DRNN‑based activity recognition

To perform high throughput activity recognition for each 
time using the three-axis acceleration of a smartphone as 
the direct input, we constructed a DRNN such that the 
three-axis acceleration data of each time corresponded to 
the three-dimensional input layer, and six activity classes 
to the six-dimensional output layer. Each unit of each 
internal layer was an LSTM unit. The activation function 
of the output layer and the error function were defined by 
a softmax function and a cross entropy function, respec-
tively. The truncated BPTT under the mini-batch stochas-
tic gradient descent method was used to update the weights 
at the time of training. The number of internal layers, the 
number of units inside the internal layer, the number of 
times dating back was performed by truncated BPTT 

Table 1  Details of HASC 
dataset

Segmented data Sequence data

Signal in one measurement Time (s), X axis (G), Y axis (G), 
Z axis (G)

Time (s), X axis (G), 
Y axis (G), Z axis (G)

Frequency 100 Hz 100 Hz
Targeted activity “stay”, “walk”, “jog” “skip” 

“stair up”, “stair down”
“stay”,“walk”,“jog” 

“skip” “stair up”,“stair 
down”

Measurement time 20 s 120 s
Type of activity in one measurement 1 6
Number of person 7 7
Number of trials 540 18
Type Single activity Multiple activity

Author's personal copy



178 Artificial Life and Robotics (2018) 23:173–185

1 3

(called truncated time), the maximum gradient c, and also 
the dropout probability p were set to be variable to search 
the most appropriate value experimentally. The details of 
this DRNN are summarized in Table 2.

This network outputs an activity class, which corre-
sponds to an element having the largest value among the 
elements of the output vector obtained when an input vec-
tor is input, as the recognized result.

A flow of the process of training and evaluation will 
be described below. The outline is also shown in Fig. 2.

(0) Shuffle all the trials of training data and divide them 
into mini-batch sets of 20 trials.
(1) For the first mini-batch,

1. Take the time k at random.
2. Let the truncated time be T, and divide 

the time range for truncated BPTT into 
[k, k + T − 1], [k + T , k + 2T − 1],… , [k + K� − T ,

k + K�] , where the final value of the range was set as 
K� = 1200.

3. For each range, obtain an error function from the 
input and output to update the weights by perform-
ing the error back-propagation.

(2) Perform the same processing as (1) for the subsequent 
mini-batch.
(3) Call a period until the processing for all mini-batches 
is complete 1 epoch.
(4) Obtain the accuracy for the test data to valuate the 
generalization performance.

Repeat (1)–(4), and stop the training after repeating a suffi-
cient number of epochs. training phase ends in up here. After 
the training phase, the activity recognition of the sequence 
data are executed using only the forward propagation of the 
learned model. Record the accuracies of training data, test 
data, and sequence data in each epoch to plot the changes.

Chainer [30], provided by Preferred Networks, Inc., was 
used to implement the DRNN. Chainer is a framework (FW) 
for NN. In Chainer, various NN models can be flexibly writ-
ten in the Python language. The experiment was conducted 
in an environment as shown in Table 3. Here, the training 
time was reduced by parallel processing using the GPU, and 
the CPU was used for evaluating of the throughput of the 
constructed DRNN. This strategy is based on a following 
policy; the RNNs is trained by a large-scale computer archi-
tecture, and its execution is done by a standard type mobile 
terminal.

4.3  Comparative methods

As comparative methods, decision tree, support vector 
machine (SVM), and random forest were used. The SVM is a 
soft margine SVM using Gaussian kernel, and the parameter 
� of it was set as 1/3. The comparative methods, rather than 
the raw sensor data, and require time windows to calculate 
the feature vectors. Therefore, we extracted feature vectors 
from the three-axis accelerometer data. For the sensor data, 
time windows of 5 s were extracted, shifting every 2.5 s, as 
in Bao et al. [4].Table 2  Details of DRNN

Setting items Detail

Activation function of output layer Softmax
Error function Cross entropy
Type of internal layer unit LSTM
Mini-batch size 20
No. of time stamps in a mini-batch K� = 1200

Initial weights random [−0.1, 0.1)
Initial bias None
Learning rate adjustment Adam
Input dimension 3
Output dimension 6

Fig. 2  Flow of an epoch

Table 3  Computing environment

OS Ubuntu14.04LTS (64-bit)
CPU Intel Corei5-4590 3.3 GHz
RAM DDR3-1600 24 GB
GPU NVIDIA Quadro K2200
FW Chainer 1.5.1
Python Ver. 2.7.6
CUDA Ver. 7.0

