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Conventional motion planners do not rely on previous
experience when presented with a new problem. Tra-
jectory prediction algorithms solve this problem using
a pre-existing dataset at runtime. We propose instead
using a conditional variational autoencoder (CVAE) to
learn the distribution of the motion dataset and hence
to generate trajectories for use as priors within the
traditional motion planning approaches. We demon-
strate, through simulations and by using an industrial
robot arm with six degrees of freedom, that our tra-
jectory prediction algorithm generates more collision-
free trajectories compared to the linear initialization,
and reduces the computation time of optimization-
based planners.
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1. Introduction

Motion planning is an essential tool for robots that
allows them to move safely in their environment while
avoiding obstacles. Most motion planners are solving
problems by either using random samples of the config-
uration space [1–3] or by iteratively improving an initial
trajectory (usually a linear trajectory through configura-
tion space) [4–6]. However, even if the robot has encoun-
tered the same or a similar situation in the past the mo-
tion planners have to recalculate a trajectory from scratch.
Furthermore, motion planners are difficult to scale when
dealing with high-dimensional problems.

Trajectory prediction seeks to address this challenge
by predicting a trajectory given a motion planning prob-
lem. The predicted trajectory is then used either as an
initial guess or directly as the final trajectory. Starting
with an informed prior, this approach reduces the do-
main to search, which decreases the high dimensional
burden. Trajectory prediction algorithms use a motion
dataset containing information about previously encoun-
tered motion planning problems and the corresponding
computed trajectories. When a new planning problem is
given, the trajectory prediction algorithms use the dataset
to predict a trajectory solution. However, even if the exist-

ing methods can provide satisfactory results, the reliance
on the dataset at runtime remains problematic. The re-
quirement for substantial memory space and computa-
tional cost, both of which increase with the size of the
stored dataset, constitute a significant limitation in the
case of small robots. As robot technology is evolving to-
ward more interconnectivity and the sharing of experience
data between robot [7], it will become increasingly diffi-
cult for extremely large datasets to be handled at runtime.

Machine learning has received considerable attention
and has achieved notable success over the past decade
in various fields, such as object detection [8, 9] or lan-
guage learning [10]. However, its application to mo-
tion planning is yet to achieve similar success. There is
currently much interest in conditional variational autoen-
coders (CVAEs) [11] within the machine learning com-
munity for their ability to model the distribution of data
in a dataset, and then generating new samples with a high
likelihood.

Rather than completely replacing classical motion
planners, it can be argued that machine learning can serve
as a useful cooperation tool. The present study exploits
the trajectory prediction framework of Barbié et al. [12] in
conjunction with the CVAE algorithm. The CVAE learns
the distribution of the motion dataset and uses it to gener-
ate trajectories when confronted with new planning prob-
lems. The generated trajectories are not intended to be
used directly but rather as initial guesses by a classical
motion planner. Our contribution is twofold. Firstly, we
provide a fast trajectory prediction algorithm that does not
require a dataset at runtime and that works directly in the
trajectory space. Secondly, we propose to use an autoen-
coder to allow working directly in the trajectory space in-
stead of the configuration space.

2. Related Work

Using previous experience to solve novel motion plan-
ning problems is not a new idea. Jetchev and Tous-
saint [13] proposed an algorithm that predicts the index
of a trajectory in a precomputed dataset and adapts the
trajectory to the new problem. Berenson et al. [14] pre-
sented a framework for storing and retrieving trajecto-
ries from a dataset while adapting them to new problems.
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Hauser [15] proposed a framework for retrieving trajec-
tories from large datasets using a clustering algorithm.
While these methods are effective, they require access to
the dataset at runtime, a feature that our proposed algo-
rithm seeks to avoid.

The “learning from demonstration” (LfD) paradigm
provides an alternative approach to trajectory prediction.
A robot first learns from a teacher demonstration how
to complete a task and then tries to adapt this acquired
knowledge to other situations. Many methods have been
proposed to implement this principle [16]. Recently,
Duan et al. [17] proposed a one-shot imitation frame-
work, in which a robot learns to repeat a task after a single
demonstration. In contrast, our method does not consider
the notion of task, and instead involves learning based on
big datasets generated entirely by simulations.

