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Abstract

We have developed tensor decomposition based
unsupervised feature extraction and applied it
to various bioinformatics analysis. In the poster,
we summarize from some mathematical basics
to real applications.

Fundamental mathematics

A tensor, xijk ∈ R
N×M×K, is the ith gene expres-

sion/promoter methylation/any other omics fea-
ture of the sample under the jth and the kth treat-
ments . Using tensor decomposition (TD), xijk can
be decomposed as

xijk =
∑

ℓ1,ℓ2,ℓ3

G(ℓ1, ℓ2, ℓ3)xℓ1ixℓ2jxℓ3k

where G(ℓ1, ℓ2, ℓ3) ∈ R
N×M×K is a core ten-

sor, xℓ1i ∈ R
N×N , xℓ2j ∈ R

M×M , and xℓ3k ∈
R

K×K are singular value matrices that are sup-
posed to be orthogonal matrices. Since xijk is as
large as G(ℓ1, ℓ2, ℓ3), it is obviously over complete.
Using higher order singular value decomposition
(HOSVD) algorithm, we can expect that summa-
tion in right hand side employing small number of
Gs can well approximate xijk.
Feature selection was proposed by using the TD.
Suppose that singular value matrices with two sets
of {ℓ′

2} and {ℓ′
3} are expected to represent ex-

pected dependence upon treatments, e.g., tissue
specificity, over expression under some treatments
or enhanced drug responses. Then select a set of
{ℓ′

1} associated with G(ℓ′
1, ℓ′

2, ℓ′
3)s with larger ab-

solute values. This enables us to identify xℓ′
1i
s asso-

ciated with expected treatments dependence spec-
ified above.

xijk = ∑l1,l2,l3
 G(l1,l2,l3)xl1i xl2j xl3k
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Figure 1: Schematic illustrates TD. xijk ∈ R
N×M×K is

decomposed to product sum of G(ℓ1, ℓ2, ℓ3) ∈ R
N×M×K,

xℓ1i ∈ R
N×N , xℓ1i ∈ R

M×M , and xℓ1i ∈ R
K×K

In order to extract these genes, we assumed mul-
tiple Gaussian distribution for the selected xℓ′

1i
s.

Then, P -values are attributed to the ith genes us-
ing χ2 distribution.

Pi = Pχ2
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where Pχ2[> x] is the cumulative probability as-
suming χ2 distribution that the argument is larger
than x and σℓ′

1
is standard deviation. If corrected

P -values using multiple comparison comparison
adjustment are less than 0.01, these genes are iden-
tified to share ordered common gene expression.
TD was repeated using only selected genes when
we need feature extraction (FE).

Tensor decomposition-based

unsupervised feature extraction

identifies candidate genes that

induce post-traumatic stress

disorder-mediated heart diseases

Although post-traumatic stress disorder (PTSD) is
primarily a mental disease, it can also induce other
disorders in remote tissues. The examples include
cardiovascular, respiratory, musculoskeletal, neu-
rological, and gastrointestinal disorders, diabetes,
chronic pain, sleep disorders and other immune-
mediated disorders.

Table 1: Samples used in this study. Numbers before/after

comma are control/treated samples. h: hours, w: weeks.

stress 5 days 10 days 5 days 10 days
RP 24h 1.5 w 24h 6w 24h 1.5 w 24h 6w

AY 3,2 5,4 3,4 3,4 HC 3,5 4,5 5,4 4,5
MPFC 4,5 5,5 3,4 4,4 SE 3,2 2,3 3,3 3,3

ST 5,5 5,5 5,4 4,4 VS 5,5 5,5 3,4 5,4
BLD 5,5 5,5 4,5 4,5 HT 5,5 4,5 5,5 5,5
HB 5,5 4,5 5,5 5,5 SP 5,5 5,5 5,4 5,5

RP: rest period, AY: amygdala, HC:
hippocampus, MPFC: medial prefrontal cortex,
SE: septal nucleus, ST: striatum, VS: ventral

striatum, BLD: blood, HT: heart, HB: hemibrain,
SP: spleen.
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Figure 2: Singular value vectors employed (A) The second

control-related or treatment-related singular value vector,

xℓ1=2,j1
. Control: j1 = 1, and treatment (stress): j1 = 2. (B)

The fourth tissue singular value vector, xℓ2=4,j2
, AY: j2 = 1,

HC: j2 = 2, heart: j2 = 8, hemibrain: j2 = 9, and spleen:

j2 = 10.

We [1] applied TD based unsupervised FE to
gene expression of various stressed mouse tissues
with changing stress conditions (Table 1). Gene
expression profiles were formatted as a tensor,
xi,j1,j2,j3,j4

∈ R
N×2×10×2×3, of the ith probe, sub-

jected to j1th treatment (j1 = 1: control, j1 = 2:
treated [stress-exposed] samples), in the j2th tis-
sue [j2 = 1: amygdala (AY), j2 = 2: hippocampus
(HC), j2 = 3: medial prefrontal cortex (MPFC),
j2 = 4: septal nucleus (SE), j2 = 5: striatum (ST),
j2 = 6: ventral striatum (VS), j2 = 7: blood,
j2 = 8: heart, j2 = 9: hemibrain, j2 = 10: spleen],
with the j3th stress duration (j3 = 1: 10 days,
j3 = 2: five days) and j4th rest period after ap-
plication of stress (j4 = 1: 1.5 weeks, j4 = 2: 24
hours, j4 = 3: 6 weeks). Zero values were assigned
to missing observations (e.g., measurements at 6
weeks after a 5-day period of stress are not avail-
able).
After applying TD to xi,j1,j2,j3,j4

as

xi,j1,...,j4
=

∑

ℓ1,...,ℓ5

G(ℓ1, . . . , ℓ5) · xℓ5,i

4
∏

k=1

xℓk,jk

we found that ℓ1 = 2 represents distinction be-
tween treated and control conditions and ℓ2 = 4
represents co-expression among brain subregions
and heart. Then we tried to find which G(ℓ1 =
2, ℓ2 = 4, ℓ3, ℓ4, ℓ5)s have larger absolute values
(Table 2). It is obvious that ℓ5 = 1, 4, 11 are asso-
ciated with Gs with larger absolute values.