Author's personal copy
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For each time window, we calculated 27 feature values, 
following the studies in [13, 34, 35]. The number of feature 
variables used in each time window was 27, including: (1–3) 
mean value of each axis, (4–6) variance of each axis, (7) 
mean sum of the absolute values of each axis, (8–9) first 
and second eigenvalue of the covariance matrix between 
the axes, (10) sum of the vertical component ratios for the 
intensity, (11–13) covariance ratio in the x- and y-direction 
for the z-component variance of each axis, (14–16) variance 
ratio of the back and forth difference in the x- and y-direc-
tion for the variance of the back and forth difference in the 
z-direction of each axis, (17–19) mean FFT-domain energy 
of each axis, (20) mean FFT-domain energy of the intensity, 
(21–23) FFT-domain entropy of each axis, (24) FFT-domain 
entropy of the intensity, (25) number of mean crosses of the 
mean intensity, (26) number of crosses of the zone of the 
mean intensity ± 0.1 G, and (27) number of samples outside 
the zone of the mean intensity ± 0.1 G.

We reduced these 27 feature variables to 13 by applying 
stepwise-feature selection [8] using logistic regression. As 
a result, 13 feature variables, 1, 2, 6, 7, 9, 11, 12, 13, 15, 20, 
21, 24, and 26, were adopted.

For these selected feature vectors, machine learning meth-
ods by decision tree, SVM, and random forest was applied, 
and in each of these a grid search were conducted over the 
training data to choose the best model.

4.4  Throughput evaluation

For evaluating the throughput of the recognition, the time 
required for the recognition of the entire sequence data was 
divided by the number of samples of the sequence data to 
derive the mean value of the recognition throughput per time 
unit. For the comparative methods, we calculated the com-
putation time of a feature vector in one time window, the 
time taken to recognize the activity from the feature vector 
in one time window, and the sums of these values.

5  Results

In the following, we compare the results of evaluating the 
accuracy of the activity recognition with the DRNN by 
searching various parameters with those of the accuracy 
of the existing technique. First, after showing the best 
model that yielded the highest accuracy, we show the accu-
racy when the parameters are varied. Furthermore, for the 
throughput of the recognition, we compare the time required 
for feature calculation and recognition in the existing tech-
nique and the time required until the result is output after 
inputting one sample in the DRNN.

5.1  Best model

The best model is the model that showed the best recogni-
tion result for the sequence data during the experiment. The 
parameters selected in the best model are shown in Table 4.

Figure 3 shows the transition of the correct recogni-
tion rate in each epoch. The recognition rate is derived by 
the ratio of the correct recognition time against total time 
for each trial, and it is also referred to simply as accuracy. 
In the best model, the test recognition rate was 95.42% at 
maximum. The “recognition rate” for the sequence data was 
83.43% at maximum.

In Fig. 3, it can be seen that the recognition rate increases 
as the epochs proceed. According to the results in this figure, 
we judged that it is reasonable to stop the training at about 
epoch 80, and for the subsequent evaluations, we extracted 
the average recognition rate from epoch 71 to epoch 80 for 
comparison.

5.2  Comparison with existing methods

Figure 4 shows a graph comparing the accuracy of the 
existing method with that of the proposed method. The 
Bar represents the mean recognition rate from epoch 71 to 
epoch 80. In the test data, the DRNN shows results that are 
35.18%, 27.76% and 22.35% better than those of decision 
tree, SVM, and random forest, respectively. In the sequence 
data, it shows results that are 28.03%, 26.04% and 26.74% 
better than those of decision tree, SVM, and random forest, 
respectively.

Table 4  Best model parameters

Parameters Best value

Number of internal layers 3
Number of units in one layer 60
Truncated time T = 30

Gradient clipping parameter c = 5

Dropout rate p = 0.5
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Fig. 3  Accuracy transition of the best model
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5.3  Varying parameters

Since the number of parameters is very large and the learn-
ing time of the RNN is enormous, the discussion about the 
correlation of hyper parameters through the experiments 
on all combinations is difficult. Therefore, in this paper, we 
discuss the effectiveness of each parameter by varying each 
parameter based on the empirically obtained best model. The 
results obtained by changing the number of internal layers 
are shown in Fig. 5. The thin line at the top of bar repre-
sents the standard deviation. We changed only the number 
of internal layers among the parameters of the best model. 
As can be seen in the figure, the recognition rate is high-
est in the case of three layers for any of the training, test, 
and sequence data. In particular, for the sequence data, the 
recognition rate is about 8.2% higher than that of the worst 
four-layer model. Moreover, a t test was conducted to inves-
tigate the significant difference. The p-values on both sides 
were 9.64 × 10−5 , which were lower than the general rejec-
tion region 5.00 × 10−2 . Therefore, it is found that there is a 
significant difference.    