Machine learning has already been applied to motion
planning. Qureshi et al. [18] created a motion planning
network that yielded notable results but their network is
a motion planner where we aim to only provide an ini-
tial guess. The method adopted by Ichter et al. [19] is
more similar to our approach but operates in the configu-
ration space, whereas ours operates directly in the trajec-
tory space.

In our previous work [12], we used a multivariate Gaus-
sian distribution to generate the distribution of the motion
dataset. This method was capable of generating trajecto-
ries without requiring a dataset at runtime, but was limited
by the computation speed required to generate a trajec-
tory. On the other hand, our current method, based on
CVAEs, involves only matrix multiplication and vector
addition, which are amenable to fast computation using
existing matrix computation libraries.

3. Method

Our proposed method involves using a CVAE to learn
how to generate a trajectory conditioned on a given mo-
tion planning problem. However, a trajectory ξ is a con-
tinuous function mapping time t ∈ [0,1] to configuration
space points q ∈ C . Unfortunately, the trajectory space Ξ
of continuous functions from [0,1] to C is infinite dimen-
sional whereas the CVAE has a finite dimensional output.
To make the problem tractable, we sought to project the
trajectory space onto a finite dimensional manifold using
an autoencoder [20]. This transformed the problem to one
where the CVAE mapped the motion planning problem
space X to the perturbation trajectories manifold Mδ (see
Fig. 1).

3.1. Trajectory Manifold
It was first necessary to project the infinite space of

trajectories Ξ onto a finite dimensional space. This task
was facilitated by a simple observation on such trajecto-
ries. Because the starting point and end point in the con-
figuration space are specified within the motion planning
problem, the only thing the CVAE has to generate is the

Fig. 1. Overview of the trajectory generation process. A
random vector zzz and a motion planning problem xxx are given
as inputs to the CVAE which then outputs a vector θθθ that
is then decoded as perturbation trajectory δ . The “Linear”
box indicates the creation of a linear trajectory ξL from the
starting point to the end point specified in the motion plan-
ning problem xxx. The predicted trajectory ξ0 is the sum of
the linear trajectory ξL and the perturbation trajectory δ :
ξ = ξL + δ . Finally, the predicted trajectory is used as
a prior by a motion planner to compute the final trajec-
tory ξ f inal .

Fig. 2. Decomposition of the trajectory space Ξ into the
direct sum of the linear trajectories space ΞL and the per-
turbation trajectories space Ξδ : Ξ = ΞL ⊕ Ξδ . Because
the linear trajectory component ξL is known entirely from
the specification of the motion planning problem, only the
perturbation component δ needs to be generated.

path connecting these two points independently of their
respective positions. Hence, a given trajectory ξ ∈ Ξ can
be decomposed into a sum of two trajectories ξ = ξL +δ
where ξL is a linear trajectory through the configuration
space (which is known exactly from the motion planning
problem specification) and δ is a perturbation trajectory
representing the deviation of ξ from ξL .

ξL : [0;1] → C t �→ (1− t)qstart + tqgoal . . (1)

δ = ξ −ξL . . . . . . . . . . . . . . (2)

This in turns leads to a decomposition of Ξ into a direct
sum of two trajectory subspaces, i.e., Ξ = ΞL ⊕Ξδ , with
ΞL = {ξL ∈ Ξ | ∃q1,q2 ∈ C ξL (t) = (1− t)q1 + tq2}
the space of linear trajectories, and Ξδ = {δ ∈ Ξ | δ (0) =
δ (1) = 0}, the space of perturbation trajectories (see
Fig. 2).

We then hypothesized that the subspace Ξδ is a mani-
fold with few dimensions, Mδ . Using an autoencoder, a
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perturbation trajectory δ ∈ Ξδ can be projected onto a fi-
nite dimensional vector θθθ ∈ Mδ . Because the linear part
of ξ is already known, every vector θθθ ∈ Mδ represents a
full trajectory ξ ∈ Ξ.

