論文

査読有り
2013年

Peptide dissociation patterns in secondary ion mass spectrometry under large argon cluster ion bombardment

Rapid Communications in Mass Spectrometry
  • Hubert Gnaser
  • ,
  • Makiko Fujii
  • ,
  • Shunichirou Nakagawa
  • ,
  • Toshio Seki
  • ,
  • Takaaki Aoki
  • ,
  • Jiro Matsuo

27
13
開始ページ
1490
終了ページ
1496
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1002/rcm.6599
出版者・発行元
WILEY-BLACKWELL

RATIONALE The analysis of organic and biological substances by secondary ion mass spectrometry (SIMS) has greatly benefited from the use of cluster ions as primary bombarding species. Thereby, depth profiling and three-dimensional (3D) imaging of such systems became feasible. Large Arn+ cluster ions may constitute a further improvement in this direction. METHODS To explore this option, large Arn+ cluster ions (with n ~1500 Ar atoms per cluster) were used to investigate the emission of positive secondary ions from two peptide specimens (angiotensin I and bradykinin) by orthogonal time-of-flight SIMS using bombarding energies 6, 10 and 14 keV. RESULTS For both peptides, the protonated molecular ion is observed in the mass spectra. In addition, distinct fragmentation patterns were observed
these indicate that fragment ions under Ar cluster irradiation form primarily via cleavage of bonds along the peptide backbone whereas the rapture of side chains occurs much less frequently. These features appear to be similar to low-energy collision-induced dissociation pathways. CONCLUSIONS Tentatively, these findings can then be ascribed to the concerted action of the large number of Ar atoms in the impact zone of cluster at the surface: these low-energy Ar species (with an average energy of few eV) may effect the cleavage of the peptide bonds and lead, eventually, to the emission of the fragment ions. Copyright © 2013 John Wiley &amp
Sons, Ltd. Copyright © 2013 John Wiley &amp
Sons, Ltd.

リンク情報
DOI
https://doi.org/10.1002/rcm.6599
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/23722683
ID情報
  • DOI : 10.1002/rcm.6599
  • ISSN : 0951-4198
  • ISSN : 1097-0231
  • PubMed ID : 23722683
  • SCOPUS ID : 84878514723

エクスポート
BibTeX RIS