The results obtained by changing the number of internal 
layer units are shown in Fig. 6. We changed only the number 
of internal layer units, using 20, 40, 60, and 80 units, among 
the parameters of the best model. In the figure, it can be seen 
that the recognition rate is highest in the case of 60 units in 
test and sequence data. In particular, in the sequence data the 
recognition rate is about 3.7% higher than that of the lowest, 
20-unit, model. A t test was conducted to investigate the sig-
nificant difference of the recognition rates between these two 
models. The p-values on both sides were 4.59 × 10−4 , which 

were less than the rejection region 5.00 × 10−2 . Therefore, it 
is found that there is a significant difference.

The results of the experiments where the truncated time 
was changed are shown in Fig. 7. We changed only the trun-
cated time, using 10, 30, 50, 70, and 90, among the parame-
ters of the best model. The figure shows that the performance 
is relatively good at T = 30 or T = 70 , and worst at T = 10 . 
For the sequence data, a difference of about 10.7% occurred 
between the most accurate T = 70 model and the T = 10 
model. A t test was conducted to investigate the significant 
difference of the recognition rates between the model of 
T = 70 and the model of T = 10 and 50, respectively. The 
p-values on both sides were 1.29 × 10−5 and 2.18 × 10−1 , 
respectively. The former is lower than the rejection range, 
and the latter is exceeded it. Therefore, it is found that there 
is a significant difference in the former, and there is no sig-
nificant difference in the latter.

The results of experiments where the gradient clipping 
parameter was changed are shown in Fig. 8. We changed 
only the gradient clipping parameter, using 3, 5, 7, and 
9, among the parameters of the best model. The figure 
shows that no significant recognition rate difference due 
to the variation in the gradient clipping parameter can be 
observed. A t test was conducted to investigate the signifi-
cant difference of the recognition rates between the model 
of c = 5 and the model of c = 3, 7 , and 9 , respectively. The 
p-values on both sides were 9.72 × 10−1, 4.88 × 10−1 , and 
6.14 × 10−1 , respectively. All of them were more than the 

Fig. 4  Accuracy of comparative methods and best model
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Fig. 5  Comparison of accuracy according to the number of internal 
layers (60 units, T = 30, c = 5, p = 0.5)
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Fig. 6  Comparison of accuracy according to the number of units (3 
layers, T = 30, c = 5, p = 0.5)
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Fig. 7  Comparison of accuracy according to the truncated time (3 
layers, 60 units, c = 5, p = 0.5)
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general rejection region. Therefore, it is found that there are 
no significant difference. The results of experiments where 
the dropout probability p was changed are shown in Fig. 9. 
We changed only the dropout probability p , using 0, 0.3, 
0.5, and 0.7, among the parameters of the best model. The 
p = 0.3 model showed the highest recognition rate for the 
test and sequence data. In particular, for the sequence data, 
the recognition rate of this model was about 4.6% higher 
than that of the lowest recognition rate model without drop-
out. A t test was conducted to investigate the significant dif-
ference of the recognition rates between these two models. 
The p-values on both sides were 3.55 × 10−4 , which were 
less than the general rejection region. Therefore, it is found 
that there is a significant difference.

The above results show that, in the task of activity recog-
nition in this time, a large difference appeared in the recogni-
tion rate for five parameters. In particular, for the parameter 
of truncated time, there is a difference of 10.7% between the 
maximum and minimum recognition rate, revealing that the 
parameter adjustment is effective.

5.4  Throughput of activity recognition

We summarize the throughputs of the proposed method and 
the existing method in Table 5. When compared according 
to only the calculation time at the time of recognition, the 
existing method is 1.342 ms faster, but if compared accord-
ing to the substantial time, the proposed method is 9.671 ms 

faster, because the existing method requires that the feature 
vector extracted as a pre-processing.

5.5  Result with additional dataset

As a result of applying our method and parameters for HAR 
dataset, the recognition rate was 95.03% at 45th epoch. with 
the cross validation with first three fourth samples as train-
ing data and last one fourth as test data. Figure 10 shows 
the transition of the correct recognition rate in each epoch.

6  Discussion

We consider the proposed method in the light of the experi-
mental results obtained. In addition, in the following, we 
give more importance to the accuracy for the test and 
sequence data than the accuracy for the training data as a 
basic evaluation criterion.