3.2. Conditional Generation of Trajectories
The above decomposition reduces the problem to find-

ing a mapping between X (the space of planning prob-
lems) and Mδ (the manifold of perturbation trajectories).
To solve this problem in practice, we used the CVAE to
learn how to map X onto Mδ . The CVAE must train on
a dataset D = {xxxi,θθθ i}i=1,...,N containing N motion plan-
ning problems and their associated trajectory solution pro-
jected onto Mδ .

A CVAE consist of a generative model pψ(θθθ ,zzz|xxx) =
pψ(θθθ |zzz,xxx)pψ(zzz|xxx) and an inference model qφ (zzz|θθθ ,xxx).
The vector zzz is a random vector sampled from a normal
distribution N (000, IIIK), with K representing the dimension
of the noise vector. When a new motion planning prob-
lem xxx is specified, the CVAE aims to generate a vector θθθ
with a high likelihood. However, the direct optimization
of the likelihood is not a tractable problem. In Kingma
and Welling paper [11] a lower bound L of the likeli-
hood pψ(θθθ |xxx) is derived and maximized to optimize each
models.

log pψ(θθθ) ≥ Eqφ (zzz|θθθ ,xxx)

[
pψ(θθθ ,zzz|xxx)
qφ (zzz|θθθ ,xxx)

]
= L (ψ,φ ;θθθ ) (3)

After undergoing the training procedure, the CVAE can
generate new samples θθθ gen from a random vector zzz and
a motion planning problem xxx using only its generative
model.

4. Experiments

We performed three experiments to assess the perfor-
mance of our method. First, we used a simulated problem
in a two-dimensional configuration space and projected
the trajectories into manifolds of different dimensions to
observe the loss incurred by the autoencoder reconstruc-
tion. Second, in the same environment, we compared the
number of collision-free trajectories between those gen-
erated by the linear initialization and the one from the
CVAE. We call “linear initialization” the standard initial-
ization for optimization based motion planners consisting
of using the linear trajectory between the starting and end
points in the configuration space. The third experiment
used a real-life industrial problem involving a robot arm
and showed that our method accelerated the process of
trajectory generation and increased its success rate. The
autoencoder and the CVAE were both trained using the
Chainer framework, version 4.3.1.

4.1. Manifold Projection
In order to work directly in the trajectory space, an au-

toencoder was used to project Ξδ onto Mδ . The smaller
the dimension of the manifold is, the easier it would be for

Fig. 3. Example of a planning problem and its solution from
the dataset used for the first experiment. Four obstacles of
equal radius (gray circles) are uniformly randomly placed.
The positions of the starting point (black triangle) and the
end point (black square) positions were sampled uniformly
randomly (outside of the obstacles). The dashed line repre-
sents the computed trajectory solution.

the CVAE to learn. However, on the other hand, it is more
difficult for the autoencoder to find a representation that
approximate correctly the perturbation trajectories. There
is thus an important trade-off between the accuracy of the
trajectory representation and the CVAE ease of learning.
We want our representation to be as expressive as possible
(to approximate all trajectories and generalize well) while
keeping it small to accelerate the CVAE training. The aim
of this experiment was therefore to project the trajectories
onto manifolds of different dimensions and to assess the
reconstruction accuracy.

The motion planning problem considered was set in a
two-dimensional configuration space that contained four
uniformly randomly placed circular obstacles, with the
starting point and end point also uniformly randomly po-
sitioned outside the obstacles, as depicted Fig. 3. The
dataset was constituted by using the rapidly-exploring
random trees motion planner (RRT) from the OMPL li-
brary. When training the autoencoder to perform the pro-
jection of Ξδ onto Mξ , it was important to provide the
autoencoder with many different examples of possible
trajectories. In practice, however, most trajectory solu-
tions to randomly generated motion planning problems
are simple linear trajectories in the configuration space
(i.e, equivalent to a perturbation δ = 0). To avoid this
situation, we biased the dataset by retaining only 1% of
these linear trajectories. The dataset was thus constituted
of 500,000 problems and their corresponding trajectory
solutions.

