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Abstract—Localization, as a key technology, has promoted
various location-based services and applications. It also plays
an important role in many novel systems such as the Internet
of Things (IoT), smart buildings and houses, and unmanned
aerial vehicle (UAV) systems. Different from the requirements
for localization technology in the past, today’s indoor local-
ization systems need to provide not only the two-dimensional
(2-D) location information of the target but also stable three-
dimensional (3-D) information. Most of the existing localization
methods in wireless communication consider the communication
systems using conventional monopole antennas. However, in many
application scenarios such as smart manufacturing factories, the
shielding and interference effects of metallic objects on radio
waves limit the performance of conventional monopole antennas.
It is often necessary to increase the number of access points
(APs) with additional complexity and cost to guarantee entire
wireless coverage. Leaky coaxial cable (LCX) which can be used
as antennas for wireless communication can be employed to solve
this problem. As a long and flexible cable, LCX can provide
promising wireless coverage for stable wireless communication
and localization. This paper proposes a 3-D localization method
using multiple LCXs in an indoor environment. The proposal is
based on a particle filter algorithm and uses the time of arrival
(TOA) of the signal as the indicator for filtering.

Index Terms—Leaky Coaxial Cable (LCX), indoor localization,
particle filter, unmanned aerial vehicles

I. INTRODUCTION

With the rapid growth of portable devices and Internet of
Things (IoT) devices in the 5G era, location-awareness has
become a key and basic technical support for many novel
application scenarios and systems such as autonomous vehi-
cles [1], smart houses and buildings [2] and IoT systems [3].
These application scenarios are usually considered in indoor
propagation environments where the Global Position System
(GPS) signal is weak or even not available. Therefore, the
capability of powerful and reliable two-dimensional (2-D) or
three-dimensional (3-D) localization has become a necessity.

Unmanned aerial vehicle (UAV) is a recent technology that
can be employed in various indoor applications such as auto-
mated factories and smart logistics warehouses [4]. Different
from robots working on the ground, UAVs act based on 3-D
location information. As the key to this application scenario,
the 3-D localization for UAVs can assist the flight of the UAVs
and improve the wireless communication quality between
the UAVs and the base stations by using the beamforming
technology based on location information [5].

Due to the problem of the non-line-of-sight (NLOS) signal
propagation in the indoor environment and the noise in the sig-

nal measurement process, range-based localization methods,
which map the characteristic information of the signal (such
as angle of arrival (AOA), received signal strength indicator
(RSSI), time of arrival (TOA), and time difference of arrival
(TDOA)) to range values and then derive the location of
the target using multilateration methods, do not have reliable
localization performance. Machine learning (ML) algorithms
are employed to improve localization performance in recent
research [6], [7]. ML methods such as fingerprinting-based
systems usually act as an enhanced classifier and it consists
of two phases including an off-line phase and an on-line phase.
In the off-line phase, the signal information with location
labels is measured as the data set for training. The trained
model is used to classify the signal data, whose locations are
unknown, into different location classes in the on-line phase.
In addition to ML, methods involving extended Kalman filter
and particle filter have been proposed for achieving better
localization accuracy. In particular, the particle filter algorithm
has high expectations due to its promising performance in the
solution of the associated nonlinearities and the intractable
computation of the probability distributions [8]. Compared
with other conventional methods, localization and tracking
methods based on the particle filter can estimate the state of
the dynamic system from the noisy or incomplete observation
sequence and have better performance in noisy environments
[9], [20].

Most localization processes usually consider the wireless
communication system using conventional monopole anten-
nas for signal transmission and reception. These localization
schemes rely on the target’s radio signal being effectively
received by multiple access points (APs) nearby. However,
application scenarios including automated factories and smart
logistics warehouses are usually full of large machinery and
equipment which can be seen as metal barriers. Due to the
shielding and influence of the radio waves by metal objects,
some areas in the smart factory environment are similar to
the radio quiet zone (RQZ) where wireless signals cannot
be sent and received normally. When the target passes or
stays in these areas, the system can not perform wireless
communication and localization. It is often necessary to in-
crease the number of APs with additional complexity and cost
to guarantee entire wireless coverage. This problem can be
solved by using the leaky coaxial cable (LCX) for wireless
communication and localization. LCX can be used as antennas
for wireless communication and has many potential advantages
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due to its unique characteristics. As a long and flexible
cable, LCX can bypass various metal obstacles to adapt to
various irregular spaces and has a simple installation process.
References [10] and [11] show the uniform wireless coverage
of LCX and the low interference between cells. In [12], it
shows the employment of LCX in train and the train ground
communication system. The research on using LCX to provide
wireless power transfer for moving objects is shown in [13].
LCX can also be used for multi-input multi-output (MIMO)
communication, and the authors propose a 2-by-2 LCX-MIMO
system using the bi-directional radiation property of LCX [14].
To improve the channel capacity, an effective 4-by-4 LCX-
MIMO system and a simple power allocation method using
the user’s location information are proposed in [15]. On the
other hand, localization using LCX has been researched for
a few years. 2-D Indoor localization methods based on TOA,
TDOA, and RSSI are proposed in [16]-[18] respectively.