Table 2: Top-ranked G(ℓ1 = 2, ℓ2 = 4, ℓ3, ℓ4, ℓ5) with greater

absolute values.

ℓ3 ℓ4 ℓ5 G(2, 4, ℓ3, ℓ4, ℓ5)

1 1 11 -35.0
1 1 1 -30.8
2 2 1 -30.3
2 3 4 -30.0
2 3 1 28.7
2 2 4 28.5

After that, 801 probes associated with adjusted P -
values less than 0.01 were selected as outliers using
these three gene singular value vectors. Genes as-
sociated with these identified 801 probes were vali-
dated and turned out to be biologically reliable (see
Ref. [1] for more details).

Figure 3: Intuitive illustration of the present strategy.

Identification of candidate drugs

using tensor-decomposition-based

unsupervised feature extraction

in integrated analysis of gene

expression between diseases and

DrugMatrix datasets

In the next application of TD based unsupervised
FE, we aimed in silico drug discovery[2].
Suppose there is a tensor, xj1j2i, which represents
the ith gene expression at the j2th time point af-
ter the j1th compound is given to a rat; these data
are taken from the DrugMatrix dataset (Fig. 3).
There is also a matrix, xj3i, which represents the
ith gene expression of the j3th sample; samples
typically include disease samples and control sam-
ples. Tensor x̃j1j2j3i was generated as a ‘mathemat-
ical product’ of xj1j2i and xj3i. Then, tensor x̃j1j2j3i

is decomposed, and singular value matrix of com-
pounds uℓ1j1

, singular value matrix of time points
uℓ2j2

, sample singular value matrix uℓ3j3
, and gene

singular value matrix uℓ4i are obtained. Among
them, I selected the combinations of ℓk, 1 ≤ k ≤ 4,
which are simultaneously associated with all of
the following: i) core tensor G(ℓ1, ℓ2, ℓ3, ℓ4) with
a large enough absolute value, ii) a singular value
vector of time points, uℓ2j2

, whose value signifi-
cantly varies with time, and iii) sample singular
value vector uℓ3j3

. These parameters are different
between a disease (red filled circles) and control
samples (cyan filled circles). Finally, using gene
singular value vector uℓ4i and compound singular
value vector uℓ1j1

, compounds (filled pink circles)
and genes (filled light-green circles) associated with
G(ℓ1, ℓ2, ℓ3, ℓ4)s with large enough absolute values
are selected. Next, if the selected genes are coin-
cident with the genes associated with a significant
alteration when gene X is knocked out (or over-
expressed), then the compounds are assumed to
target gene X .

Table 3: Fisher’s exact test (PF ) and the uncorrected χ2

test (Pχ2) of known drug target proteins regarding the infer-

ence of the present study. Rows: known drug target proteins

(DINIES). Columns: Inferred drug target proteins using ‘Sin-

gle Gene Perturbations from GEO up’ or ‘Single Gene Per-

turbations from GEO down’. OR: odds ratio

Single Gene Perturbations from GEO up Single Gene Perturbations from GEO down
F T PF Pχ2 RO F T PF Pχ2 RO

heart failure
F 521 517

3.4 × 10−4 3.9 × 10−4 3.02
628 416

1.3 × 10−3 7.3 × 10−4 2.61
T 13 39 19 33

PTSD
F 500 560

3.8 × 10−2 3.1 × 10−2 2.67
532 529

6.1 × 10−3 4.5 × 10−3 3.81
T 6 18 5 19

ALL
F 979 89

2.7 × 10−1 3.0 × 10−1 2.19
1009 57

1.0 × 100 - -
T 10 2 12 0

diabetes
F 889 177

1.2 × 10−2 7.1 × 10−3 3.00
936 130

3.6 × 10−4 2.0 × 10−5 5.13
T 15 9 14 10

renal carcinoma
F 847 219

2.0 × 10−2 1.2 × 10−2 2.75
895 169

4.3 × 10−2 2.2 × 10−2 2.64
T 14 10 16 8

cirrhosis
F 572 219

1.1 × 10−2 8.1 × 10−3 2.91
595 169

1.6 × 10−3 1.1 × 10−3 3.81
T 8 10 7 8

Table 3 shows the result. For five diseases other
than ALL, identified combinations of drugs and
target proteins are significantly overlapped with
known pairs of drugs and target proteins.

Other applications

We have applied TD based unsupervised FE to
other various applications. More advanced discus-
sions about the methods used for drug discovery
[2, 3] is found in Ref. [4]. Applications of TD based
unsupervised FE to integrated analysis of multi-
omics data set is found in Ref. [5]. Genetic and epi-
genetic background and miRNA transfection medi-
ated sequence non-specific side effect are also dis-
cussed in APBC2018 [6] and GIW2017 [7], respec-
tively. Correlation between miRNA expressin and
DNA methylation was studied [8], too.
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