All the autoencoders we used had the same architec-
ture that differed only in their output layer, for which the
number of neurons corresponded to the number of dimen-
sion of the manifold |Mδ | (see Fig. 4). The Adam op-
timizer [21] was used with α = 0.001 and β = 0.9. We
compared the reconstruction loss of the different autoen-
coders as the dimension of the manifold varied from 1
to 10 (see Figs. 5 and 6). There is no substantial improve-
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Fig. 4. Overview of the autoencoder architecture. A per-
turbation trajectory δ is projected onto a small vector θθθ and
then reconstructed as δreconstructed. |Mδ | denotes the dimen-
sion of the perturbation trajectories manifold Mδ . The num-
bers above the layers indicate the number of neurons. The
last layer outputs a perturbation trajectory δgen of 100 way-
points, for a robot with k degrees of freedom.

Fig. 5. Projection of a trajectory onto low dimensional
manifolds by an autoencoder. The reference trajectories
(solid lines) are approximated by their projections onto Mδ
(dashed lines). The different figures show the projection
onto manifold of different dimensions. By increasing the
number of dimension of the manifold the autoencoder can
approximate the trajectory more easily.

ment in the reconstruction when the dimension increases
beyond 7. We therefore reduced the dimension from 200
(two-dimensional configuration space and 100 waypoints)
to 7. This significantly facilitated the task of the CVAE.

4.2. Collision-Free Trajectories
The second experiment aimed to compare how many

collision-free trajectories were generated by the CVAE
compared to the case of a linear initialization tradition-
ally used by optimization based motion planners. For this
purpose, we defined a simple metric:

f (ξ ) =

{
1 if ξ is colliding with an obstacle
0 otherwise

. (4)

Fig. 6. Reconstruction loss of the autoencoder as a func-
tion of the manifold dimension. The reconstruction loss de-
creases with the increasing dimensionality.

Fig. 7. Overview of the CVAE architecture. The upper
and lower models perform the encoding and decoding tasks,
respectively. The blocks labeled μ and Σ block denote the
mean and variance of the distribution from which the random
vector zzz will be sampled. |Mδ | denotes the dimension of
the manifold Mδ . The numbers written above the layers
indicate the number of neurons.

This experiment used the same setting as the previous
one. It should be noted that the RRT planner usually finds
trajectories with few clearance to minimize the length of
the trajectory. However, because the CVAE is generating
trajectories approximatively, it was preferable to compute
a dataset with trajectory examples with better clearance.
To simulate this, we increased the obstacle size in the
dataset relative to those used for the test set.

The CVAE architecture consisted entirely of fully con-
nected layers (see Fig. 7). The perturbation trajectory
manifold dimension was set to |Mδ | = 7 according to
the previous result. The Adam optimizer was used with

496 Journal of Robotics and Mechatronics Vol.31 No.3, 2019



Trajectory Prediction with a Conditional Variational Autoencoder

Fig. 8. Collision ratio of the linear and CVAE initializations
with respect to the epoch for the random uniform problem
and the constrained problem. The linear initialization always
collided in the constrained motion planning problems.

α = 0.01 and β = 0.5. We set the ratio coefficient be-
tween the reconstruction loss and the KL divergence loss
to λ = 0.01 and the noise dimension to K = 7.

For each epoch during the CVAE training, we per-
formed two tests on the model. First, we randomly created
10,000 problems (with the same distribution as that of the
dataset) and measured the collision ratio of the linear ini-
tializations and the CVAE initializations. Second, we cre-
ated 10,000 problems where the obstacles were randomly
placed within the center of the space with the starting and
end points placed in opposite position (with central sym-
metry). We performed these two tests because, in prac-
tice, most problems were easily solved by a straight line
trajectory (for which the linear initialization was perfect).
To demonstrate the superior performance of our method
compared to the linear case, more complex scenarios were
required.

The results are shown Fig. 8. In the case of the first test,
our method performed only slightly worse than the linear
case. This shows that, on average, the CVAE is almost
as good as the linear initialization when the scenario re-
quires a simple solution. However, the second test clearly
demonstrates the superior performance achieved when us-
ing the CVAE, compared to the case of a linear initializa-
tion, when tackling a more complex scenario. This sug-
gests that our method is superior to the linear initialization
for generating collision-free trajectories.