The motivation of this paper is to propose a particle filter-
based localization method for 3-D location awareness in the
indoor environment. This localization system uses multiple
LCXs as the APs to receive the signals from the target user,
and the TOA of the signals at different end sides of the LCX
will be utilized as the indicator for filtering in the localization
process. We establish a classic LCX channel model based on
the geometrically based single-bounce (GBSB) model [19],
which is based on the structure and bi-directional radiation
characteristics of LCX, considering line-of-sight (LOS) signal
condition and non-line-of-sight (NLOS) signal condition in an
indoor space. Based on the model, we provide the numerical
results of the localization performance by tracking a moving
target user in the LCX communication system. The system
measures the TOA of the user and then employs the particle
filter for state estimation and localization using the TOA
values. The TOA measurement of user signal is based on the
multiple signal classification (MUSIC) algorithm.

II. LCX STRUCTURE AND RADIATION PROPERTY

A. LCX Radiation Property

Fig. 1(a) shows the LCX with a 4-layer structure used in
this work. The periodic slots over the outer conductor can be
equivalent to a uniform linear array of small magnetic dipole
antennas. Radio waves can be radiated and received through
these slots. When LCX is used as an antenna for wireless
communication, the signal strength depends on the radio waves
from all slots. Radiation angles with peak directivity of LCX
can be expressed by

θm = sin−1(
√
ϵr +

mλ

P
), (m = −1,−2, . . .) (1)

where m is the harmonic order, P is the period of slots and ϵr
is the LCX’s relative insulator permittivity. λ is the wavelength
related to the frequency band. m is set as -1 to avoid radiated
harmonics. In addition, we can adjust the period P and the
direction of slots to change the radiation angle of LCX.

Fig. 1(b) shows the anthor important property of LCX:
bidirectional radiation property. The radiation direction will

(a) The structure of leaky coaxial cable (LCX)

(b) Bidirectional radiation property of LCX

Fig. 1. The structure and radiation property of LCX.

appear an intersection angle of 2θ when signal A and signal
B are fed to both sides of the LCX simultaneously. Due to the
low correlation between the radiation characteristics, one LCX
can be used as two antennas for wireless communication.

B. LCX Channel Model

Considering the LOS component and NLOS component of
the signal propagation. We give a simple geometrically based
single-bounce (GBSB) model [19], which uses the basic theory
in the communication field, to establish a classic model for
the wireless communication system using LCX. Here, a brief
introduction to channel modeling is provided in this section.
It should be noted that the following model introduction just
provides the received signal model of one end of the LCX,
and the received signal from the other end can be modeled in
the same way.

The LCX signal noted as SLCX is composed of LOS signal
SLOS and NLOS signal SNLOS, which can be expressed as

SLCX = SLOS + SNLOS, (2)

where, SNLOS and SLOS is stochastic and deterministic pro-
cess respectively. Fig. 2(a) shows the LOS propagation paths
which have two parts including the path from user (Tx) to
slot Oi in the air and the path from slot Oi to cable end in
the cable. The uniform power attenuation in the cable can be
expressed as αi = 10

−αP (i−1)
40 . α is the longitudinal amplitude

attenuation constant per meter in LCX. P (i−1)/2 is the cable
length between cable end and slot Oi. Similarly, the phase
variations in cable can be expressed as βi = krP (i − 1)/2.