6.1  Activity recognition with the best model

Using the best model, it was possible to perform the rec-
ognition with a higher recognition rate and faster response 
speed than those of the traditional methods. In particular, an 
recognition rate of 95.42% at maximum was obtained for the 
segmented test data.

On the other hand, for the sequence data, the recognition 
rate dropped to 83.43% at maximum. The recognized results 
for the sequence data shown in Fig. 11 verify this. The hori-
zontal axis represents time and the vertical axis represents 
acceleration in the gravitational acceleration unit (G). A 

Train Test Sequence
0.0

0.2

0.4

0.6

0.8

1.0
R

ec
og

ni
tio

n
ra

te
c=3
c=5
c=7
c=9

Fig. 8  Comparison of accuracy according to the gradient clipping 
parameter (3 layers, 60 units, T = 30, p = 0.5)
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Table 5  Evaluation of throughput

Feature (ms) Recognition (ms) Total (ms)

Decision tree 11.027 0.004 11.031
SVM 11.027 0.123 11.150
Random forest 11.027 0.056 11.083
DRNN – 1.347 1.347
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Fig. 10  Result for HAR dataset
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color chart displayed as “True” represents the correct solu-
tion label, and a color chart displayed there under as “Rec-
ognition” represents the Recognition label. In Fig. 11a, it can 
be observed that in general the recognition performance was 
good, but it caused similar activities to be erroneously rec-
ognized at the time 60–70. In addition, it caused a delay in 
recognition near the time 23, as seen in Fig. 11b. This phe-
nomenon is considered to have been caused by the fact that 
unlearned signals that cannot be classified into any activity 
during the transition of activity were input.

6.2  What are the optimal parameters?

6.2.1  Number of layers and units

Because NNs can handle higher order feature vectors, as 
the number of layers is increased, the goodness of fit to 
the training data is increased. It can be seen in Fig. 5 that, 
in the present experiment, the training accuracy increased 
as the number of layers was increased up to three in the 
internal layer. However, the accuracy decreased in the four-
layer model. This phenomenon can be interpreted to have 
occurred as a result of increasing in the learning difficulty 
by the increase in the excessive number of layers. Further, 
for the generalization performance, it is known that the accu-
racy is liable to decrease because of the overfitting when the 
freedom of the model becomes too high. This fact was also 
demonstrated in this experiment by the results for the test 
and sequence data shown in Fig. 5. According to the above, 
an unnecessary increase in the layers in the model design 
should be avoided, because it may lead to a reduction in the 
generalization performance.

Furthermore, when the number of internal layers is 
increased, the computation time and memory usage are 
increased. In this experiment, the computation times taken 
per epoch were 58.89 s with the single layer, 89.59 s with 
two layers, 116.39 s with three layers, and 144.83 s with 
4 layers of the internal layer, respectively. In addition, the 
throughputs at the time of recognition were 0.512 ms with 
single layer, 0.909 ms with two layers, 1.347 ms with three 
layers, and 1.720 ms with four layers of the internal layer, 
respectively. This time, we chose the best model based on 

the accuracy, but if we prefer to obtain a high throughput 
at the expense of accuracy, simplifying the calculation by 
reducing the layers should be considered.

Almost the same consideration may be also possible 
for the number of units as the number of layers. As can 
be seen in Fig. 6, to obtain a high generalization perfor-
mance, the number of units should not be excessively 
increased. Further, when increasing the number of units, 
because the amount of computation time and memory 
usage increases, an adjustment will be required when a 
trade-off is implemented.

6.2.2  Truncated time

For the truncated time, it can be seen in Fig. 7 that the 
performance decreased for the test and sequence data at 
T = 10 , but the optimum value cannot be obtained stably. 
Here, the recognition rate, which was relatively high at 
T = 30 and T = 70 , is about 200 and 470, respectively, if 
converted into beats per minute (BPM). It is considered 
that one cycle of human walking and activities captured by 
the network may fall within a range of this degree. Thus, 
to capture the features of input signals, it is considered 
effective to take the variation period of the signals being 
handled into account when determining the truncated time.

6.2.3  Gradient clipping parameter

In Fig. 8, no significant performance difference generated 
by the gradient clipping parameters among the data used in 
this experiment is seen. It is possible that gradient explo-
sion did not occur to a great extent for the data in this 
time. In addition, in the DRNN, because the likelihood that 
gradient explosion will occur increases as the truncated 
time and the number of layers increase, it is necessary to 
suppress the gradient moderately by taking also the values 
of other parameters into consideration.