4.3. Industrial Robot Arm
The last experiment employed the VS087 industrial

robot arm with six degrees of freedom. It was important to
demonstrate that our trajectory prediction algorithm was
efficient when applied to a real life problem, and that it
can be easily integrated. The experiment consisted of
making the robot traverse a “tunnel-like obstacle” (see
Fig. 9), starting from a randomly chosen position below
the obstacle. The purpose was to test the performance of

Fig. 9. Motion planning problem with an industrial arm.
Left: the robot starts from a randomly chosen position below
the obstacle (on the bottom-right side in the example shown).
Right: the target position is inside the obstacle. This is a
difficult problem for a motion planner to solve, owing to the
tunnel-like shape of this obstacle.

our method using a scenario considered to be difficult for
classical motion planners.

We conducted the experiment using the software ROS
(version kinetic) with the Moveit! and industrial moveit
packages. We used the RRT planner to create the dataset,
but used the CHOMP [4] and the STOMP planners [5] in-
stead for testing. The RRT planner was required to cope
with the slow creation of the dataset, as the CHOMP and
STOMP planners had a low success rate when solving this
problem. We generated 60,000 examples for our dataset.
We used the same CVAE and autoencoder settings as in
the previous experiment, except that the noise dimension
of the CVAE was set to K = 12 and the perturbation tra-
jectory manifold dimension was set to |Mδ | = 10. The
change was due to the increase of dimensionality of the
problem. For both the linear initialization and the CVAE
initialization, 1,000 tests were carried out. For each test,
the computation time and the number of iterations of the
STOMP planner and the CHOMP planner were recorded
for each solution found. The planner settings were un-
changed except to make them accept trajectories with
100 waypoints (to conform with our autoencoder archi-
tecture).

The success rate of the STOMP planner for this prob-
lem was 36.1%, when using the linear initialization.
When the CVAE was used to initialize the planner, the
success rate increased to 43.1%. The CHOMP planner
was unable to find a solution when using the linear ini-
tialization. However, when using the CVAE initialization,
its success rate was 56.7%. We also observed that solu-
tions reached successfully with the STOMP planner re-
quired less computation time (see Fig. 10), owing to the
lower number of iterations necessary for optimizing the
initial trajectory (see Fig. 11). It took 0.13 ms to generate
one trajectory on average, which is negligible compared
to the STOMP and CHOMP optimizations. This indi-
cates that our trajectory prediction algorithm has almost
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Fig. 10. Boxplot of the computation time for 5,000 tests
conducted by the STOMP planner with a linear initialization
or a CVAE initializations. The median of each boxplot is
written above the central horizontal line. The computation
time for optimizing the final trajectory is shorter when using
the CVAE initialization than the linear initialization.

Fig. 11. Boxplot of the number of iterations of the STOMP
planner over 5,000 tests, conducted with a linear initializa-
tion or a CVAE initialization. The median of each boxplot
is written above the central horizontal line. A CVAE initial-
ization requires fewer iterations than a linear initialization to
yield optimized final trajectories.

no overhead compared to the linear initialization and can
thus significantly boost the performance of the trajectory
generation.

5. Conclusions

We proposed using an autoencoder and a CVAE to per-
form trajectory predictions. The CVAE initially learns the
distribution of a previously computed motion dataset and

can then generate trajectory solutions for motion plan-
ning problems that are similar but not identical to those
already featuring in the dataset. We demonstrate that this
method can generate initial trajectories that significantly
reduce the computation time and increase the success rate
of optimization based planners compared to those of more
traditional motion planners that use a linear initialization.
Because we are using a learning-based approach, a limi-
tation of the method is when the dataset lacks data. How-
ever, the CVAE is able to extract important features from
the dataset, which mitigates the problem. A future de-
velopment of our work will contain the analysis of these
extracted features.

We plan to extend the application of the method to mul-
tiple robots and different scenarios. We also aim to assess
its performances when it is applied to a new set of motion
planning problems (transfer learning). A further exten-
sion of this work will involve a robot continuously gath-
ering information and learning from data while moving.
Finally, because motion planning is a very broad field, our
framework could be extended to autonomous cars naviga-
tion problems and mobile robots easily. Moving obstacles
could also be handled which we plan to study in future
works.
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