(a) LOS component

(b) NLOS component

Fig. 2. The LOS and NLOS propagation paths in LCX channel model.

kr is the propagation constant of electrical waves in LCX and
kr = k0

√
ϵr. k0 is the propagation constant in free space and

k0 = 2πf/c. c is the speed of light. Here, the values of kr
and k0 can be changed by changing the value of f to simulate
the generation of signals of different frequencies in free space
and LCX. ri is set as the distance from user Tx, which has
one monopole antenna, to the center point of slot Oi. SLOS

depends on the superposition of LOS signals from all slots
and can be expressed as

SLOS =
N∑
i=1

SOi

=
N∑
i=1

αi

√
Pl(ri) · E(θi) · e−j(k0ri+βi),

(3)

where SOi
is the signal from user Tx via slot Oi to the cable

end. N is the number of slots. E(θi) is the power gain due
to the radiation angle [15]. Function Pl(ri) represents the
pathloss at a distance of ri in indoor environment over 2.4
GHz band and can be expressed by

Pl(d) = 18.7log10d+ 46.8 + 20log10(
2.4

5
), (4)

where d is the distance of the propagation path.
Fig. 2(b) shows the NLOS component of the signal prop-

agation. In the same way, we can express the NLOS signal
SNLOS simply as

SNLOS =
N∑
i=1

M∑
j=1

SOij

=
N∑
i=1

M∑
j=1

αi

√
Pl(rij + r′ij) · E(θij) · ejφij

· e−j(k0(rij+r′ij)+βi).

(5)

Here, SOij means the signal from user Tx via scatterer Sj and
slot Oi to cable end. rij and r′ij represent the distance from
Tx to scatterer Sj and the distance from scatterer Sj to slot
Oi. φij is the i.i.d random variables with uniform distributions
at [0,2π).

C. TOA Measurement by MUSIC method

TOA as the timing information of the signal is often used in
localization. The conventional localization method using LCX
uses TDOA values and signal radiation angle to geometrically
calculate the target location [16]. In this work, we use the
MUSIC algorithm to measure TOA values as the indicator
for particle filtering. The main idea of the TOA measurement
using MUSIC is to estimate the noise subspace from available
samples and search for steering vectors that are as orthogonal
to the noise subspace as possible. The signal arrival can
be estimated by searching the largest peak in the MUISC
spectrum.

Here, we give a brief introduction on the TOA measurement
using MUSIC algorithm. Given an M × M autocorrelation
matrix from the signal samples at different frequency f as

Rx =

M∑
i=1

diViV
H
i

=
s∑

i=1

(λi + σ2
w)ViV

H
i +

M∑
i=s+1

σ2
wViV

H
i ,

(6)

where the di and Vi are the eigenvalue and the eigenvector
corresponding to the eigenvalue. The superscript H represents
the Hermitian transpose. λi is the eigenvalue corresponding
to the signal and σ2

w is the variance of white noise. M
represents the number of equally spaced frequency points in
one measurement. The eigenvectors corresponding to the s
largest eigenvalues span the signal subspace. The remaining
M−s eigenvectors span the orthogonal noise space. We define
the estimation function for MUSIC as

g(τ) =
1∑M

i=s+1

∣∣VH
i e(τ)

∣∣2 , (7)

where e(τ) is known as the steering vector and can be
expressed as

e(τ) =
[
1, e−j2πf1τ , e−j2πf2τ , · · · , e−j2πfMτ

]T
, (8)

τ = nTr, (n = 0, 1, 2, · · · , Ns − 1). (9)

Tr is the time resolution of MUSIC method. f1, f2, ..., fM
are the equally spaced frequency points. Ns is the number
of elements in pseudo spectrum. The orthogonality between
the noise subspace and the steering vectors will minimize the
denominator in Eq. (7) to 0 value. However, it is a small value
in practice due to the noise. As a result, it will give rise to a
peak, which corresponds to the signal arrival, in g(τ). From
that, we can estimate the TOA of signals.



Fig. 3. System model in indoor environment. (a) LCX placement. (b) User
motion and scatterers

III. PARTICLE FILTER-BASED LOCALIZATION METHOD
USING LCX

As shown in Fig. 3, this paper considers the indoor environ-
ment as a three-dimensional (3-D) space with a length, width,
and height of 15 m, 8 m, and 8 m. The user (which can be
seen as a UAV device) with one monopole antenna moves
in this space. It assumes that several scatterers are randomly
distributed. Four LCXs are set to receive signals from the user.
The cable ports are numbered from 1 to 8. Signal processing
and particle filtering process will be done by the base stations
(BS) at both ends of the LCX.