(a) Recognition example 1 (b) Recognition example 2

Fig. 11  Visualization of the recognized result. a Recognition example 1. b Recognition example 2
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6.2.4  Dropout rate

First, as can be seen in Fig. 9 in the cases where the dropout 
was and was not applied, applying it leads to a tendency 
that the recognition rate is liable to become higher for the 
test and sequence data. For the dropout probability, approxi-
mately 50%, as frequently used in CNNs, is considered to be 
appropriate also in the RNN.

6.2.5  Validity of parameters

It is found from Fig. 12 that when the parameters adjusted 
for the recognition of HASC dataset were utilized for the 
training of the HAR dataset, a high recognition rate of 
95.03% was obtained.

6.3  Throughput and training time

The throughput of the recognition was 1.347 ms, an 8.19 
times faster speed than that of the existing method. Con-
sidering that the data are currently acquired at 100 Hz, this 
throughput is sufficient to allow real time processing. In 
addition, because the RNN basically performs only the prod-
uct-sum operation by the number of times of the dimensions 
of R and W  at the time of recognition, it is considered that 
implementation in low power devices such as smartphones 
may also be possible in the future.

On the other hand, the training time was 116.39 s per 
epoch on average. This is a very large and non-negligi-
ble amount of time; however, by calculating the training 
using a high-speed computer in advance, high throughput 
processing may be possible at the time of recognition. In 

addition, in principle, because the DRNN can perform 
the online learning on a mini-batch basis, by devising a 
method of feeding the training data, a high throughput can 
be expected also in the training.

The DRNN can achieve both high-speed response with 
high recognition rate using CPU. These advantages are 
caused by compactly and small size of the DRNN. In con-
crete, the total size of the inner variables and architecture 
from the input layer to the output layer of the DRNN is 
74166 pcs, and this is the size of less than 10% of the 
conventional CNN + LSTM model [24]. Our approach is 
shown that have a clear advantage for the miniaturization 
of the devices of recognition.

6.4  Relationship between recognition results 
of each activity

To investigate the correlation of the recognition results of 
the each activity, the confusion matrix of the identification 
results of the test data set were calculated and summarized 
it as a heat map in Fig. 12. It is found from Fig. 12 that 
“walk” is relatively similar to “skip”, “stair up”, or “stair 
down”, and relatively failed in classification. And, it can 
also be seen that “jog” and “skip” are similar activities. 
Although these things are intuitively easy to convince and 
can not be said to be new discoveries, on the contrary, it 
is suggested that recognition by the proposed method was 
successful.

6.5  Future direction

In this experiment, the activity recognition results of 
the DRNN were good in terms of recognition rate and 
throughput. However, new techniques are constantly being 
developed also for RNNs. Many techniques can be utilized 
for the activity recognition, such as an approach [22] using 
the ReLU function instead of LSTM, a method [25] to 
automatically organize the feature vectors by applying the 
pre-training used in the CNN, and a method [31] to accu-
rately estimate the behavior of things using the physical 
laws of the real world and its simulation. The verifica-
tion of these techniques is one of the challenges for future 
studies.

In addition, in this study the recognition rate of the 
sequence data decreased. However, to resolve this issue, it 
would be possible to apply the HMM as a post-processing, 
or to apply a method that takes into account the context of 
the label in the RNN, called connectionist temporal clas-
sification [7]. And, we develop a compact DRNN circuit 
to equip into a mobile device.

Fig. 12  Confusion matrix of the identification results of the test data 
set. The elements are normalized by dividing by grand sum of all ele-
ments
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7  Conclusion

In this paper, the DRNN was constructed for human activ-
ity recognition using raw time series data of acceleration 
sensors mounted on a mobile device with high recognition 
rate and high throughput. The maximum recognition rate 
was 95.42% against the test dataset and was 83.43% against 
multiple sequential test dataset. Here, the maximum recog-
nition rate by traditional methods was 71.65% and 54.97%, 
respectively. Further, the efficiency of the tuned parameters 
was confirmed using the sequential dataset. For the through-
put of the recognition per unit time, the constructed DRNN 
requires only 1.347 ms, while the traditional method requires 
11.031 ms which includes 11.027 ms for feature extraction.

Detailed examination on the combination of various 
hyperparameters of the proposed RNN and its perfor-
mance is considered important for further improvement 
of the accuracy of this network and is a subject should 
be addressed in the future. Moreover, many techniques, 
such as a forget-mechanism and pre-training, optimiza-
tion methodology, and a method that takes the series into 
consideration, should be studied in the future.
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