A. Motion State Model
The motion state model is built in a 3-D cartesian coor-

dinate. We set a vector Ut to represent the motion state of
the user at time t. Ut can be written as [xt, yt, zt, θt, φt, lt]

T,
where (xt, yt, zt) defines the 3-D location of the user. θt
and φt are the elevation angle and azimuth of the moving
orientation. lt is the stride length. The state transition can be
described by the following equation as

Ut =


1 0 0 0 0 cos(φt−1) · cos(θt−1)
0 1 0 0 0 cos(φt−1) · sin(θt−1)
0 0 1 0 0 sin(φt−1)
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Ut−1

+ [0 0 0 ∆θ ∆φ ∆l ]T + nt−1 ,

(10)

where Ut−1 is the motion state at time t− 1. nt−1 represents
the process noise in state transition at time t − 1. ∆θ, ∆φ
and ∆l represent the variations of the moving orientation and
stride length at the end of each time step. The values of ∆θ,
∆φ and ∆l vary randomly within a specified range, so the
user performs non-linear motion in this model. We set state
transition as function F (·).

The signal received at the LCX side from the user is
simulated using the LCX channel model in Section II. We
measure the TOA of the LCX received signal at each cable end
using the MUSIC method. The observation frequency band is
set on the 2.4 GHz band with a bandwidth of 76.25 MHz and
the frequency interval is set as 312.5 KHz which is the same
as the subcarrier in IEEE802.11n/ac. We define the TOA of
the signal from port 1 to port 8 in Fig. 3(a) as t1, t2, ..., t8.
The TOA measurement value of target user at time t is Mt,
which can be expressed as [t1, t2, ..., t8].

B. Particle Filtering

Particle filtering algorithm is based on recursive Bayesian
and Monte Carlo simulation [8]. The key idea of a particle
filter is using discrete random samples (particles) instead of
the conventional integral calculation. Particles are used to
approximate the probability density function of the nonlinear
system to achieve the minimum variance estimation of the
system state. Indoor localization can also be seen as a kind of
filtering process, and we can use the particle filter algorithm
to solve estimation problems. The main idea is to determine
the posterior probability distribution of the system using noisy
observations. The posterior probability distribution consists of
particles with weights.

Algorithm 1: Particle Filter-based localization
Data: Mt, T , Np

Result: User localtion
1 Initialize the weight and location distribution of

particles ;
2 for t = 2, 3, ..., T do
3 Step 1: Sampling and Calculating Weights ;
4 for i = 1 : Np do
5 Update the particle states: P i

t = F (P i
t−1) + ξ ;

6 Obtain the particle TOA vector Mp
i
t using

LCX chennel model and MUSIC method ;
7 Calculate the particle weights:

wi
t =

1√
(2π)ε|Σ|

e−
(Mt−Mp

i
t)

T
Σ−1(Mt−Mp

i
t)

2 ;

8 end
9 Step 2: Normalization of Particle Weights ;

10 wsum =
∑Np

i=1 w
i
t ;

11 for i = 1 : Np do
12 wi

t =
wi

t

wsum
;

13 end
14 Step 3: Particle Resampling ;
15 Resmaple the particles (Algorithm 2) ;
16 Step 4: Location Estimation ;
17 Calculate the estimated location of user:

(xt, yt, zt) =
∑Np

i=1 w
i
t · P i

t ;
18 end

In this work, we define the particle state at time t as P i
t and

the update of the particle can be expressed by:

P i
t = F (P i

t−1) + ξ, (11)

P i
t = [xp

i
t, yp

i
t, zp

i
t, θp

i
t, φp

i
t, lp

i
t]
T, i = 1, 2, ..., Np, (12)

where F (·) is the state transition mentioned above, and Np is
the number of particles. ξ is thw zero-mean Gaussian random
noise. (xp

i
t, yp

i
t, zp

i
t) is the 3-D location of i-th particle at

time t. The TOA indicator of the particle can be expressed
as Mp

i
t which can be obtained using the LCX channel model



and MUSIC algorithm in previous section. The posterior
probability of user state Ut can be approximated as

p(Ut|M1:t) ≈
Np∑
i=1

wi
tδ(Ut − P i

t ), (13)

where δ(·) is the Dirac delta function. wi
t is the weight of

particle P i
t and can be obtained by

wi
t =

1√
(2π)ε |Σ|

e−
(Mt−Mp

i
t)

T
Σ−1(Mt−Mp

i
t)

2 , (14)

where Σ is the covariance matrix of measurement noise.
In particle filter, the number of effective particles Neff is

usually used to observe the degree of depletion of particle
weights. Neff can be defined as

Neff ≈ 1∑Np

i=1(w
i
t)

2
. (15)

When the value of Neff becomes small, the variance of the
weights becomes large which indicating that the depletion
of particle weights. In this paper, we choose the Random
Resampling Algorithm for particle resampling in the filtering
process. After particle resampling, the estimated location of

Algorithm 2: Random Resampling Algorithm

Data: wi
t

Result: ni
t(particle number)

1 Generate u containing Np random numbers from the
continuous uniform distributions on the interval
(0, Np) ;

2 Sort the numbers in u in ascending order ;
3 Calculate the cumulative sum of weights:

Ci = Accumulate(wi
t) ;

4 j = 1 ;
5 for k = 1 : Np do
6 while (j ≤ Np) & (uj ≤ Ck) do
7 ni = k ;
8 j = j + 1 ;
9 end

10 end

the user can be calculated using the weighted particles.

IV. PERFORMANCE EVALUATION

We use the distance between the user’s real location and
the estimated location as the localization error to investigate
the performance of the proposal. The target user will move
in the space for several times, and then the localization errors
are counted. In addition, we also investigate the effect of the
number of particles used and the number of LCXs on the
localization performance. The specifications of the LCX and
other detailed parameters and conditions in the simulation are
listed in Table I.

Fig. 4 is the localization error results using different num-
bers of particles. The mean value of the location error, when

TABLE I
SIMULATION SPECIFICATIONS

Parameter Value
LCX type LCX1, LCX2 (V1-type)

LCX3, LCX4 (V2-type)
LCX slot period [m] 0.04 (V1), 0.03 (V2)
Maximum radiation angle [deg] 18 (V1), 55 (V2)
Shortening coefficient in LCX 0.6403 (for all)
Cable loss [dB/m] 0.6 (for all)
Frequency bandwidth [MHz] 76.25 (2403.9-2480.15)
Frequency interval [KHz] 312.5
Number of scatterers (M ) 50
Number of particles (Np) 100, 500, 1000
Number of LCXs (NLCX) Pattern A: 2 (LCX1, LCX2)

Pattern B: 3 (LCX1, LCX2, LCX3)
Pattern C: 4 (all LCXs)

Time step size (T ) 20
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Fig. 4. Localization errors when using a different number of particles. (Pattern
C, NLCX = 4)

the number of particles Np is set as 1000, is 0.94 m. When Np

is set as 100 and 500, the location errors are 2.47 m and 1.43
m respectively. As the results show, the performance of the
proposed localization method using particle filter is promising.
As the number of particles used in the process decreases,
the localization performance of the proposed method drops
severely.

Fig. 5 shows the localization error results when using
different numbers of LCXs. The number of the particles Np

is set as 1000. We consider the LCX placement as three
patterns from Pattern A to Pattern C using 2, 3, and 4 LCXs
respectively. In the order of increasing the number of LCXs
used, the mean localization errors are 2.62 m, 1.36 m, and
0.94 m. From the results, we can find that the localization
performance of the proposal gets better when using more
LCXs in the localization system.

Fig. 6 is the comparison of the localization errors with
a different number of scatterers. When the number of scat-
terers M is 0, which means no NLOS propagation in the
communication environment, the average localization error is
0.62 m with a 90% accuracy of 1.1 m. As the number of
scattering points increases, the localization performance gets



0 0.5 1 1.5 2 2.5 3 3.5 4

Localization error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

Pattern A, N
LCX

= 2

Pattern B, N
LCX

= 3

Pattern C, N
LCX

= 4

Fig. 5. Localization errors with a different number of LCXs. (Np = 1000)

0 0.5 1 1.5 2 2.5 3

Localization error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

M= 0

M= 10

M= 50

Fig. 6. Comparison of the localization errors with a different number of
scatterers in the simulation model. (Pattern C, NLCX = 4, Pn = 1000)

worse due to the impact of the NLOS problem. However, the
increase in the number of scattering points does not greatly
degrade the localization performance. This result shows that
the TOA-based LCX localization method using the particle
filtering algorithm can perform well in a multipath-rich indoor
environment.

V. CONCLUSION

This paper proposed a particle filter-based 3-D localization
method using LCX in an indoor environment. The proposed
method measures the TOA value of the signal from the user
terminal as the indicator and performs particle filtering to
estimate the user location. The results of the localization errors
show that the particle filter-based method is promising and can
provide a good localization performance in a multipath-rich
indoor environment.
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